长输管道天然气水合物形成与防治
- 格式:ppt
- 大小:177.00 KB
- 文档页数:15
天然气水合物形成条件在天然气输送过程中,经常会出现水合物堵塞管道的情况,请大家讨论一下,天然气水合物形成的主要条件及如何预防水合物的形成。
1 天然气水合物的危害天然气水合物是石油、天然气开采、加工和运输过程中在一定温度和压力下天然气与液态水形成的冰雪状复合物。
严重时,这些水合物能堵塞井筒、管线、阀门和设备,从而影响天然气的开采、集输和加工的正常运转。
只要条件满足,天然气水合物可以在管道、井筒以及地层多孔介质孔隙中形成,这对油气生产及储运危害很大。
2 天然气水合物的性质和形成:2.1 水合物的性质及结构天然气水合物为白色结晶固体,是在一定温度、压力条件下,天然气中的烃分子与其中的游离水结合而形成的,其中水分子靠氢键形成一种带有大、小孔穴的结晶晶格体,这些孔穴被小的气体分子所充填。
形成水合物的首要条件是天然气中含水,且处于过饱和状态,甚至有液态游离水存在;其次是有一定条件的压力和低于水合物形成的温度。
在上述两种条件下的生产运行过程中,如遇压力波动、温度下降、节流或气流流向突变很快就可能形成水合物堵塞。
2.2 水合物的生成条件天然气水合物生成除了与天然气组分、组成和游离水含量有关外,还需要一定的压力和温度。
下式即为水合物自发生成的条件:M+nH2O(固、液)=[M·H2O](水合物)也就是说,只有当系统中气体压力大于它的水合物分解压力时,才有可能由被水蒸气饱和的气体M自发地生成水合物。
由热力学观点看,水合物的自发生成绝不是必须使气体M被水蒸气饱和,只要系统中水的蒸汽压大于水合物晶格表面水的蒸汽压就足够了。
此外,形成水合物的辅助条件是:气流的停滞区。
2.3 长庆气田天然气水合物形成的基本参数及防治工艺根据长庆气田天然气组分,采用节点分析软件分析,计算压力在6~20 MPa时其水合物形成温度为14.5~22.3℃。
一般开井初期井口压力在20MPa 以上,采气管线按25MPa压力设计。
根据下游用户交接点的压力情况,反算得出集气支、干线设计压力为6.4MPa。
天然气管道输送过程中的水合物形成机制分析天然气是一种在现代社会中广泛使用的清洁能源,其在国家的工业、民生生产中扮演着至关重要的角色。
为了满足日益增长的能源需求,我们需要建设更加完善的天然气输送系统。
然而,在天然气运输过程中,常常会遇到水合物的形成问题。
本文将讨论天然气管道输送过程中的水合物形成机制,并探讨其防治措施。
一、水合物形成的原因1、低温低压环境下天然气和水分子结合而形成水合物。
当天然气的温度和压力在水的存在下降到临界点以下时,天然气中的甲烷、乙烷等气体分子会被水分子“包裹”起来形成水合物。
2、管道内的杂质和微生物会促进水合物的形成。
管道内存在的异物如污垢、灰尘、油脂等均可作为水合物形成的催化剂。
另外,管道中的微生物也是水合物形成的重要催化剂。
二、水合物的危害水合物的形成会导致管道内径变小,阻力增大,甚至堵塞管道。
此外,水合物的形成也会引起管道的腐蚀和破裂,严重危害天然气输送系统的安全性。
三、水合物防治措施1、控制温度和压力。
通过控制天然气输送管道内部的温度和压力,可以减缓水合物的形成速度。
一般情况下,提高管道内的温度和压力可以抑制水合物的形成。
2、清洗管道。
经常对管道进行清洗和维护,可有效减少管道中的异物,从而减少水合物形成的催化剂。
3、使用添加剂。
可添加一定量的防水合物剂,如甲醇、乙醇等混合物,以减少水合物的形成。
4、提高管道的质量。
在天然气输送管道的铺设和设计上,应严格按照标准施工,尽可能减少管道内径变小、弯曲或坡度变化的情况,从而降低水合物形成的风险。
总之,天然气管道输送过程中的水合物形成机制是一个既有理论支撑又有实践指导的工程问题。
合理运用各种技术手段和防治措施,能有效降低水合物对天然气输送系统的危害,提高系统的可靠性和安全性。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改天然气水合物的危害与防止(2021年)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes天然气水合物的危害与防止(2021年)一、天然气水合物在一定的温度和压力条件下,含水天然气可生成白色致密的结晶固体,称为天然气水合物(NGHnaturalgashydrate),其密度约为0.88~0.99g/cm3。
天然气水合物是水与烃类气体的结晶体,外表类似冰和致密的雪,是一种笼形晶状包络物,即水分子借氢键结合成笼形晶格,而烃类气体则在分子间作用力下被包围在晶格笼形孔室中。
NGH共有两种结构,低分子的气体(如CH4,C2H6,H2S)的水合物为体心立方晶格;较大的气体分子(如C3H8,iC4H10)则是类似于金钢石的晶体结构。
当气体分子充满全部晶格的孔室时,天然气各组分的水合物分子式可写为CH4·6H20,C2H6·6H20,C3H8·17H20,iC4H10·17H20,H2S·6H20,CO2·6H20。
水合物是一种不稳定的化合物,一旦存在的条件遭到破坏,就会分解为烃和水。
天然气水合物是采输气中经常遇到的一个难题之一。
二、天然气水合物的危害及成因1.天然气水合物的危害在天然气管道输送过程中,天然气水合物是威胁输气管道安全运行的一个重要因素。
能否生成水合物与天然气组成(包括含水量)、压力、温度等条件有关。
天然气通过阻力件(如节流阀、调压器、排污阀等)时,天然气压力升高,气体温度下降。
降低水露点抑制天然气水合物的生成前言由地层采出的天然气,通常处于被水饱和的状态。
处于液相状态的水,在天然气的集输过程中,通过分离器就可以使其从天然气中分离出来。
但天然气中含有的饱和水汽,就不能通过分离器分离。
水是天然气中有害无益的组分,因为天然气中水的存在,会降低天然气的热值和输气管道的输送能力;当温度降低或压力增加时,天然气中液相析出的水,在管道和设备中造成积液,不仅增加流动压降,甚至造成段塞流,还会加速天然气中酸性组分对管道和设备的腐蚀;液态水不仅在冰点时会结冰,而且,即使在天然气的温度高于水的冰点时,液态水还会与天然气中的一些气体组分生成水合物,严重时会堵塞井筒、阀门、管道和设备,影响输气管道的平稳供气和生产装置的正常运行。
天然气的水露点指标就是其饱和水汽含量的反映。
天然气水露点高,其水汽含量必然高。
因此,对于天然气,降低其水露点,无论对于管道输送或是符合商品气质要求,都具有重要的意义。
天然气水露点天然气的饱和水汽含量取决于天然气的温度、压力和气体组成等条件。
天然气含水汽量,通常用绝对湿度、相对湿度、水露点三种方法表示。
1绝对湿度每立方米天然气中所含水汽的克数,称为天然气的绝对湿度。
2相对湿度在一定条件下,天然气中可能含有的最大水汽量,即天然气与液态平衡时的含水汽量,称为天然气的饱和水汽含量。
在一定温度和压力条件下,天然气水汽含量与其在该条件下的饱和水汽含量的比值,称为天然气的相对湿度。
3水露点天然气的水露点是指在一定的压力条件下,天然气中开始出现第一滴水珠时的温度,也就是在该压力条件下与饱和水汽含量对应的温度值。
在GB17820-1999《天然气》中,把水露点作为衡量商品天然气的一个指标。
在天然气的贸易交接计量时,常常要测定它。
在天然气管道输送过程中,更需要首先知道水露点的高低,因为它决定着能否正常输送。
在天然气处理装置中,常常有一个叫天然气烃水露点控制单元,它来控制和在线监测天然气水露点。
海上天然气水合物的形成与防治措施摘要:天然气水合物堵塞的防治是海上油气田安全高效开发的难题之一。
水合物的生成可导致气体输送管线和设备的堵塞而影响海上油气田的正常生产;水合物一旦形成,就很难除去。
因此,准确判断在什么条件下会形成水合物堵塞,并诊断和评价已形成的水合物堵塞,且提出行之有效的解堵措施,对天然气的输送和设备的管理具有重要意义。
本文通过对水合物的结构性质、危害、形成条件和生成机理的探究,介绍如何合理的利用抑制剂(甲醇、乙二醇)来有效防止水合物的形成,从而高效地实现海上油气田的安全开发。
关键词:结构性质危害形成条件解决措施抑制剂一、引言输气海管,作为天然气输送的重要通道,其畅通、连续、安全平稳运行对海上油气田的正常开采有着重要意义。
天然气输送管道在日常的输送中易形成水合物堵塞海管,给海管的安全运行带来极大风险。
因此,准确判断在什么条件下会形成水合物堵塞,并诊断和评价已形成的水合物堵塞,且提出行之有效的解堵措施,对天然气的输送和设备的管理具有重要意义。
二、天然气水合物的结构性质天然气水合物是一种笼形晶格包络物,即水分子靠氢键结合成笼形晶格,而气体分子则在范德华力作用下,被包围在晶格的笼形孔室中,如图1。
其外观类似松散的冰或致密的雪,通常呈白色。
天然气水合物具有多孔性,硬度和剪切模量小于冰,密度为0.88~0.90g/cm3。
可浮于水面,而沉于液烃中。
天然气水合物不同与一般的晶体化合物,是一种配位化合物(络合物)或称包合物,M·nH2O (n≥5.67),其中M表示水分子中的气体分子,n为水合指数即水分子数。
图1天然气水合物晶体结构模型三、天然气水合物的危害在天然气的整个输送过程中,由于气体的压力较高,有可能生成水化物。
天然气水合物一旦形成,就会对设备及管道等造成危害,其表现在:1.如果水合物在设备(分离器、换热器等)中形成,不但可导致设备的损坏,还可能导致较大事故。
2.如果水合物是在管道中形成,会造成堵塞管道、减少天然气的输量、增大管线的压差、损坏管件等危害,导致严重管道事故。
天然气水合物的危害及预防措施张思勤(中海石油(中国)有限公司深圳分公司,518067)摘要:天然气水合物的形成条件包括液相水的存在、足够高的压力和足够低的温度、以及流动条件突变等;针对天然气水合物的形成条件提出了常用的预防措施,并详细介绍了现场常用的化学抑制剂用量的计算方法。
关键词:天然气水合物;液相水;临界温度;冰堵;抑制剂用量一、水合物的危害(1)水合物在管道中形成,会造成堵塞管道、减少天然气的输量、增大管线的压差、损坏管件等危害,导致严重管道事故;(2)水合物是在井筒中形成,可能造成堵塞井筒、减少油气产量、损坏井筒内部的部件,甚至造成油气井停产;(3)水合物是在地层多孔介质中形成,会造成堵塞油气井、减低油气藏的孔隙度和相对渗透率、改变油气藏的油气分布改变地层流体流向井筒渗流规律,这些危害使油气井的产量降低。
二、水合物形成的主要条件(1)液相水的存在是产生水合物的必要条件。
天然气的含水量处于饱和状态,天然气中的含水汽量处于饱和状态时,常有液相水的存在,或易于产生液相水。
(2)压力和温度,当天然气处于足够高的压力和足够低的温度时,水合物才可能形成。
天然气中不同组分形成水合物的临界温度是该组分水合物存在的最高温度。
此温度以上,不管压力多大,都不会形成水合物。
(3)流动条件突变,在具备上述条件时,水合物的形成,还要求有一些辅助条件,如天然气压力的波动,气体因流向的突变而产生的搅动,以及晶种的存在等。
三、防止水合物形成的措施(1)脱除天然气中的水分,给天然气脱水处理,去除或减少天然气中的水分含量,现场中天然气集输一般都建有天然气脱水装置。
天然气在地层温度和压力条件下含有饱和水汽,天然气的水汽含水量取决于天然气的温度、压力和组成等条件。
天然气含水汽量,通常用绝对湿度、相对湿度和水露点来表示。
(2)提高天然气的流动温度,加热,保证天然气整个集输流程中温度总是高于形成水合物的临界温度。
(3)向气流中加入天然气水合物抑制剂以降低形成水合物的临界温度,在选择水合物抑制剂方法之前,整个操作系统应该是最优化的,以使必须的处理过程减至最少。
天然气长输管道含水化合物的形成及对策随着我国经济水平的日益提高,国家对于天然气的勘查力度逐渐加重。
由于近年来广大人民群众的生活水平有了很大的提高,在物质和环保方面的需要也日益提高,天然气长输管道也就迎来了它的飞速发展。
随着天然气管道的不断发展和延伸,管道企业需要担负的一系列责任——包括社会责任、经济责任和政治责任,也就越来越大。
为此,企业人员需要尽可能的预防和处理一切有关天然气长输管道的问题。
众所周知,天然气长输管道含水化合物就是一种普遍的现象。
接下来我们就来讨论一下含水化合物的问题。
首先我们需要对天然气长输管道含水化合物有一定的了解天然气水化合物是一种白色的结晶物质,是一种固体。
在一定的压力和温度条件下,天然气中的烃分子和其中的游离水接触,结合形成一种类似冰结晶的化合物,在形成过程中水分子是依靠氢键来形成一种带有大孔穴和小孔穴的结晶晶格体,其中这些孔穴会被小的气体分子填充。
由于其经常在天然气或凝析油管道中形成从而造成阀门、管道以及一些处理设备的堵塞,因而天然气水化合物的防治对于石油天然气工业的发展具有重要的意义凡事有果必有因,水化合物的出现必然是有原因的,形成天然气水化合物首先的重要条件就是在天然气中需要含有一定量的水分,并且水要处于一种过度饱和的状态,更有甚者还有可能出现液态状的游离水;其次还需要有一定的压力和适宜的温度。
也就是说水化合物的形成除了和天然气的组成及组分和液态游离水的含量有关系以外,还与温度和压力有很大的关联。
只有在系统中气压高于水化合物的分解压力的情况下,才有可能产生经水蒸气饱和了的气体自发形成水化合物的情况。
从热力学的角度来分析也就是,天然气水化合物的自发形成并不是说水蒸气必须要把气体饱和,只要管道系统中的蒸汽压能够高于在水化合物晶格表面上的水蒸汽压就会产生水化合物的自发生成。
除此之外,水化合物的生成还有一个辅助条件就是气流的留滞区。
在上面所说的两个条件下的生产和运作的过程中,如果遇上有很快的节流或气流方向突变极快、温度降级、压力出现波动等情况就有可能水化合物出现堵塞问题水化合物堵塞是有极大危害的,假如情况严重时,这些水化合物可能会把管线、阀门、井筒和设备堵塞住,进而会对天然气的一系列的正常运作即开采、集输和加工方面产生极大的影响。
浅谈输气管线中水合物的抑制及防止措施摘要随着天然气工业的不断发展,天然气管线也日益增多,但天然气开采及输送过程中,水合物的生成及堆积会导致事故。
因此,如何在工业生产中抑制水合物生成就成了石油和天然气工业亟待解决的问题,这里主要讨论了抑制和防止水合物生成的措施。
关键词城市燃气配气;节流;天然气水合物;预测;预防1输气管线中的水合物1.1天然气水合物天然气水合物(Natural Gas Hydrates)是指由水和烃类气体分子及天然气中含有的非烃类气体分子在一定的温度和压力条件下所形成的白色结晶固体,外观类似致密湿雪,密度约0.88~0.90g/cm3[1]。
1.2输气管线中的水合物天然气开采及输送过程中,水合物的生成及堆积会导致阀门堵塞、设备分离、气井停产、管道停输等严重事故。
因此,如何在工业生产中抑制水合物生成就成了石油和天然气工业亟待解决的问题。
2 天然气水合物的防止措施为了防止天然气生成水合物,一般有四种途径:⑴提高天然气的流动温度;⑵降低压力至给定温度时水合物的生成压力以下;⑶脱除天然气中的水分;⑷向气流中加入抑制剂(阻化剂)。
其中最积极的方法是保持管线和设备不含液态水,而最常用的办法是向气流中加入各种抑制剂。
2.1提高天然气流动温度加热提高天然气流动温度是防止生成水合物和排除已生成的水合物的方法之一。
这就是在维持原来的压力状态下使输气管道中天然气的温度高于生成水合物的温度,如图1所示。
但这一方法不适用于干线输气管道中,因为消耗能力大,而且如前所述,冷却气体是增加输气管道流量的一个有效方法,特别是对于压缩机站数较多的干线输气管道。
加热方法通常在配气站采用,因为那里经常需要较大幅度地降低天然气的压力,由于节流效应会使温度降得很低,从而使节流阀、孔板等发生冻结。
2.2降压降低压力防止生成水合物的方法就是在维持原来的温度状态下使输气管道中的天然气压力降低,如图2中曲线2,从而使生成水合物温度曲线下降,如图2中曲线5。
天然气管道水合物形成与防控技术研究第一章概述天然气是一种重要的能源,其在中小型城市和近海区域的供应越来越多地依赖于管道输送。
然而,天然气输送过程中会发生水合物的形成,严重损害管道的安全运行,这对于天然气市场的发展产生了严重的影响。
因此,天然气管道水合物防控技术逐渐成为研究的热点和难点。
第二章天然气水合物的形成机理水合物是指气体分子和水分子按一定比例结合成的固体物质。
天然气管道中,由于气体分子和水分子的物理和化学作用,易于形成水合物,特别是在低温低压的条件下更加容易。
天然气水合物的形成机理主要有三个方面:天然气成分、温度和压力。
第三章天然气管道水合物的危害及防控技术管道输送天然气的过程中,水合物会堵塞管道,同时还会造成管道的损坏和事故,给管道的安全运行带来威胁。
因此,对于天然气管道的水合物防控技术研究非常重要。
激活剂是目前常用的水合物防控技术,可通过添加一定的碱性金属盐将管道内的水分子离子化,使成为传导电子的自由离子,进而破坏水合物晶体结构,溶解、解除管道的水合物堵塞。
此外,还可以采取自然气热稳定剂、物理隔离、降低压力、提高温度、增加流速、增加流量等防控措施。
第四章天然气管道水合物形成与防控技术研究进展随着防控技术的不断研究,各种复杂的水合物防控技术和新型激活剂相继发展。
新型激活剂如离子液体、自申肯酸盐、有机羧酸盐、草酸盐等进一步提高了水合物防控的效果。
同时,充分了解管道本身的性质和周围气候环境信息,有效预测管道内水合物的风险,也将在防控方面发挥重要作用。
第五章结论天然气管道水合物的形成会造成严重的安全隐患,对于管道的安全运行和天然气市场的发展都产生了不利影响。
为了提高天然气的输送、存储和布局的安全性和可行性,需要借助科学严谨的研究,积极探索高效、安全的管道输送技术和水合物防控技术,为国家节能减排、推动绿色发展做出更大的贡献。
天然⽓⽔合物防治天然⽓⽔合物形成条件及抑⽌⼀、天然⽓⽔合物在⽔的冰点以上和⼀定压⼒下,天然⽓中某些⽓体组分能和液态⽔形成⽔合物。
天然⽓⽔合物是⽩⾊结晶固体,外观类似松散的冰或致密的雪,相对密度为0 .96 -0. 9 8 ,因⽽可浮在⽔⾯上和沉在液烃中。
⽔合物是由90 % ( ω) ⽔和10 %( ω) 的某些⽓体组分( ⼀种或⼏种) 组成。
天然⽓中的这些组分是甲烷、⼄烷、丙烷、丁烷、⼆氧化碳、氮⽓及硫化氢等。
其中丁烷本⾝并不形成⽔合物,但却可促使⽔合物的形成。
天然⽓⽔合物是⼀种⾮化学记量型笼形品体化合物,即⽔分⼦( 主体分⼦) 借氢键形成具有笼形空腔( 孔⽳) 的品格,⽽尺⼨较⼩且⼏何形状合适的⽓体分⼦(客体分⼦) 则在范德华⼒作⽤下被包围在品格的笼形空腔内,⼏个笼形品格连成⼀体成为品胞或晶格单元。
以往研究结果表明,天然⽓⽔合物的结构主要有两种。
相对分⼦质量较⼩的⽓体( 如CH4、C2H6、H2 S、CO2 ) ⽔合物是稳定性较好的体⼼⽴⽅晶体结构( 结构D ,相对分⼦质量较⼤的⽓体( 如C3H8、iC4H10) ⽔合物是稳定性较差的⾦刚⽯型结构( 结构II ) .见图1 所⽰。
图1 天然⽓⽔合物晶体结构单元(a)笼形空腔(b)晶胞结构I 和I II 都包含有⼤⼩不同⽽数⽬⼀定的空腔即多⽽体。
图1表⽰了由12⾯体、14 ⾯体和16⾯体构成的三种笼形空腔。
较⼩的12 ⾯体分别和另外两种较⼤的多⾯体搭配⽽形成I、II两种⽔合物晶体结构。
结构I 的晶胞内有46个⽔分⼦,6 个平均直径为0.8 60 nm ⼤空腔和2 个平均直径为0 . 795nm⼩空腔来容纳⽓体分⼦。
结构II晶胞内有136个⽔分⼦,8 个平均直径为0.940nm ⼤空腔和16 个平均直径为0 .782nm ⼩空腔来容纳⽓体分⼦。
⽓体分⼦填满空腔的程度主要取决外部压⼒和温度,只有⽔合物品胞中⼤部分空腔被⽓体分⼦占据时,才能形成稳定的⽔合物。