排列组合的几中常用方法
- 格式:docx
- 大小:16.45 KB
- 文档页数:4
排列组合1.捆绑法:主要处理相邻元素问题.例1:6名同学排成一排,其中甲、乙两人必须在一起的不同排法有种.2.插空法:相离问题.例2:要排一张有6个歌唱节目和四个舞蹈节目的演出节目单,任何两个舞蹈节目不能相邻,一共有种排列方法.3.缩倍法:定序问题.例3:①今有2个红球、3个黄球、4个白球,同种颜色不加区分,将这九个球排成一列,有种不同的排法.②若把good的字母顺序写错了,有种不同的错误写法.③四张卡片上分别标有“2”“0”“0”“9”,其中“9”可当“6”用,则由这四张卡片可组成不同的四位数的个数是4.优限法:定位问题.例4.计划展出10幅画,其中1幅水彩画、4张油画、5张国画,排成一列成列,要求同一品种的画必须放在一起,并且水彩画不放在两端,那么不同的成列方式有种.5.间接法:至多至少问题.例5:从4台甲型和5台乙型电视机中任意取出3台,至少要甲型与乙型电视机各一台,则一共有种不同的选法.6.先选后排:选排问题.例6:①四个不同的球放入编号为1,2,3,4的四个盒子中,则恰好有一个空盒子的方法有种②(2009重庆理)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).7.分类讨论法:例7:(2009重庆理)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。
从中任意舀取4个汤圆,则每种汤圆都至少取到1个的不同方法有种.8.插板法:名额分配问题.例8:某中学准备组建一个18人的足球队,这18人由高一年级10个班级的学生组成,每班至少一个,名额分配的方法有种.9.平均分配问题:例9:将12个学生平均分成四组,一共有种不同的方法.10.圆排:例10:将从10个不同的学生中选出8个,将他们分配到一个圆座上,则不同的方法有种.11.错排:例11:四个同学做了四张不同的贺卡,每个人的贺卡必须送给别人,一共有种不同送法.- 1 -。
排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)&完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类1办法中有m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步1有m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.【解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C )然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法【二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
排列组合常用的十五种方法一.特殊元素和特殊位置优先策略例1.由0,1, 2, 3, 4, 5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C;.〔I.然后排首位共有C:, 甲最后排其它位置共有& | | J由分步计数原理得C:C;A; = 288 C] A:C;练习题:1. 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有疋斎崙=480种不同的排法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题•即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_____________ 三•不相邻问题插空策略例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有&种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种犹不同的方法,由分步计数原理,节目的不同顺序共有貳处____________ 种元素相离问题可先把没有位宜要求的元素进行排队再把不相邻元素插入中间和两练习题:3.某班新年联欢会原定的5个节目己排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 _______四•定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有丄种坐法,则共有A;丽法。
1.有限制条件的排列问题常见命题形式: “在”与“不在” ,“邻”与“不邻”⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是 ⑵“不邻”问题在解题时最常用的是“插空排列法”.⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.2.有限制条件的组合问题, “含”与“不含” ,“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.3.闸板法 名额分配或相同物品的分配问题4.合并单元格解决染色问题练习 1.3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?2.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有( )(A)140种 (B)84种 (C)70种 (D)35种3.有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有( ) (A)1260种 (B)2025种 (C)2520种 (D)5040种4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__5.在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法? 9906.有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 4327.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )8.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ) 9.某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
排列组合20种常用方法
1. 列出所有可能的组合
2. 使用递归排列组合
3. 使用循环排列组合
4. 使用动态规划排列组合
5. 使用回溯法排列组合
6. 使用数学公式计算排列组合
7. 使用位运算排列组合
8. 使用逆序排列组合
9. 使用有序集合排列组合
10. 使用栈数据结构排列组合
11. 使用队列数据结构排列组合
12. 使用重复排列组合
13. 使用有限制条件的排列组合
14. 使用自定义函数进行排列组合计算
15. 使用字符串拆分和拼接进行排列组合
16. 使用二叉树进行排列组合
17. 使用堆进行排列组合
18. 使用图进行排列组合
19. 使用集合进行排列组合计算
20. 使用贪心算法进行排列组合。
高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组( 看作一个元素 ) 参加摆列.例 1: 五人并排站成一排,假如甲、乙一定相邻且乙在甲的右侧,那么不一样的排法种数有种。
二、相离问题插空法元素相离 ( 即不相邻 ) 问题,可先把无地点要求的几个元素全摆列,再把规定相离的几个元素插入上述几个元素间的空位和两头.例 2:七个人并排站成一行,假如甲乙两个一定不相邻,那么不一样排法的种数是。
三、定序问题缩倍法在摆列问题中限制某几个元素一定保持必定次序,可用减小倍数的方法.例 3: A、 B、 C、 D、 E 五个人并排站成一排,假如 B 一定站 A 的右侧 (A、 B 可不相邻 ) ,那么不一样的排法种数有。
四、标号排位问题分步法把元素排到指定号码的地点上,可先把某个元素按规定排入,第二步再排另一个元素,这样持续下去,挨次即可达成.例 4:将数字 1、2、3、4 填入标号为 1、 2、 3、 4 的四个方格里,每格填一个数,则每个方格的标号与所填数字均不同样的填法有。
五、有序分派问题逐分法有序分派问题是指把元素按要求分红若干组,可用逐渐下量分组法。
例 5:有甲、乙、丙三项任务,甲需 2 人肩负,乙丙各需 1 人肩负,从 10 人中选出 4 人肩负这三项任务,不一样的选法总数有。
六、多元问题分类法元素多,拿出的状况也有多种,可按结果要求,分红不相容的几类状况分别计算,最后总计。
例 6:由数字 0 ,1,2,3,4,5 构成且没有重复数字的六位数,此中个位数字小于十位数字的共有个。
例 7:从 1,2,3, 100 这 100 个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法 ( 不计次序 ) 共有多少种?例 8:从 1,2, 100 这 100 个数中,任取两个数,使其和能被 4 整除的取法( 不计次序 ) 有多少种?七、交错问题会合法某些摆列组合问题几部分之间有交集,可用会合中求元素个数公式n( A B) n( A) n(B) n( A B) 。
排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,n 1m 2m …,在第类办法中有种不同的方法,那么完成这件事共有:n n m 12nN m m m =+++ 种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,n 1m 2m 做第步有种不同的方法,那么完成这件事共有:n n m 12nN m m m =⨯⨯⨯ 种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中55A 间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种46A 5456A A目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 147A 种坐法,则共有种方法。
浅谈解排列组合题的几种常用方法1.相邻问题捆绑法题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排种数有( )A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种。
2.相间问题插空法元素不相邻问题,先安排好其他元素,然后将不相邻的元素按要求插入排好的元素之间的空位和两端即可。
例2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。
如果将这两个节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 ( )A 、6B 、 12C 、15D 、30解析:原来的5个节目中间和两端可看作分出6个空位。
将两个新节目不相邻插入,相当于从6个位置中选2个让它们按顺序排列,故有3026=A 种排法。
3.特殊元素优先安排法对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素。
例3. 乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。
解析:3名主力的位置确定在一、三、五位中选择,将他们优先安排,有33A 种可能;然后从其余7名队员选2名安排在第二、四位置,有27A 种排法。
因此结果为2733A A =252种。
4.选排问题先选后排法对于排列组合的混合问题,可采取先选出元素,后进行排列的策略。
“先选后排”是解排列组合问题的一个重要原则。
一般地,在排列组合综合问题中,我们总是先从几类元素中取出符合题意的几个元素,再安排到一定位置上。
例4. 四个不同小球放入编号为1,2,3,4的四个盒子,则恰好有一个空盒的放法有几种?解析:方法一:这是一个排列与组合的混合问题。
一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
二、七大解题策略
1.特殊优先法
特殊元素,优先处理;特殊位置,优先考虑。
对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()
(A) 280种(B)240种(C)180种(D)96种
正确答案:【B】
解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。
2.科学分类法
问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。
对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。
同时明确分类后的各种情况符合加法原理,要做相加运算。
例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。
A.84
B.98
C.112
D.140
正确答案【D】
解析:按要求:甲、乙不能同时参加分成以下几类:
a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;
b.乙参加,甲不参加,同(a)有56种;
c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。
故共有56+56+28=140种。
3.间接法
即部分符合条件排除法,采用正难则反,等价转换的策略。
为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.
例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?
A.240 B.310 C.720 D.1080
正确答案【B】
解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。
4.捆绑法
所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
注意:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
例:5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?
A.240 B.320 C.450 D.480
正确答案【B】
解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6)×A(3,3) =320(种)。
5.插空法
所谓插空法,指在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置。
注意:a.首要特点是不邻,其次是插空法一般应用在排序问题中。
b.将要求不相邻元素插入排好元素时,要注释是否能够插入两端位置。
c.对于捆绑法和插空法的区别,可简单记为“相邻问题捆绑法,不邻问题插空法”。
例:若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?
A.9 B.12 C.15 D.20
正确答案【B】
解析:先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。
6.插板法
所谓插板法,指在解决若干相同元素分组,要求每组至少一个元素时,采用将比所需分组数目少1的板插入元素之间形成分组的解题策略。
注意:其首要特点是元素相同,其次是每组至少含有一个元素,一般用于组合问题中。
例:将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?
A.24 B.28 C.32 D.48
正确答案【B】
解析:解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。
因此问题只需要把8个球分成三组即可,于是可以将8个球排成一排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。
其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒子中,第二个板后面的球放到第三个盒子中去。
因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是
C(8,2)=28种。
(注:板也是无区别的)
7.选“一”法,类似除法
对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。
这里的“选一”是说:和所求“相似”的排列方法有很多,我们只取其中的一种。
例:五人排队甲在乙前面的排法有几种?
A.60 B.120 C.150 D.180
正确答案【A】
解析:五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。
以上方法是解决排列组合问题经常用的,注意理解掌握。
最后,行测中数量关系的题目部分难度比较大,答题耗时比较多,希望考试调整好答题的心态和答题顺序,在备考过程中掌握好技巧和方法,提高答题的效率。