材料科学与工程导论课件
- 格式:ppt
- 大小:246.50 KB
- 文档页数:6
材料科学与工程导论
材料科学与工程是一门研究材料的性能、结构、制备和应用的学科,它涉及到各种材料,包括金属、陶瓷、高分子材料和复合材料等。
材料科学与工程的发展对于现代工业、能源、医疗、环境等领域都具有重要意义。
首先,材料科学与工程的研究对象是各种材料的性能和结构。
通过对材料的组成、微观结构和宏观性能进行研究,可以揭示材料的内在规律,为材料的设计、制备和应用提供科学依据。
其次,材料科学与工程的研究内容包括材料的制备和加工技术。
材料的制备和加工技术直接影响到材料的性能和应用范围,因此对于材料的制备和加工技术的研究具有重要意义。
另外,材料科学与工程还涉及到材料的应用和性能调控。
通过对材料的应用和性能进行研究,可以开发出具有特定功能和性能的材料,满足不同领域的需求。
总的来说,材料科学与工程是一门重要的交叉学科,它涉及到多个领域,对于现代社会的发展具有重要意义。
随着科学技术的不断发展,材料科学与工程也在不断取得新的进展,为人类社会的发展做出了重要贡献。
在材料科学与工程领域,我们需要不断深化对材料的认识,推动材料科学与工程的发展,为人类社会的可持续发展做出更大的贡献。
希望通过我们的努力,能够推动材料科学与工程领域的发展,为人类社会的进步做出更大的贡献。
材料科学与工程导论一、材料的定义与分类材料是人类用于制造机器、构件和产品的物质,是人类赖以生存和发展的物质基础新材料,主要是指那些正在发展,且具有优异性能和应用前景的一类材料。
为了规范新材料的含义,一般把具备以下三个条件之一的材料称为新(1.新出现或正在发展中的具有传统材料所不具备的优良性能的材料。
如:C60 2.高技术发展需要,具有特殊性能的材料。
如:形状记忆合金 3.由于采用新技术(工艺、装备)明显提高了性能,或者出现了新的功能的材料。
如:超级钢、纳米、超导材料、智能材料、生物医用材料)分类一:按组成与结构划分(金属材料无机非金属材料高分子材料复合材料)分类二:按用途分(电子信息材料航空航天材料能源材料生物医用材料等)分类三:按性能分结构材料(高温合金、难熔金属、金属间化合物、金属基复合材料、高分子材料、钛合金、镁合金)功能材料(吸波材料、单晶硅、形状记忆材料)分类四:按应用与发展分(传统材料新材料如纳米铜、超导电缆)二、材料的地位和作用当代文明:能源材料信息新技术革命:信息技术新材料生物技术材料是人类社会发展的基础和先导1>新材料技术是工业革命和产业发展的先导两次工业革命都是以新材料的发明和广泛应用为先导第一次工业革命(18世纪):制钢工业的发展为蒸汽机的发明和应用奠定了物质基础。
第二次工业革命(20世纪中叶以来):单晶硅材料对电子技术的发明和应用起了核心作用。
2>新材料技术是社会现代化的先导21世纪重点发展的高技术领域的进展与趋势21世纪重点发展的高技术领域的材料选择新材料技术是高技术发展的基础21世纪重点发展的高技术领域的进展与趋势环境科学技术:探求人类与环境和谐共存方式空间科学技术:探索宇宙空间(多种用途的人货分离的新一代航天飞行器、小卫星技术、太空攻防技术)新材料科学技术:探索物质结构(纳米技术、光电子材料、光子材料、新型功能材料、新型结构材料)新能源与再生能源:实现人类可持续发展(化石能源高效清洁利用技术、新能源‘核能、氢能’和可再生能源技术、天然气水合物的开发)信息科学技术:信网络技术、宽带通信技术、半导体技术、计算机智能技术生物科学技术:探索生命本质(基因组学、蛋白质科学、干细胞及再生医学)海洋科学技术:探索海洋奥秘七大高新技术领域1.信息科学技术:正在发生结构性变革,仍然是经济持续增长的主导力量。
材料科学与工程导论1. 引言材料科学与工程是研究材料的组成、结构、性能和制备工艺的学科。
它涉及到许多领域,如化学、物理、生物学和工程学等。
材料科学与工程的开展对现代社会的各个方面都具有重要的意义,包括能源、环境、医疗、电子等。
2. 材料的分类根据材料的性质和组成,可以将材料分为金属、陶瓷、聚合物和复合材料四大类。
金属材料具有良好的导电性和导热性,常见的金属材料有铁、铜、铝等。
陶瓷材料具有高的硬度和抗腐蚀能力,常见的陶瓷材料有瓷器、玻璃等。
聚合物材料具有良好的可塑性和绝缘性能,常见的聚合物材料有塑料、橡胶等。
复合材料是由两种或更多种材料组合而成,具有综合性能优于单一材料。
3. 材料的性能材料的性能是指材料在特定条件下所表现出的特性。
常见的材料性能包括力学性能、热性能、电性能、磁性能等。
力学性能包括强度、韧性、硬度等。
热性能包括热导率、热膨胀系数等。
电性能包括导电性、介电常数等。
磁性能包括磁导率、磁饱和磁感应强度等。
4. 材料的制备工艺材料的制备工艺是指将原始材料经过一系列加工和处理步骤转变为所需的最终产品的过程。
常见的材料制备工艺包括熔炼、成型、烧结、合成等。
熔炼是将固态材料加热至熔点并冷却固化的过程。
成型是将熔融或可塑性材料加工成所需形状的过程。
烧结是将粉末材料在高温条件下进行烧结以获得致密结构的过程。
合成是在化学反响条件下将原始物质转化为目标材料的过程。
5. 材料科学的应用材料科学的应用非常广泛,几乎涉及到所有的工业和技术领域。
在能源领域,材料科学的应用可以提高电池的储能密度和光伏电池的效率。
在汽车领域,材料科学的应用可以降低汽车的重量和提高汽车的平安性能。
在医疗领域,材料科学的应用可以改善医疗器械的生物相容性和可植入性。
在电子领域,材料科学的应用可以制备出更小、更快、更节能的电子设备。
6. 材料科学的开展趋势随着科学技术的不断开展,材料科学也在不断进步。
未来的材料科学开展将更加注重材料的可持续开展和综合性能的提升。