2008年山东省潍坊市数学中考真题(word版含答案)
- 格式:doc
- 大小:650.00 KB
- 文档页数:7
2008年山东省临沂市初中毕业与高中招生考试数学试题满分:120分 时间:120分钟一、选择题(共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的。
1.-31的倒数是( ) A . -3 B . 3 C .31 D . -31 2.在今年四川汶川地震抗震救灾过程中,国内外社会各界纷纷伸出援助之手,截止5月30日12时,共收到各类捐赠款物折合人民币约399亿元,这个数据用科学记数法表示为( ) A . 3.99×109元 B . 3.99×1010元 C . 3.99×1011元 D . 399×102元 3.下列各式计算正确的是( )A . 53232a a a =+B . ()()xy xy xy 332=÷C . ()53282b b = D . 65632x x x =∙4.下列各图中,∠1大于∠2的结果是( )5.计算29328+-的结果是( ) A . 22-B . 22C .2 D .223 6.化简121112+-÷⎪⎭⎫ ⎝⎛-+a a a a 的结果是( ) A . 1+a B . 11-a C .aa 1- D . 1-a 7.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =48.“赵爽弦图”是由于四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示)。
小亮同学随机地在大正方形及其内部区域投针,若直角三角形12A 12B12D12C AGH DE的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是( )A .31 B . 41C . 51D . 559.如图是一个包装盒的三视图,则这个包装盒的体积是( )A . 1000π㎝3B . 1500π㎝3C . 2000π㎝3D . 4000π㎝310.下列说法正确的是( ) A .随机事件发生的可能性是50%。
某某省潍坊市2007——2008九年级数学第一学期期中考试试卷一、选择题(本题共12题,第1~8题每小题2分,第9~12题每小题3分,共28分)1、 下列根式a 54,32a ,b ,x 8中,最简二次根式的个数为 ( )A 、4个B 、3个C 、2个D 、1个2、方程()01=-x x 的根是 ( )A 、0B 、1C 、-1D 、0,13、实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-2a 的结果是 ( )A .2a-bB .bC .-bD .-2a+b 4、用反证法证明“三角形中必有一个内角不小于60°”,应先当假设这个三角形中( )A 、有一个内角小于60°B 、每一个内角都小于60°C 、有一个内角大于60°D 、每一个内角都大于60°5、下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等的圆心角所对的弧相等其中是真命题的是 ( )A 、①②B 、②③C 、①③D 、①②③6、下列图形是轴对称图形而不是中心对称图形的是。
( )7、若两圆的的圆心距等于7,半径分别为R ,r ,且R 、 r 是关于x 的方程0652=+-x x 的两个根,则两圆的位置关系是 ( )A 、相离B 、相交C 、内切D 、外切8、当m 在可以取值X 围内取不同的值时,代数式2942+-m m 的最小值是( )A 、0B 、5C 、33D 、99、化简200320022323)()(+•-的结果为 ( ) A 、23-- B 、23- C 、23+ D 、–110、如图在等腰直角△ABC 中,∠B =90°,将△ABC 绕顶点A逆时针方向旋转60°后得到△AB ’C ’则'BAC ∠等于( )A 、60°B 、105 °C 、120°D 、135°11、关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值X 围是 ( )A. k>-1B. k>1C. k ≠0D. k>-1且k ≠012、在△ABC 中,∠C=90º,AB=5,周长为12,那么它的内切圆的半径为( )A 、3B 、8C 、2D 、1二、填空题(本题共6小题,每小题3分,共18分)13、若最简二次根式a +1与a 24-可以合并,则a =。
山东省潍坊市2008届高中毕业生5月统一考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试卷上。
3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公 P (A+B )=P (A )+P (B ) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在依次实验中发生的概率是 V 球=334R πP ,那么n 次独立重复实验中恰好发生k 其中R 表示球的半径 次的概率kn kkn n P P C k P --=)1()(一、选择题(本大题翻工12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设全集},1|{},03|{,-<=<+==x x B x x x A R U 则右图中阴影部分表示的集合为 ( ) A .{x|x >0}B .}03|{<<-x xC .}13|{-<<-x xD .}1|{-<x x2.下列四个函数中,在区间(0,1)上为减函数的是( )A .x y 2log=B .y=cosxC .xy )21(-=D .31x y =3.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A .π33 B .π332 C .π3 D .3π4.函数0)(0,1;01),cos()(2=⎪⎩⎪⎨⎧≥-<<-=a f x e x x x f x 则π,则a 的所有可能值组成的集合为( )A .{0}B .}22,0{-C .}22,0{D .}22,22{-5.函数)1(||>=a x xay x的图象的大致形状是 ( )6.已知a ,b 是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:①若a ⊥α,a ⊥β,则βα// ②若βαγβγα//,,则⊥⊥③若b a b a //,,,//则βαβα⊂⊂ ④若b a b a //,,,//则=⋂=⋂γβγαβα 其中正确命题的序号是 ( )A .①②B .①③C .③④D .①④7.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( ) A .6种 B .8种C .36种D .48种8.给出下列判断:①mn n m ab b a )(=;②函数x e y --=1是增函数;③a <0是方程0122=++x ax 至少有一个负实数根的充分不必要条件; ④)ln(ln x y x y -==与的图象关于y 轴对称. 其中正确判断的个数为 ( )A .1B .2C .3D .49.已知函数1)4(sin 2)4cos()4(sin 222-++---=πππx x x y ,则函数的最小正周期T 和它的图象的一条对称轴方程是( )A .T=2π,一条对称轴方程为8π=x B .T=2π,一条对称轴方程为83π=xC .T=π,一条对称轴方程为8π=xD .T=π,一条对称轴方程为83π=x10.当a 为任意实数时,直线012)1(=++--a y x a 恒过定点P ,则过点P 的抛物线的标准方程是( )A .y xx y 342922=-=或 B .y x x y 342922==或 C .yx x y 342922-==或D . y x x y 342922-=-=或11.已知等比数列{a n }的各项均不等于1的正数,数列{b n }满足,12,18,ln 63===b b a b n n 则数列{b n }的前n 项和的最大值等于 ( )A .126B .130C .132D .13412.如果以原点为圆心的圆经过双曲线)0,0(12222>>=-b a by ax 的焦点,并且被直线c cax (2=为双曲线的半焦距)分为弧长为2:1的两段弧,则该双曲线的离心率等于( )A .2B .3C .25 D .26第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在涂中横线上.13.已知双曲线的右焦点为(5,0),一条渐近线方程为02=-y x ,则双曲线的标准方程为 . 14.已知==∈+=)21(lg,0)2(lg ),(2)(f f R k xk x f 则若 .15.如图,已知正四棱台ABCD —A 1B 1C 1D 1的上底面边长为1,下底面边长为2,高为1,则直线B 1C 与面ACC 1A 1所成角 的正切值是 . 16.给出下列四个命题: ①若;11,0b a b a >>>则②若b b a a b a 11,0->->>则③若;22,0b a ba b a b a >++>>则④ba b a b a 12,12,0,0+=+>>则且若的最小值为9.其中正确..命题的序号是 .(把你认为正确命题的序号都填上) 三、解答题“本大体共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,.21,53cos -=⋅=BC AB B 且(Ⅰ)求△ABC 的面积; (Ⅱ)若a=7,求角C.18.(本小题满分12分)已知数列{a n }的前n 项和为S n ,首项为a 1,且1,a n ,S n 等差数列. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设T n 为数列{na 1}的前n 项和,若对于成立,总有34,*-<∈∀m T N n n 其中m ∈N *,求m 的最小值.四棱锥S —ABCD 的底面是直角梯形,22,90=====︒=∠=∠CD SC SB BC AB BCD ABC ,侧面SBC ⊥底面ABCD (Ⅰ)由SA 的中点E 作底面的垂线EH ,试确定垂足H 的位置; (Ⅱ)求二面角E —BC —A 的大小.20.(本小题满分12分)某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量. (Ⅰ)若年销售量增加的比例为0.4x ,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? (Ⅱ)年销售量关于x 的函数为)352(32402++-=x x y ,则当x 为何值时,本年度的年利润最大?最大利润为多少?有一幅椭圆型彗星轨道图,长4cm ,高cm 32,如下图,已知O 为椭圆中心,A 1,A 2是长轴两端点,太阳位于椭圆的左焦点F 处.(Ⅰ)建立适当的坐标系,写出椭圆方程,并求出当彗星运行到太阳正上方时二者在图上的距离; (Ⅱ)直线l 垂直于A 1A 2的延长线于D 点,|OD|=4,设P 是l 上异于D 点的任意一点,直线A 1P ,A 2P 分别交椭圆于M 、N (不同于A 1,A 2)两点,问点A 2能否在以MN 为直径的圆上?试说明理由.22.(本小题满分14分)已知二次函数t t t t y l c bx ax x f .20(8:,)(212≤≤+-=++=其中直线为常数);2:2=x l .若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示.(Ⅰ)求a 、b 、c 的值(Ⅱ)求阴影面积S 关于t 的函数S (t )的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m ,使得y=f (x )的图象与y=g (x )的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由.山东省潍坊市2008届高中毕业生5月统一考试参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,共60分. CBABC DDCDA CA二、填空题:本题考查基本知识和基本运算,每小题4分,共16分.13.120522=-yx14.4 15.66 16.②④三、解答题:本大题共6小题,共74分. 17.(I ))cos(||||B BC AB BC AB -=⋅π=.35,2153cos =∴-=-=-ac ac B ac ………………………………3分又,54cos1sin ),,0(,53cos 2=-=∴∈=B B B B π且14543521sin 21=⨯⨯=⋅=∴∆B ac S ABC …………………………6分(Ⅱ)由(Ⅰ)知ac=35,又a=7,∴c=5,24,325357225492=∴=⨯⨯⨯-+=b b,………………………9分由正弦定理得22sin ,sin 55424,sin sin =∴==C CCc Bb 即,又)2,0(,π∈∴>C c a4π=∴C …………………………………………………………12分18.(本小题满分12分)解:(Ⅰ)由题意知,12+=n n S a 当n=1时,2a 1=a 1+1,∴a 1=1, 当n ≥2时,S n =2a n -1,S n-1=2a n-1-1两式相减得122--=n n n a a a ,………………………………3分 整理得,21=-n n a a∴数列{a n }是以1为首项,2为公比的等比数列,……………………5分11112212---=⋅=⋅=∴n n n n a a …………………………………………6分(Ⅱ)nn a a a T 1 (112)1+++=1221 (2)1211-++++=n22122112111<-=--=-n n…………………………………………9分∵对于.10,23434,*≥≥--<∈∀m m m T N n n 即成立,即只须有∴m 的最小值为10.………………………………………………12分 19.(本小题满分12分)解:(Ⅰ)作SO ⊥BC 于O ,则SO ⊂平面SBC ,又面SBC ⊥底面ABCD 面SBC ∩面ABCD=BC , ∴SO ⊥底面ABCD ,①又SO ⊂平面SAO ,∴面SAO ⊥底面ABCD ……4分 作EH ⊥AO ,∴EH ⊥面ABCD ②即H 为垂足,由①、②知,EH//SO ,又E 为SA 的中点,∴H 是AO 的中点……………………………………………………………………6分(Ⅱ)过H 作HF ⊥BC 于F ,连EF ,又(I )知EH ⊥平面ABCD ,∴EH ⊥BC , ∴BC ⊥平面EFH ,∴BC ⊥EF ,∴∠HFE 为面EBC 和底面ABCD 所成二面角的平面角.………………9分 在等边△SBC 中,∵SO ⊥BC ,∴O 为BC 中点,又BC=2, 31222=-=∴SO ,.23arctan,23123tan ,121,2321=∠∴===∠∆∴====HFE HFEH HFE EHF Rt AB HF So EH 中,在又∴二面角E —BC —A 为23arctan20.(本小题满分12分)解:(I )由题意得:上年度的利润为(13-10)×5000=15000万元;本年度每辆车的投入成本为10×(1+x ); 本年度每辆车的出厂价为13×(1+0.7x ); 本年度年销售量为5000×(1+0.4x ),……………………2分 因此本年度的利润为)4.01(5000)9.03()4.01(5000)]1(10)7.01(13[x x x x x y +⨯⨯-=+⨯⨯+⨯-+⨯=),10(15000150018002<<++-=x x x ………………………………4分由,650,1500015000150018002<<>++-x x x 解得所以当650<<x 时,本年度的年利润比上年度有所增加.………………6分(Ⅱ)本年度的利润为)55.48.49.0(3240)352(3240)9.03()(232++-⨯=++-⨯⨯-=x x x x x x x f…………………………………………………………………………7分 则),3)(59(972)5.46.97.2(3240)(2'--=+-⨯=x x x x x f 由,395,0)('===x x x f 或解得……………………………………9分当)(,0)()95,0('x f x f x >∈时,是增函数;当)(,0)()1,95('x f x f x <∈时,是减函数.∴当95=x 时,20000)95()(=f x f 取极大值万元,因为f (x )在(0,1)上只有一个极大值,所以它是最大值, 所以当95=x 时,本年度的年利润最大,最大利润为20000万元。
2008年山东省潍坊市初中毕业生学业考试地理试卷注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,共50分。
第Ⅱ卷为非选择题,共50分。
全卷满分为100分,考试时间为60分钟。
2.答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
考试结束时,试题和答题卡一并收回。
3.第Ⅰ卷每题选出后,都必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案。
第Ⅰ卷选择题(共50分)一、单项选择题(下列各题的四个选项中,只有一个是正确的。
每小题2分,共50分)2008年5月12日14时28分04秒,在四川省汶川县发生M8.0级大地震,震中位于北纬31.0度,东经103.4度,造成重大人员伤亡和财产损失。
据此回答l~2题。
1.产生本次地震的原因是( )A.青藏高原的火山爆发引起的B.太平洋板块与亚欧板块碰撞引起的C.印度洋板块与亚欧板块碰撞引起的D.厄尔尼诺现象引起的2.地震发生后,潍坊各界踊跃捐款捐物支援灾区。
若将大批衣物、棉被和帐篷等救灾物资从潍坊运往成都,走最近的铁路线应该是( )A.胶济线—京沪线—陇海线一宝成线B.胶济线—京九线一湘黔线一成昆线C.胶济线—京广线一湘黔线一成昆线D.胶济线一焦柳线一贵昆线一宝成线已知甲地(30°N,120°E)和乙地为对蹠点(对蹠点是地球同一直径的两个端点)。
据此回答3~4题。
3.乙地位于下图中的( )A.①点 B.②点C.③点D.④点4.有关甲、乙两地的叙述,正确的是( )A.经度相差120°B.季节相反C.地方时相同D.处于同一个热量带内2008年8月8日20时,第29届夏季奥运会开幕式将在北京鸟巢国家体育馆举行。
据此回答5~6题5.北京奥运会开幕式时,华盛顿(西五区)的居民收看直播的当地时间是( )A.8月8日0时B.8月7日19时.C.8月9日11时D.8月8日7时6.北京的交通拥堵问题日益严重,解决该问题的措施不可行的是( )A.多修立交桥和大型停车场B.鼓励市民多使用公共交通工具C.调整人们上下班时间,错开人流和车流高峰D.禁止外地车辆进京读山东半岛某地的等高线地形图,回答7~8题。
2008年山东省中考数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分.考试时间为120分钟.2.答Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并在本页正上方空白处写上姓名和准考证号.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(A B C D)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列运算中,正确的是A .235a a a +=B .3412a a a ⋅=C .236a a a =÷ D .43a a a -=2.右图是北京奥运会自行车比赛项目标志,图中两车轮所在圆的位置关系是A .内含B .相交C .相切D .外离3.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线 剪去∠C ,则∠1+∠2等于A .315° B.270° C .180° D.135°4.如图,点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为A .(0,0)B .(12,-12) C .(22,-22) D .(-12,12) 5.小华五次跳远的成绩如下(单位:m ):3.9,4.1, 3.9,3.8,4.2.关于这组数据, 下列说法错误的是A .极差是0.4B .众数是3.9C .中位数是3.98D .平均数是3.98第2题图第3题图第4题图6.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是A .2.5B .3.5C .4.5D .5.57.下列四副图案中,不是轴对称图形的是8.已知代数式2346x x -+的值为9,则2463x x -+的值为A .18B .12 C.9 D .79.一个正方体的表面展开图如图所示,每一个面上都写有一个整数, 并且相对两个面上所写的两个整数之和都相等,那么A .a =1,b =5B .a =5,b =1C .a =11,b =5D .a =5,b =1110.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:0.5h t <; B组:0.5h 1h t <≤; C组:1h 1.5h t <≤;D组: 1.5h t ≥.根据上述信息,你认为本次调查数据的中位数落在 A .B 组 B .C 组 C .D 组 D .A 组11.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为 A .22cm B .2cmC .22cm D .21cm12.如图,两个高度相等且底面直径之比为1∶2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙 杯,则乙杯中的液面与图中点P 的距离是 A .43cm B .6cmA. B. C. D.ABOM第6题图第9题图AOB第11题图A B C D 组别人数第10题图第12题图C .8cmD .10cm2008年山东省枣庄市中考数学试题第Ⅱ卷 (非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔(蓝色或黑色)直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分.13.如图,在△ABC 中,AB =2,AC =2,以A 为圆心,1为半径的圆与边BC 相切,则BAC ∠的度数是 .14.函数y =211x x +-中,自变量x 的取值范围是 . 15.已知二次函数c bx ax y ++=21(0≠a )与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2)(如图所示),则能使21y y >成立的x 的取值范围是 . 16.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .17.将边长分别为2、3、5的三个正方形按如图方式排列,则图中阴影部分的面积为 . 、18.在实数的原有运算法则中,我们补充新运算法则 “ * ” 如下:当a ≥b 时,2*a b b =;当a < b 时,*a b a =.则当x = 2时,(1*)(3*)x x x - =__________.(“ · ” 和 “ – ”仍为实数运算中的乘号和减号)三、解答题:本大题共7小题,共60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分7分)先化简,再求值:22212221x x x x x x --+--+÷x ,其中x=23.ABC第13题图第15题图第17题B ′ ABCE Oxy20.(本题满分7分)一口袋中装有四根长度分别为1cm ,3cm ,4cm 和5cm 的细木棒,小明手中有一根长度为3cm 的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题: (1)求这三根细木棒能构成三角形的概率; (2)求这三根细木棒能构成直角三角形的概率; (3)求这三根细木棒能构成等腰三角形的概率.21.(本题满分8分)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.22.(本题满分8分)如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;(2)求折痕CE 所在直线的解析式.23.(本题满分10分)已知:如图,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E ,且EM >MC .连结DE ,DE =15.(1) 求证:AM MB EM MC ⋅=⋅; (2) 求EM 的长;(3)求sin ∠EOB 的值.A BCEDOM24.(本题满分10分)在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ∆=.(1)求点A 与点B 的坐标; (2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标.25.(本题满分10分)把一副三角板如图甲放置,其中90ACB DEC == ∠∠,45A = ∠,30D = ∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1E 1相交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;(3)若把三角形D 1CE 1绕着点C 顺时针再旋转30°得△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?说明理由.(甲)ACE DB B(乙)AE 1CD 1OF2008年山东省枣庄市中考数学试题参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分就不给分. 一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.105° 14.x ≥-12 且x ≠115.x <-2或x >8 16.-4 17.15418.-2三、解答题:(本大题共7小题,共60分) 19.(本题满分7分)解:原式=()()()()x x x x x x x 1221112⨯--+-+-…………………………………………2分=11-+x x +1 =12-x x . …………………………………………………………………5分 当x =23时,原式=223213⨯-=-4.……………………………………………………7分 20.(本题满分7分)解:用枚举法或列表法,可求出从四根细木棒中取两根细木棒的所有可能情况共有6种.枚举法:(1,3)、(1,4)、(1,5)、(3,4)、(3,5)、(4,5)共有6种.…4分 (1)P (构成三角形)=4263=; …………………………………………………5分 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案DDBBCCADABCB(2)P (构成直角三角形)=16; …………………………………………………6分 (3)P (构成等腰三角形)=36=12. ……………………………………………7分21.(本题满分8分)解:设规定日期为x 天.由题意,得163=++x x x . …………………………………… 3分 解之,得 x =6.经检验,x =6是原方程的根. ……………………………………5分 显然,方案(2)不符合要求; 方案(1):1.2×6=7.2(万元); 方案(3):1.2×3+0.5×6=6.6(万元). 因为7.2>6.6,所以在不耽误工期的前提下,选第三种施工方案最节省工程款. ………………8分 22.(本题满分8分)解:(1)在Rt △B ′OC 中,tan ∠OB ′C =34,OC =9, ∴934OB ='. ………………………………………………………………………2分 解得OB ′=12,即点B ′ 的坐标为(12,0). ………………………………………3分 (2)将纸片翻折后,点B 恰好落在x 轴上的B ′ 点,CE 为折痕, ∴ △CBE ≌△CB ′E ,故BE =B ′E ,CB ′=CB =OA .由勾股定理,得 CB ′=22OB OC '+=15. … …………………………………4分 设AE =a ,则EB ′=EB =9-a ,AB ′=AO -OB ′=15-12=3. 由勾股定理,得 a 2+32=(9-a )2,解得a =4.∴点E 的坐标为(15,4),点C 的坐标为(0,9). ·········· 5分 设直线CE 的解析式为y =kx +b ,根据题意,得 9,415.b k b =⎧⎨=+⎩ …………… 6分解得9,1.3b k =⎧⎪⎨=-⎪⎩∴CE 所在直线的解析式为 y =-13x +9. …………………8分23.(本题满分10分)解:⑴ 连接AC ,EB ,则∠CAM =∠BEM . ……………1分A BCEDO MF又∠AMC =∠EMB , ∴△AMC ∽△EMB . ∴EM MBAM MC=,即AM MB EM MC ⋅=⋅.………3分 (2) ∵DC 为⊙O 的直径,∴∠DEC =90°,EC =22228(15)7.DC DE -=-= ………………………4分∵OA =OB =4,M 为OB 的中点,∴AM =6,BM =2. …………………………………5分 设EM =x ,则CM =7-x .代入(1),得 62(7)x x ⨯=-.解得x 1=3,x 2=4.但EM >MC ,∴EM=4. …………………………………………7分 (3) 由(2)知,OE =EM =4.作EF ⊥OB 于F ,则OF =MF =41OB =1. ………………8分在Rt △EOF 中,EF =,15142222=-=-OF OE …………………………9分∴sin ∠EOB =415=OE EF . ……………………………………………………………10分 24.(本题满分10分)解:(1)由解析式可知,点A 的坐标为(0,4). …………………………………1分 ∵1462OAB S BO ∆=⨯⨯=,∴BO =3. ∴点B 的坐标为(-3,0). ………………………………………………………2分 (2)把点B 的坐标(-3,0)代入4)1(2+-+-=x k x y ,得2(3)(1)(3)40k --+-⨯-+=. 解得351-=-k . …………………4分∴所求二次函数的解析式为4352+--=x x y . …………………………………5分 (3)因为△ABP 是等腰三角形,所以①当AB =AP 时,点P 的坐标为(3,0). …………………………………………6分 ②当AB =BP 时,点P 的坐标为(2,0)或(-8,0). …………………………8分 ③当AP =BP 时,设点P 的坐标为(x ,0).根据题意,得3422+=+x x .解得 67=x .∴点P 的坐标为(67,0). ……………………………………10分综上所述,点P 的坐标为(3,0)、(2,0)、(-8,0)、(67,0).25.(本题满分10分)54123 OFB1ECA 1D解:(1)如图所示,315∠=,190E ∠= ,∴1275∠=∠=. ………………………………1分 又45B ∠=,∴114575120OFE B ∠=∠+∠=+= . ………3分 (2)1120OFE ∠= ,∴∠D 1FO =60°.1130CD E ∠= ,∴490∠= .··················· 4分 又AC BC = ,6AB =,∴3OA OB ==.90ACB ∠= ,∴116322CO AB ==⨯=. ·············· 5分 又17CD = ,∴11734OD CD OC =-=-=.在1Rt AD O △中,222211345AD OA OD =+=+=. ········· 6分 (3)点B 在22D CE △内部. ···················· 7分 理由如下:设BC (或延长线)交22D E 于点P ,则2153045PCE ∠=+= . 在2Rt PCE △中,27222CP CE ==, ………… ········ 9分 72322CB =<,即CB CP <,∴点B 在22D CE △内部. ……………10分声明:本资料由 考试吧( ) 收集整理,转载请注明出自 服务:面向较高学历人群,提供计算机类,外语类,学历类,资格类,会计类,工程类,医学类等七大类考试的全套考试信息服务及考前培训.。
山东省潍坊市2008年初中学业水平考试英语(满分120分,考试时间120分钟)第Ⅰ卷(共75分)第一部分听力测试:略二、单项选择(共16小题;每小题1分,满分16分)从下列各题所给的A、B、C、D四个选项中,选出可以填人空白处的最佳选项。
16.Luckily,the boy didn’t hurt his ________ in the accident.so he can walk as usual.A.arms B.legs C.eyes D.hands17.—It’s ________ nice day,isn’t it?—Yes,what fine weather!A.a;a B.the;the C.a;/D.the;/18.Mrs. Bond is an old friend of ________.A.Jack mother B.Jack mother’s C.Jack’s mother D.Jack’s mother’s19.The machines made in China are cheaper than ________ made in Japan.A.ones 13.that C.those D.it20.—Listen! Is Professor Bloom giving a speech in class?—No,it ________ be him.He has gone to France.A.may not B.mustn’t C.needn’t D.can’t21.Milk quickly turns sour ________ it’s in a fridge.A.until B.since C.as D.unless22.I’m sure I can make it better,if our teacher ________ me a second chance.A.give B.gave C.gives D.will give23.—Bad luck! It’s too late!—It doesn’t matter.The movie ________ for only a few minutes.You can’t miss it.A.has begun B.has been on C.began D.was on24.Yesterday evening I was playing the piano ________ the doorbell rang.A.when B.before C.while D.after25.These story books for children are awfully written.They are ________ interesting ________ exciting.A.either;or B.neither;nor C.both;and D.not only:but also26.The dish smells ________ and you’d better throw it away.A.good B.well C.bad D.badly27.We looked at each other ________ surprise when we heard a bird singing“Happy birthday to you”.A.in B.to C.by D.at28.The shop assistant said he knew ________.A.where does the manager live B.where the manager livesC.where did the manager live D.where the manager lived29.—Our family are traveling to Germany for the Beer Festival.—________A.Congratulations! B.See you later!C.Have fun! D.Take care!30.The young soldier really doesn’t know ________ to stop the baby from crying hard.A.what to do B.how to do C.when to do D.where to do31.—Boys and girls! Please ________ your compositions after class.—Oh,my God! I ________ it at home.A.hand in:forgot B.hand in:leftC.hand out;forgot D.hand out;left三、完形填空(共15小题;每小题1分。
21.(本小题满分8分)教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.22.(本小题满分9分)某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东45°、B 地北偏西60°方向上有一牧民区C .一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C .方案II :从A 地开车穿越草地沿AC 方向到牧民区C . 已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD .(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由. (结果精确到0.1.参考数据:3取1.73,2取1.41)得 分 评卷人得 分 评卷人共计19元 共计18元 第三束 水仙花康乃馨 AD B北C东45° 60°第22题图∴ △APM ∽△ABE ,∴PM AP BE AB = ① 同理: PN PB AD AB= ② .............................................................................................. 5分 ① + ②:1PM PN AP PB BE AD AB AB+=+= ............................................................................ 6分 (3)∵ 直线EC 为抛物线对称轴,∴ EC 垂直平分AB∴ EA =EB∵ ∠AEB =90°∴ △AEB 为等腰直角三角形.∴ ∠EAB =∠EBA =45° ...................... 7分如图,过点P 作PH ⊥BE 于H ,由已知及作法可知,四边形PHEM 是矩形,∴PH =ME 且PH ∥ME在△APM 和△PBH 中∵∠AMP =∠PHB =90°, ∠EAB =∠BPH =45°∴ PH =BH且△APM ∽△PBH ∴PA PM PB BH = ∴ PA PM PM PB PH ME== ① .................... 8分 在△MEP 和△EGF 中,∵ PE ⊥FG , ∴ ∠FGE +∠SEG =90°∵∠MEP +∠SEG =90° ∴ ∠FGE =∠MEP∵ ∠PME =∠FEG =90° ∴△MEP ∽△EGF∴PM EF ME EG= ② 由①、②知:PA EF PB EG= ............................................................................................. 9分 (本题若按分类证明,只要合理,可给满分)。
●●●●2008年潍坊市初中学业水平考试数学试题 2008.6注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页,为选择题,36分;第Ⅱ卷8页,为非选择题,84分;共120分.考试时间为120分钟.2.答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再涂改其它答案.第Ⅰ卷 选择题(共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.下列运算正确的是( ) A .532x x x −=B .43210()x x x = C .1239()()x x x −÷−=D .33(2)8x x−−=2.下列方程有实数解的是( ) A1=−B .120x ++=C .111xx x =++ D .2230x x −+=3.如图,矩形ABCD 中,AD BC ∥,AD AB =,BC BD =,100A =∠,则C =∠( ) A .80B .70C .75D .604.若2(a +与1b −互为相反数,则1b a−的值为( ) AB1C1D.1−5.某蓄水池的横断面示意图如右图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )6.如图,Rt ABC △中,AB AC ⊥,3AB =,4AC =,P 是BC 上一点,作PE AB ⊥于E ,PD AC ⊥于D ,设BP x =, 则PD PE +=( ) A .35x +B .45x −C .72D .21212525x x− A . B . C .D .D A BA DPBE7.时代中学周末有40人去体育场观看足球比赛,40张票分别为B 区第2排1号到40号.分票采用随机抽取的办法,小明第一个抽取,他抽取的座号为10号,接着小亮从其余的票中任意抽取一张,取得的一张恰与小明邻座的概率是( )A .140B .12 C .139 D .2398.如图,Rt ABC △中,AB AC ⊥,AD BC ⊥,BE 平分ABC ∠,交AD 于E ,EF AC ∥,下列结论一定成立的是( )A .AB BF = B .AE ED =C .AD DC =D .ABE DFE =∠∠9.如图,ABC △内接于圆O ,50A =∠,60ABC =∠,BD 是圆O 的直径, BD 交AC 于点E ,连结DC ,则AEB ∠等于( ) A .70B .110C .90D .12010.已知反比例函数aby x=,当0x >时,y 随x 的增大而增大,则关于x 的方程220ax x b −+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根11.在平行四边形ABCD 中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为 1,则平行四边形ABCD 的面积为( ) A .2B .35C .53D .1512.若一次函数(1)y m x m =++的图象过第一、三、四象限,则函数2y mx mx =−( ) A .有最大值4mB .有最大值4m −C .有最小值4m D .有最小值4m −试卷类型:A2008年潍坊市初中学业水平考试数学试题 2008.6第Ⅱ卷 非选择题(共84分)注意事项:1.第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:32627x x x +−= .1 2 3 4EA BD F C14.已知3462(2)x x ++−≤,则1x +的最小值等于 .15.如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分 的面积为 .16.下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有(2)n n ≥个圆点时,图案的圆点数为n S .按此规律推断n S 关于n 的关系式为: .17.如图,在平面直角坐标系中,Rt OAB △的顶点A的坐标为, 若将OAB △绕O 点逆时针旋转60后,B 点到达B '点,则B '点的坐标是 .三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推算步骤.) 18.(本题满分8分)国际奥委会2003年6月29日决定,2008年北京奥运会的举办日期由7月25日至8月10日推迟到8月8日至24日,原因与北京地区的气温有关.为了了解这段时间北京地区的气温分布状况,相关部门对往年7月25日至8月24日的日最高气温进行抽样,得到如下样本数据:时间段 日最高气温样本数据(单位:℃) 7月25日至8月10日 42 38 36 35 37 38 35 34 33 33 35 33 31 31 29 32 29 8月8日至8月24日 29 32 29 33 33 30 30 30 33 33 29 26 25 30 30 30 30 (1)分别写出7月25日至8月10日和8月8日至24日两时间段的两组日最高气温样本数据的中位数和众数;(2)若日最高气温33℃(含33℃)以上为高温天气,根据以上数据预测北京2008年7月25日至8月10日和8月8日至24日期间分别出现高温天气的概率是多少?(3)根据(1)和(2)得到数据,对北京奥运会的举办日期因气温原因由7月25日至8月10日推迟到8月8日至24日做出解释. 19.(本题满分8分)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化.绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩.并且种植草224n S ==, 338n S ==,4412n S ==,皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低?最低费用为多少? 20.(本题满分9分)如图,AC 是圆O 的直径,10AC =厘米,PA PB ,是圆O 的切线,A B ,为切点.过A 作AD BP ⊥,交BP 于D 点,连结AB BC ,.(1)求证ABC ADB △∽△;(2)若切线AP 的长为12厘米,求弦AB 的长.21.(本题满分10分)如图,ABCD 为平行四边形,AD a =,BE AC ∥,DE 交AC 的延长线于F 点,交BE 于E 点.(1)求证:DF FE =;(2)若2AC CF =,60ADC =∠,AC DC ⊥,求BE 的长;(3)在(2)的条件下,求四边形ABED 的面积.22.(本题满分11分)一家化工厂原来每月利润为120万元.从今年一月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x 月(112x ≤≤)的利润的月平均值w (万元)满足1090w x =+,第2年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x 月(112x ≤≤)的利润和为y ,写出y 关于x 的函数关系式,并求前几个月的利润和等于700万元? (2)当x 为何值时,使用回收净化设备后的1至x 月的利润和与不安装回收净化设备时x 个月的利润和相等?(3)求使用回收净化设备后两年的利润总和.A F EBC23.(本题满分11分)如图,矩形纸片ABCD中,8AB=,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边BC上,10BG=.(1)当折痕的另一端F在AB边上时,如图(1),求EFG△的面积;(2)当折痕的另一端F在AD边上时,如图(2),证明四边形BGEF为菱形,并求出折痕GF的长.24.(本题满分12分)如图,圆B切y轴于原点O,过定点(A−作圆B切线交圆于点P.已知tan3PAB=∠,抛物线C经过A P,两点.(1)求圆B的半径;(2)若抛物线C经过点B,求其解析式;(3)投抛物线C交y轴于点M,若三角形APM为直角三角形,求点M的坐标.ABFE(B) DCG图(1)图(2)GCDFABE(B)H(A)参考答案:一、1 B 2 C 3 C 4 B 5 A 6 ? 7 D 8 A 9 B 10 C 11 C 12 ? 二、13.x(x-3)(x+9); 14.1; 15.100π; 16. S n=4(n-1); 17. 3(,)22; 18.(1)中位数:34,众数:33和35;(将所给数据按顺序排列,中间的一个数是中位数,出现次数最多的数是众数) (2)70.6%,23.5%;(用高温天气的天数除以总天数)(3)7月25日至8月10日70.6%是高温天气,8月8日至24日23.5%是高温天气,高温天气不适宜进行剧烈的体育活动,故北京奥运会的举办日期因气温原因由7月25日至8月10日推迟至8月8日至24日是非常合理的。
绝密★启用前试卷类型:A东营市2008年初中学生毕业与高中阶段学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的某某、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4.考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.2-的相反数是 A .-2B .2C .12D .21-2.只用下列图形不能镶嵌的是A .三角形B .四边形C .正五边形D .正六边形 3.下列计算结果正确的是A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a4.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值X 围为A .-1<m <3B .m >3C .m <-1D .m >-15.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是6.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于A .1B .2C .1或2D .07.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为A .26元B .27元C .28元D .29元8.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形, 俯视图是一个圆,那么这个几何体的侧面积是A .4πB .π42 C .π22D .2π 9.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 图象如图2所示,则△ABC 的面积是A .B .C .D .A .10B .16C .18D .2010.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是A .21 B .52C .53 D .18711.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<12.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有A .2个B .3个C .4个D .5个绝密★启用前试卷类型:ABEDACO东营市2008年初中学生毕业与高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.二、填空题:本大题共5小题,每小题填对得4分,共20分.只要求填写最后结果.13.在2008年奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为亿帕的钢材.亿帕用科学计数法表示为__________帕(保留两位有效数字).14.如图,已知AB ∥CD ,BE 平分∠ABC , ∠CDE =150°,则∠C =__________.15.分解因式:ab b a 8)2(2+- =____________.16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:得 分评 卷 人ABCDE则a n =(用含n 的代数式表示).17.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ; ② PQ ∥AE ;③ AP =BQ ; ④ DE =DP ; ⑤ ∠AOB =60°.恒成立的结论有______________(把你认为正确的序号都填上). 三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b-+,其中21+=a ,21-=b .得 分评 卷 人ABCE DO P Q19.(本题满分8分)振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1560名学生,估计全校学生捐款多少元?得 分评 卷 人1015202530 捐款数/元20.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是AD 中点.求证:CE ⊥BE .得 分评 卷 人得 分评 卷 人CDE22. (本题满分10分)如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.(1)求B ,D 之间的距离; (2)求C ,D 之间的距离.得 分评 卷 人得 分评 卷 人A BC某某路文化路D 和平路45° 15°30°环城路EF23.(本题满分10分)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数x ky (k >0轴,过点N 作NF⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .②若①中的其他条件不变,只改变点M ,N图 2 AB DC图 1的位置如图3所示,请判断 MN 与EF 是否平行.24.(本题满分12分)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y得 分评 卷 人BC D 图 2BC 图 1P图 3东营市2008年初中学生毕业与高中阶段学校招生考试数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.二、填空题 (本大题共5小题,每小题4分,共20分)13.8106.4⨯;14.120°;15.2)2(b a +;16.13+n ;17.①②③⑤. 三、解答题 (本大题共7小题,共64分): 18.(本题满分6分)解:原式=222))(()()(bab a bb a b a b a b a +-÷+---+ ……………………………2分 =bb a b a b a b 2)())((2-⋅+- …………………………………………3分=ba b a +-)(2. ……………………………………………………………4分当21+=a ,21-=b 时, 原式=222222=⨯. …………………………………………………6分 19.(本题满分8分)解:(1)设捐款30元的有6x 人,则8x +6x =42.∴ x =3. ..................................................................2分 ∴ 捐款人数共有:3x +4x +5x +8x +6x =78(人).........................3分 (2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元). (6)分(3) 全校共捐款:(9×10+12×15+15×20+24×25+18×30)×781560=34200(元).……………8分20.(本题满分8分)解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x ……………………………………………2分①×2-②得:5x =10000.∴x =2000.………………………………………………………………6分 把x =2000代入①得:5y =12000.∴y =2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.………8分 21.(本题满分10分)证明: 过点C 作CF ⊥AB ,垂足为F .……………… 1分 ∵ 在梯形ABCD 中,AB ∥CD ,∠A =90°, ∴∠D =∠A =∠CF A =90°. ∴四边形AFCD 是矩形.AD=CF , BF=AB -AF=1.……………………………… 3分 在R t △BCF 中, CF 2=BC 2-BF 2=8, ∴ CF=22.∴AD=CF=22. (5)分∵E 是AD 中点,ACBDEF∴DE=AE=21AD=2.…………………………………………………… 6分 在R t △ABE 和 R t △DEC 中, EB 2=AE 2+AB 2=6, EC 2= DE 2+CD 2=3, EB 2+ EC 2=9=BC 2.∴∠CEB =90°. (9)分∴EB ⊥EC .…………………………………………………………………… 10分22.(本题满分10分)解:(1)如图,由题意得,∠EAD =45°,∠FBD∴∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°.∴ ∠DBC =30°.…………………………2分 又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴∠DAB =∠ADB .∴ BD =AB =2.即B ,D 之间的距离为2km .……………………………………………………5分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°.和环城路∴ DO =2×sin60°=2×323=,BO =2×cos60°=1.………………………………8分 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km .………………………………………………10分 23.(本题满分10分)(1)证明:分别过点C ,D ,作CG ⊥AB ,DH ⊥AB , 垂足为G ,H ,则∠CGA =∠DHB =90°.……1分∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等,∴ CG =DH . …………………………2分 ∴ 四边形CGHD 为平行四边形.∴ AB ∥CD . ……………………………3分 (2)①证明:连结MF ,NE . …………………4分设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2∵点M ,N 在反比例函数xky =(k >0∴k y x =11,k y x =22. ∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2. ∴ S △EFM =k y x 212111=⋅,………………5分 AB DC图 1G H图 2S △EFN =k y x 212122=⋅.………………6分 ∴S △EFM =S △EF N .……………… 7分由(1)中的结论可知:MN ∥EF . ………8分 ②MN ∥EF . …………………10分(若学生使用其他方法,只要解法正确,皆给分.) 24.(本题满分12分)解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x . ……………2分∴S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ………………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =,∴ 58OD x =.…………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角,BCD 图 2QBC 图 1∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴x =4996. ∴ 当x =4996时,⊙O 与直线BC 相切.…………………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP的中点.∵MN ∥BC ,∴∠AMN =∠B ,∠AOM =∠APC∴ △AMO ∽ △ABP .∴12AM AO AB AP ==.AM =MB =2. 故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.∴当x =2时,2332.82y =⨯=最大…………………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F . ∵四边形AMPN 是矩形, ∴PN ∥AM ,PN =AM =x .又∵MN ∥BC ,∴ 四边形MBFN 是平行四边形.P BCP 图 3∴FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-.……………………………………………………… 9分MNP PEFy S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴当83x =时,满足2<x <4,2y =最大. 综上所述,当83x =时,y 值最大,最大值是2. (12)分。
2008年烟台市中考数学试题一、选择题(本题共 12 个小题,每小题 4 分,满分 48 分)1、12-的相反数是()BA、12B、12- C、2 D、2-2、下列交通标志中,不是轴对称图形的是()C3、如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是()A4、如图,小明从A 处出发沿北偏东60°向行走至B处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是()AA、右转80°B、左传80°C、右转100°D、左传100°5、正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针旋转90°后,B点的坐标为()DA、(-2,2)B、(4,1)C、(3,1)D、(4,0)6、关于不等式22x a -+≥的解集如图所示,a 的值是( )AA 、0B 、2C 、-2D 、-47、已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是( )D A 、ab B 、abC 、a b +D 、a b -8、已知2,2a b ==的值为( )C A 、3 B 、4 C 、5 D 、69、如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )CA 、20cmB 、24cmC 、10cm πD 、30cm π10、在反比例函数12my x -=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( )CA 、0m <B 、0m >C 、12m <D 、12m > 11、如图,四幅图象分别表示变量之间的关系,请按图象..的顺序,将下面的四种情境与之对应排序.① ② ③ ④ .a 运动员推出去的铅球(铅球的高度与时间的关系).b 静止的小车从光滑的斜面滑下(小车的速度与时间的关系) .c 一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系).d 小明从A 地到B 地后,停留一段时间,然后按原速度原路返回(小明离A 地的距离与时间的关系) 正确的顺序是( )DA 、abcdB 、adbcC 、acbdD 、acdb12、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( )AA 、b a c =+B 、b ac =C 、222b a c =+D 、22b a c ==二、填空题(本题共6个小题,每小题 4 分,满分24分)13、2008 年 5 月 12 日,我国四川省坟川县发生了里氏 8.0级特大地震.地动天不塌,大震有大爱.地震发生后一周,我国接受国内外捐赠的款物共108 . 34亿元,108.34 亿元用科学记数法表示是________元.101.083410⨯14、请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是______________.答案不唯一,如212x -=-15、七(1)班四个绿化小组植树的棵树如下:10,10,x ,8,已知这组数据的众数和平均数相等,那么这组数据的中位数是_______棵. 1016、红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2.cm17、表2是从表1中截取的一部分,则_____.a =1818、如图是某工程队在“村村通”工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米.504三、解答题(本大题共8小题,满分78分) 19、(本题满分6分) 已知()()213x x x y ---=-,求222x y xy +-的值.20、(本题满分8分)某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A 、B 相距 3 米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度.(结果精确到0.1米,参考数据:1.73≈≈)21、(本题满分8分)为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次通缉,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生?(2)将①的条形图补充完整.(3)计算出作业完成时间在0.5~1小时的部分对应的扇形圆心角.(4)完成作业时间的中位数在哪个时间段内?(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过1.5小时的有多少人?22、(本题满分8分)据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%之间时,衣服的洗涤效果较好,因为这时表面活性较大.现将4.94kg的衣服放入最大容量为15kg的洗衣机中,欲使洗衣机中洗衣粉的含量达到0.4%,那么洗衣机中需要加入多少千克水,多少匙洗衣粉?(1匙洗衣粉约0.02kg,假设洗衣机以最大容量洗涤)23、(本题满分10分)如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率;(2)直接写出点(),x y 落在函数1y x=-图象上的概率.或根据题意,画表格24、(本题满分10分)如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC 于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.25、(本题满分14分)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.25、(本题满分14分)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由; (3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.。