七年级数学(上)行程问题知识小结
- 格式:doc
- 大小:34.50 KB
- 文档页数:5
初中数学行程问题归纳总结数学是一门需要大量实践和思考的学科,特别是在初中阶段,数学的行程问题给了我们很多练习的机会,也考验了我们的逻辑思维和解决问题的能力。
本文将对初中数学中的行程问题进行归纳总结,帮助读者更好地理解和应用相关知识。
一、行程问题的基本概念行程问题,简单来说就是关于时间、速度和距离之间的关系问题。
在实际生活中,我们经常遇到各种行程问题,比如两车相向而行、追及问题等。
解决行程问题,关键在于建立数学模型、设立变量并列方程,推导出解析式,最终解得问题的答案。
二、相遇问题相遇问题是行程问题中常见的一种类型,也是初中阶段数学考试的常见题型之一。
相遇问题有两种典型情况:1. 两车同时出发,同向行驶在这种情况下,我们需要设立变量表示其中一个车辆的行驶时间,列出两个车辆的行程表达式,然后通过解方程求得相遇点的时间和位置。
例如,A车和B车同时从A地和B地出发,A车以v1的速度行驶,B车以v2的速度行驶,相遇于C点,求C点的位置和时间。
解决这类问题的思路是设立相遇时间t和相遇点的距离x,列出A车和B车的行程表达式,然后通过解方程求解出t和x的值。
2. 两车相向而行相向而行的行程问题可以分为两种情况:(1)两车同时出发在这种情况下,我们可以设立相遇时间t和相遇点的距离x,列出A车和B车的行程表达式,然后通过解方程求解出t和x的值。
(2)两车不同时出发在这种情况下,我们需要先找到两车相遇时的公共行驶时间,然后再求出相遇点的位置。
设A车和B车的出发时间分别为t1和t2,速度分别为v1和v2,相遇于C点,求C点的位置。
解决这类问题的思路是先设立公共行驶时间t,再设立A车和B车的行程表达式,然后通过解方程求解出t和x的值。
三、其他常见的行程问题除了相遇问题外,还有一些其他常见的行程问题,包括但不限于:1. 超车问题超车问题是行程问题中较为复杂的一类,常常涉及到多个车辆的行驶速度和距离。
解决超车问题的关键在于找到相互超越的点和时间,建立相应的方程并进行求解。
初一数学行程问题公式大全
初一数学中的行程问题,主要研究物体运动的速度、时间和路程之间的关系。
以下是相关的基本公式和概念:
1. 路程=速度×时间,这是最基本的公式,描述了速度、时间和路程之间的关系。
2. 路程÷时间=速度,这个公式描述了通过除法来计算速度的方法。
3. 路程÷速度=时间,这个公式描述了通过除法来计算时间的方法。
4. 相遇问题:两个物体从两个相对的方向开始运动,最终在某一点相遇。
在相遇问题中,关键是确定两物体在运动过程中的相对位置。
5. 追击问题:一个物体在另一个物体的后面开始运动,并试图追上它。
在追击问题中,关键是确定两物体之间的距离和相对速度。
6. 流水问题:涉及水流对物体的影响,如船在河流中航行或顺流而下的皮筏。
在流水问题中,需要考虑水流的速度和方向对物体运动的影响。
7. 静水速度:在没有水流影响的河流中,船的速度称为静水速度。
8. 水速:水流的速度。
9. 顺水速度:船顺流而下的速度,等于静水速度与水速的和。
10. 逆水速度:船逆流而上的速度,等于静水速度与水速的差。
此外,利润问题也有一些基本的公式,如现价=原价×折扣率等。
以上是初一数学中行程问题的一些基本公式和概念,需要更多信息可以查阅教辅或咨询数学老师。
初一数学行程问题题型总结摘要:一、初一数学行程问题概述二、初一数学行程问题题型分类与解题方法1.直线行程问题2.曲线行程问题3.相遇问题4.追及问题5.比例行程问题6.往返行程问题三、解题技巧与策略四、巩固练习与答案解析正文:一、初一数学行程问题概述初一数学行程问题主要研究物体在一定时间内所行驶的路程、速度和时间之间的关系。
通过对行程问题的学习,学生可以更好地理解代数、几何和三角函数等知识,为后续学习打下基础。
二、初一数学行程问题题型分类与解题方法1.直线行程问题:题目中涉及物体在直线上的运动,通过已知条件求解速度、时间或路程等问题。
解题方法:掌握速度、时间、路程之间的关系公式,如v=s/t,s=vt,t=s/v等。
2.曲线行程问题:题目中涉及物体在曲线上的运动,需要运用三角函数等知识求解。
解题方法:将曲线问题转化为直线问题,运用三角函数关系式,如sinα=对边/斜边,cosα=邻边/斜边等。
3.相遇问题:两个或多个物体在某一地点相向而行,求解相遇时间、地点等问题。
解题方法:利用相对速度的概念,设相遇时间为t,则各物体行驶的路程之和等于总路程,即v1+v2=s/t。
4.追及问题:一个物体在另一个物体前追逐,求解追及时间、距离等问题。
解题方法:利用相对速度的概念,设追及时间为t,则追及距离等于速度差乘以时间,即v1-v2=s/t。
5.比例行程问题:物体在两种不同速度下行驶相同距离,求解速度比等问题。
解题方法:设两种速度分别为v1和v2,行驶时间为t1和t2,则v1/v2=t2/t1。
6.往返行程问题:物体在往返过程中,求解总时间、总路程等问题。
解题方法:将往返过程分为两个单程,利用速度、时间、路程之间的关系求解。
三、解题技巧与策略1.画图辅助:对于复杂问题,可以通过画图来帮助理解题意,更好地找出已知条件和未知量。
2.设立未知量:根据题意,设定合适的未知量,然后列出方程求解。
3.单位统一:在解题过程中,要保持单位一致,便于计算。
七年级上册数学行程问题公式
在七年级上册数学中,行程问题是一个重要的知识点。
以下是关于行程问题的一些基本公式:
1. 匀速直线运动的速度公式:$v = \frac{s}{t}$
其中,$v$ 是速度,$s$ 是距离,$t$ 是时间。
2. 匀速直线运动的距离公式:$s = vt$
其中,$s$ 是距离,$v$ 是速度,$t$ 是时间。
3. 匀速直线运动的加速度公式:$a = \frac{v - v_0}{t}$
其中,$a$ 是加速度,$v$ 是末速度,$v_0$ 是初速度,$t$ 是时间。
4. 匀速直线运动的位移公式:$x = ut + \frac{1}{2}at^2$
其中,$x$ 是位移,$u$ 是初速度,$a$ 是加速度,$t$ 是时间。
5. 相对速度公式:当两个物体以不同的速度相对移动时,它们的相对速度是两者速度之和或之差(取决于它们的相对方向)。
6. 追及问题公式:当两个物体在同一方向上移动时,如果一个物体追赶另一个物体,追赶物体的速度必须大于被追赶物体的速度。
7. 相遇问题公式:当两个物体在相反方向上移动时,它们的相对速度是两者速度之和。
这些公式是解决七年级上册数学中行程问题的基础。
通过理解和应用这些公式,可以解决各种与行程相关的问题。
初中七年级数学上册前三章节重要知识点总结归纳看你有没遗漏的七年级数学上学期前三章节知识点总结:第⼀章有理数⼀、知识框架⼆.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;a不⼀定是负数,+a也不⼀定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正⽅向、单位长度的⼀条直线.3.相反数:(1)只有符号不同的两个数,我们说其中⼀个是另⼀个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数.4.绝对值:(1)正数的绝对值是其本⾝,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表⽰某数的点离开原点的距离;(2)绝对值可表⽰为:或;绝对值的问题经常分类讨论;5.有理数⽐⼤⼩:(1)正数的绝对值越⼤,这个数越⼤;(2)正数永远⽐0⼤,负数永远⽐0⼩;(3)正数⼤于⼀切负数;(4)两个负数⽐⼤⼩,绝对值⼤的反⽽⼩;(5)数轴上的两个数,右边的数总⽐左边的数⼤;(6)⼤数⼩数>0,⼩数⼤数<>6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=1?a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较⼤的符号,并⽤较⼤的绝对值减去较⼩的绝对值;(3)⼀个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去⼀个数,等于加上这个数的相反数;即ab=a+(b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)⼏个数相乘,有⼀个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以⼀个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘⽅的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(a)n=an或(ab)n=(ba)n,当n 为正偶数时:(a)n=an或(ab)n=(ba)n.14.乘⽅的定义:(1)求相同因式积的运算,叫做乘⽅;(2)乘⽅中,相同的因式叫做底数,相同因式的个数叫做指数,乘⽅的结果叫做幂;15.科学记数法:把⼀个⼤于10的数记成a×10n的形式,其中a是整数数位只有⼀位的数,这种记数法叫科学记数法.16.近似数的精确位:⼀个近似数,四舍五⼊到那⼀位,就说这个近似数的精确到那⼀位.17.有效数字:从左边第⼀个不为零的数字起,到精确的位数⽌,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘⽅,后乘除,最后加减.本章内容要求学⽣正确认识有理数的概念,在实际⽣活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:简单行程:路程=速度×时间相遇问题:路程和=速度和×时间追击问题:路程差=速度差×时间流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。
一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。
(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。
(1)几秒后,甲在乙前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。
a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇?b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇?c)甲、乙同时同地同向出发,经过多长时间二人首次相遇?d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
行程问题九大题型初中公式
在解决行程问题时,初中阶段主要涉及到的公式主要包括以下九大题型:
1. 相遇问题:
公式:总路程 = (甲速度 + 乙速度) × 相遇时间
2. 追及问题:
公式:追及时间 = 追及路程 / (快速 - 慢速)
公式:追及路程 = (快速 - 慢速) × 追及时间
3. 环形跑道上的相遇与追及:
公式:外圈路程 - 内圈路程 = 快者速度× 时间 - 慢者速度× 时间
4. 行程问题中的正反比例关系:
公式:路程一定,速度与时间成反比
5. 航行问题:
公式:顺水速度 = 静水速度 + 水流速度
公式:逆水速度 = 静水速度 - 水流速度
6. 火车过桥问题:
公式:车长 + 桥长 = 火车速度× 火车过桥时间
7. 流水问题:
公式:船速的(1 - 水速/船速)× 时间 = (顺水路程 / 顺水时间)× 时间
8. 行程问题中的比例关系:
公式:路程一定时,时间和速度成反比
9. 行程问题中的线性关系:
公式:速度一定时,路程和时间成正比
在解决具体问题时,需要根据问题的具体情况选择合适的公式进行计算。
同时,理解和掌握这些公式的含义和应用方法,对于提高解决实际问题的能力非常重要。
七年级行程问题知识点行程问题是数学中的一个重要内容,也是初中数学中的一项难点和重点。
在七年级,行程问题主要是围绕着“速度、时间、距离”这三个方面展开。
本文将围绕这三个方面,介绍七年级行程问题的知识点。
一、速度的概念速度是指物体运动的快慢程度,通常用“v”表示。
速度的单位有米每秒(m/s)、千米每小时(km/h)等。
速度的计算公式为:速度=路程÷时间,即v=s÷t。
其中,s表示路程,t表示时间。
这也是七年级行程问题计算的基本公式。
二、距离的概念距离是指两点之间的长度,通常用“s”表示。
距离的单位和速度的单位相同,同样有米(m)、千米(km)等。
距离的计算公式为:距离=速度×时间,即s=v×t。
三、时间的概念时间是指事件发生的长度,通常用“t”表示。
时间的单位有秒(s)、分钟(min)、小时(h)等。
时间的计算公式为:时间=距离÷速度,即t=s÷v。
四、平均速度的概念平均速度是指物体从起点到终点所经过路程与时间的比值。
平均速度的计算公式为:平均速度=总路程÷总时间。
在行程问题中,如果速度不变,则物体的平均速度等于它的瞬时速度。
五、行程问题的解题方法1.已知速度和时间,求距离根据公式s=v×t,可以得到距离。
例如,某辆汽车以60km/h的速度行驶了2小时,求它行驶的距离。
解题步骤:s=60×2=120(km),所以汽车行驶的距离为120km。
2.已知距离和时间,求速度根据公式v=s÷t,可以得到速度。
例如,某辆汽车行驶了150km,耗时2.5小时,求它的速度。
解题步骤:v=150÷2.5=60(km/h),所以汽车行驶的速度为60km/h。
3.已知速度和距离,求时间根据公式t=s÷v,可以得到时间。
例如,某辆汽车行驶了180km,速度为70km/h,求它行驶的时间。
解题步骤:t=180÷70≈2.57(h),所以汽车行驶的时间为2.57小时。
学生七年级数学(上)行程问题知识小结(最权威)学生七年级数学(上)行程问题知识小结(最权威)“七年级数学”(上册)行程问题复习与小结一、相遇问题:若甲乙分别从两地同时出发相向而行,则相遇时甲乙路程之和等于两地的距离。
例1、甲、乙两人相距60米,。
甲每秒走3米,乙每秒走2米,(1)如果甲、乙分别从A、B地同时出发,相向而行,那么几秒后两人相遇?(2)如果甲先走10米,甲、乙分别从A、B地出发,相向而行,那么几秒后两人相遇?(3)甲、乙分别从A、B地同时出发,相向而行,那么几秒后两人相距20米?练习:1、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时后相遇。
已知甲每小时比乙每小时多走2千米,求甲,乙两人的速度。
2.甲、乙两人分别从相距140千米的A,B两地同时出发,同向而行,甲的速度为40千米/小时,乙的速度为20千米/小时。
经过多少小时甲乙相遇?3、甲、乙两人同时同地同向而行,甲的速度是4千米/小时,乙的速度比甲慢,半小时后,甲调头往回走,再走10分钟与乙相遇,求乙的速度。
二、追及问题:若甲乙分别从两地同时出发同向而行,则甲追上乙时甲乙路程之差等于两地的距离。
例2、甲、乙两人分别从相距140千米的A,B两地同时出发,甲的速度为40千米/小时,乙的速度为20千米/小时(1)若同时出发同向而行,乙在前甲在后,经过多少小时甲追上乙?(2)如果同时出发同向而行,经过多少小时两人相距20千米?练习:4、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米然后奋力去追,求几秒后甲追上乙?5、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?三、航行问题顺水速度=静水速度+水流速度逆水速度=静水速度水流速度例3、一艘轮船从甲地顺流而下8小时到达乙地,原路返回需要12小时才能到达甲地。
“七年级数学”(上册)行程问题复习与小结
一、相遇问题:若甲乙分别从两地同时出发相向而行,则相遇时甲乙路程之和等于两地的距离。
例1、甲、乙两人相距60米,。
甲每秒走3米,乙每秒走2米,
(1)如果甲、乙分别从A、B地同时出发,相向而行,那么几秒后两人相遇?
(2)如果甲先走10米,甲、乙分别从A、B地出发,相向而行,那么几秒后两人相遇?
(3)甲、乙分别从A、B地同时出发,相向而行,那么几秒后两人相距20米?
练习:1、甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时后相遇。
已知甲每小
时比乙每小时多走2千米,求甲,乙两人的速度。
2.甲、乙两人分别从相距140千米的A,B两地同时出发,同向而行,甲的速度为40千米/小时,
乙的速度为20千米/小时。
经过多少小时甲乙相遇?
3、甲、乙两人同时同地同向而行,甲的速度是4千米/小时,乙的速度比甲慢,半小时后,甲调头
往回走,再走10分钟与乙相遇,求乙的速度。
二、追及问题:若甲乙分别从两地同时出发同向而行,则甲追上乙时甲乙路程之差等于两地的距离。
例2、甲、乙两人分别从相距140千米的A,B两地同时出发,甲的速度为40千米/小时,乙的速
度为20千米/小时
(1)若同时出发同向而行,乙在前甲在后,经过多少小时甲追上乙?
练习:4、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米然后奋力去追,求几秒后甲追上乙?
5、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?
三、航行问题顺水速度=静水速度+水流速度逆水速度=静水速度—水流速度
例3、一艘轮船从甲地顺流而下8小时到达乙地,原路返回需要12小时才能到达甲地。
已知水流速度是每小时3千米,求甲、乙两地的距离?
练习:6. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
7.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
四、环形跑道问题(1)甲乙从同一地点同时同向出发,甲乙路程之差等于环形跑道的周长
(2)甲乙从同一地点同时背向出发,甲乙路程之和等于环形跑道的周长
例4.环形跑道400米,小明跑步每秒行9米,爸爸骑车每秒行16米,两人同时同地反向而行,经过几秒两人相遇?.
练习;8、甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。
(1)甲、乙同时同地同向出发,经过多长时间二人首次相遇?
(2)甲、乙同时同地背向出发,还要多长时间首次相遇?
(3)乙先跑10米,甲再和乙同向出发,还要多长时间首次相遇?
(4)乙先跑10米,甲再和乙背向出发,还要多长时间首次相遇?
(5)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?
备选练习题
1.甲、乙二人从相距91千米的A、B两地相向而行,甲先出发1小时,二人在乙出发4小时后相遇,而甲每小时比乙快2千米,求甲、乙二人的速度?
2.某人骑车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米,虽然速度增加到了每小时12千米,但比去时还多用了10分钟,求甲、乙两地的距离?
3.一只船从一个码头顺流而下,再逆流而上,打算在8小时内回到原来出发的码头。
已知这只船在静水中的速度是10千米/时,水流的速度是2千米/时,那么这只船最多走多少千米就必须返回,才能在8小时内回到原来出发的码头?
4.一列匀速行驶的火车用26秒种通过了一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了一个长96米的隧道,求这列火车的长度?
5.某班学生以每小时4千米的速度从学校步行到校办农场参加劳动,走了1.5小时后,小王奉命回校取一件东西,他以每小时6千米的速度回校取了东西后,立即又以同样的速度追赶队伍,结果在距农场2千米处追上了队伍,求学校到农场的距离?
6. 休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?
7..一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?
8.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车人的时间是26秒。
(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。
9.一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度60公里/小时,我们的速度是5公里/小时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行这部分人。
出发地到目的地的距离是60公里。
问:步行者在出发后经多少时间与回头接他们的汽车相遇
10.某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
11.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,几分钟后第一次相遇?。