概率分布列答案
- 格式:doc
- 大小:303.09 KB
- 文档页数:4
高三数学随机变量的分布列试题1.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为()A.B.C.D.【答案】D【解析】由题意得,+++=1,解得a=.于是P(<X<)=P(X=1)+P(X=2)=+=a=,故选D.2. [2014·四川模拟]在四次独立重复试验中,事件A在每次试验中出现的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为()A.B.C.D.【答案】C【解析】设事件A在每次试验中发生的概率为p,则事件A在4次独立重复试验中,恰好发生k 次的概率为pk=p k(1-p)4-k(k=0,1,2,3,4),∴p0=p0(1-p)4=(1-p)4,由条件知1-p=,∴(1-p)4=,∴1-p=,∴p=.∴p1=p·(1-p)3=4××()3=,故选C.3.[2014·唐山检测]2013年高考分数公布之后,一个班的3个同学都达到一本线,都填了一本志愿,设Y为被录取一本的人数,则关于随机变量Y的描述,错误的是()A.Y的取值为0,1,2,3B.P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3)=1C.若每录取1人学校奖励300元给班主任,没有录取不奖励,则班主任得奖金数为300Y D.若每不录取1人学校就扣班主任300元,录取不奖励,则班主任得奖金数为-300Y【答案】D【解析】由题意知A、B正确.易知C正确.对于D,若每不录取1人学校就扣班主任300元奖金,录取不奖励,则班主任得奖金数为-300(3-Y)=300Y-900.4.设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此两球所得分数之和,求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,V(η)=,求a∶b∶c.【答案】(1)ξ的分布列为(2)3∶2∶1【解析】(1)由已知得到:当两次摸到的球分别是红红时ξ=2,此时P(ξ=2)==;当两次摸到的球分别是黄黄、红蓝、蓝红时ξ=4时,P(ξ=4)==;当两次摸到的球分别是红黄,黄红时ξ=3时,P(ξ=3)==;当两次摸到的球分别是黄蓝,蓝黄时ξ=5时,P(ξ=5)==;当两次摸到的球分别是蓝蓝时ξ=6时,P(ξ=6)==.所以ξ的分布列为ξ23456由已知得到:η有三种取值即1,,所以η的分布列为所以,所以b=2c,a=3c,所以a∶b∶c=3∶2∶1.5.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.【答案】(1)0.5(2)0.8(3)ξ0123【解析】解:记A表示事件:进入商场的1位顾客购买甲种商品;记B表示事件:进入商场的1位顾客购买乙种商品;记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1)C=A·B+A·B,P(C)=P(A·B+A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P()·P(B)=0.5×0.4+0.5×0.6=0.5.(2)D=A·B,P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2,P(D)=1-P(D)=0.8.(3)ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008;P(ξ=1)=×0.8×0.22=0.096;P(ξ=2)=×0.82×0.2=0.384;P(ξ=3)=0.83=0.512.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.【答案】(1)、、(2)X的分布列为【解析】(1)记“甲队以3∶0胜利”为事件A1,“甲队以3∶1胜利”为事件A2,“甲队以3∶2胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)==,P(A2)=××=,P(A3)=××=.所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是、、;(2)设“乙队以3∶2胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)=××=.由题意,随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性得P(X=0)=P(A1+A2)=P(A1)+P(A2)=,P(X=1)=P(A3)=,P(X=2)=P(A)=,4P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=.故X的分布列为7.一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等).(1)求取出的小球中有相同编号的概率;(2)记取出的小球的最大编号为,求随机变量的分布列和数学期望.【答案】(1);(2)随机变量的分布列为:346随机变量的数学期望 .【解析】(1)应用古典概型概率的计算公式,关键是利用组合知识,确定事件数;(2) 随机变量的可能取值为.计算相应概率即得随机变量的分布列为:数学期望 .试题解析:(1):设取出的小球中有相同编号的事件为,编号相同可分成一个相同和两个相同 2分4分(2) 随机变量的可能取值为:3,4,6 6分, 7分, 8分9分所以随机变量的分布列为:346所以随机变量的数学期望 . 12分【考点】古典概型,互斥事件,离散型随机变量的分布列及数学期望.8.某商场为吸引顾客消费推出一项促销活动,促销规则如下:到该商场购物消费满100元就可转动如图所示的转盘一次,进行抽奖(转盘为十二等分的圆盘),满200元转两次,以此类推;在转动过程中,假定指针停在转盘的任一位置都是等可能的;若转盘的指针落在A区域,则顾客中一等奖,获得10元奖金;若转盘落在B区域或C区域,则顾客中二等奖,获得5元奖金;若转盘指针落在其他区域,则不中奖(若指针停到两区间的实线处,则重新转动).若顾客在一次消费中多次中奖,则对其奖励进行累加.已知顾客甲到该商场购物消费了268元,并按照规则参与了促销活动.(1)求顾客甲中一等奖的概率;(2)记X为顾客甲所得的奖金数,求X的分布列及其数学期望.【答案】(1)(2)【解析】(1)设事件A表示该顾客中一等奖,P(A)=×+2××=,所以该顾客中一等奖的概率是.(2)X的可能取值为20,15,10,5,0,P(X=20)=×=,P(X=15)=2××=,P(X=10)=×+2××=,P(X=5)=2××=,P(X=0)=×=.所以X的分布列为数学期望E(X)=20×+15×+10×+5×=.9.辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.【答案】(1)(2)(3)【解析】(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件E.则P(E)=1-P( )=1-P()P()P( )=1-××=.(2)由题意,得X的可能取值是,2,,3.因为P(X=)=P()=,P(X=2)=P(A )+P(B)+P(C )=,P(X=)=P(AB)+P(A C)+P( B C)==,P(X=3)=P(ABC)=,所以X的分布列为:(3)由(2)知E(X)=×+2×+×+3×==.10.随机变量的分布列如右:其中成等差数列,若,则的值是.【答案】.【解析】由题意,则.【考点】随机变量的期望和方差.11.一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记.(Ⅰ)求取最大值的概率;(Ⅱ)求的分布列及数学期望.【答案】(Ⅰ);(Ⅱ)所以的分布列:数学期望.【解析】(1)随机变量的分布列问题,首先确定随机变量的所有可能值;(2))本题属古典概型,各随机变量所对应的事件包含的基本事件无法用公式求出,需一一列举出来.列举时要注意避免重复和遗漏,这是极易出错的地方试题解析:(Ⅰ)当时,最大。
高二数学随机变量的分布列试题答案及解析1.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.【答案】-1,0,1,2,3【解析】甲获胜且获得最低分的情况是:甲抢到一题并回答错误,乙抢到两题并且都回答错误,此时甲得-1分,故X的所有可能取值为-1,0,1,2,3.2.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A“取出的2件产品都是二等品”的概率P(A)=0.04(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共10件,从中任意抽取2件;X表示取出的2件产品中二等品的件数,求X的分布列.【答案】(1) 0.2 (2) X的分布列为【解析】解:(1)设任取一件产品是二等品的概率为p,依题意有P(A)=p2=0.04,解得p1=0.2,p2=-0.2(舍去).故从该批产品中任取1件是二等品的概率为0.2.(2)若该批产品共10件,由(1)知其二等品有10×0.2=2件,故X的可能取值为0,1,2.P(X=0)==.P(X=1)=.P(X=2)==.所以X的分布列为X0123.已知~,且,则等于( )A.B.C.D.【答案】A【解析】∵~,∴,∴,故选A【考点】本题考查了二项分布点评:熟练掌握二项分布列的期望、方差公式是解决此类问题的关键,属基础题4.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.【答案】(1)的分布列为:01 2 345(2)的分布列为:012345(3)【解析】(1)由于~,则,所以的分布列为:(2)也就是说{前个是绿灯,第个是红灯},也就是说(5个均为绿灯),则,;所以的分布列为:012345(3)所求概率【考点】本题考查了随机变量的分布列点评:分布列的求解分三步:确定随机变量的取值有那些,求出每种取值下的随机事件的的概率,列表对应即为分布列5.设随机变量~,又,则和的值分别是()A.和B.和C.和D.和【答案】C【解析】因为随机变量~,所以,,所以=,=。
概率论分布列期望方差习题及答案The following text is amended on 12 November 2020.圆梦教育 离散型随机变量的分布列、期望、方差专题姓名:__________班级:__________学号:__________1.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为,,,假设各盘比赛结果相互独立。
(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.2.已知某种从太空带回的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数;(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率.3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p ,出现“×”的概率为q .若第k 次出现“○”,则a k =1;出现“×”,则a k =1-.令S n =a 1+a 2+…+a n ()n N *∈.(1)当12p q ==时,求S 6≠2的概率;(2)当p =31,q =32时,求S 8=2且S i ≥0(i =1,2,3,4)的概率.4.在一个有奖问答的电视节目中,参赛选手顺序回答123A A A 、、三个问题,答对各个问题所获奖金(单位:元)对应如下表:当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答123A A A 、、的概率分别为421534、、,正确回答一个问题后,选择继续回答下一个问题的概率均为12,且各个问题回答正确与否互不影响.(Ⅰ)按照答题规则,求该选手1A 回答正确但所得奖金为零的概率;(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.5.某装置由两套系统M,N 组成,只要有一套系统工作正常,该装置就可以正常工作。
高中理科数学概率统计、各类分布列解答题类型以随机事件概率为背景离散型随机变量的分布列、均值【背一背重点知识】1.随机变量所取的值分别对应的事件是两两互斥的,各事件概率之和为1.2.求随机事件概率为背景的离散型随机变量的均值与方差公式3.注意事件中所包含关键词,如至少,至多,恰好,都是,不都是,都不是等的含义.【讲一讲提高技能】1、必备技能:分类讨论要保证不重不漏,且相互互斥.灵活运用排列组合相应方法进行计数.等可能性是正确解题的关键,在计数及求概率过程中严格保证事件的等可能性.【练一练提升能力】1.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(1)求选出的3名同学来自不同班级的概率;(2)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.2.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为,求的分布列和数学期望;(2)求恰好得到分的概率.3、某厂有台大型机器,在一个月中,一台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障需要维修的概率为.(1)问该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于?(2)已知一名工人每月只有维修台机器的能力,每月需支付给每位工人万元的工资.每台机器不出现故障或出现故障能及时维修,就使该厂产生万元的利润,否则将不产生利润.若该厂现有名工人.求该厂每月获利的均值.以二项分布为背景离散型随机变量的分布列、均值【背一背重点知识】1.若随机变量服从二项分布,则对应的事件是两两独立重复的,概率为事件成功的概率.2.求二项分布为背景的离散型随机变量的均值与方差公式:若,则【讲一讲提高技能】1.必备技能:利用离散型随机变量的均值与方差的定义,也可求出二项分布为背景的离散型随机变量的均值与方差,但计算较繁.因此判断随机变量是否服从二项分布是解决问题的关键.判断方法有两个,一是从字面上理解是否符合独立重复条件,二是通过计算,归纳其概率规律是否满足二项分布.【练一练提升能力】1.为贯彻“激情工作,快乐生活”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为23 .(1)求选手甲答题次数不超过4次可进入决赛的概率;(2)设选手甲在初赛中答题的个数ξ,试写出ξ的分布列,并求ξ的数学期望.2.近年来,我国电子商务蓬勃发展.2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统.从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次. (Ⅰ) 根据已知条件完成下面的并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量 ,求 的分布列和数学期望 . 附:(其中为样本容量)3.(12分)某网站用“10分制”调查一社区人们的幸福度. 现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度 分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): (1)指出这组数据的众数和中位数;(2)若幸福度不低于9,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.以正态分布为背景离散型随机变量的分布列、均值1、正态分布概念:若连续型随机变量的概率密度函数为,其中为常数,且,则称服从正态分布,简记为~。
分布列1.(本小题满分14分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3 5.(1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)2.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产(Ⅰ)该同学为了求出y 关于x 的线性回归方程ˆˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.某商场准备在节日期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动。
(1)试求选出的3种商品中至少有一种日用商品的概率;(2)商场对选出的商品采用有奖促销,即在该商品现价的基础上价格提高180元,同时允许顾客每购买1件促销商品有3次抽奖的机会,若中奖,则每次中奖都可获得奖金100元,假设顾客每次抽奖时中奖与否是等可能的,试分析此种有奖促销方案对商场是否有利。
在高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;(Ⅱ)设ξ为选出的4个人中选《数学运算》的人数,求ξ的分布列和数学期望..(本小题满分14分)分布列参考答案1.(本小题满分14分)解:(1) 列联表补充如下:----------------------------------------3分(2)∵2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯------------------------6分 ∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.---------------------7分(3)喜爱打篮球的女生人数ξ的可能取值为0,1,2.-------------------------9分其概率分别为021*******(0)20C C P C ξ===,1110152251(1)2C C P C ξ===,2010152253(2)20C C P C ξ===--------------------------12分故ξ的分布列为:--------------------------13分ξ的期望值为:7134012202205E ξ=⨯+⨯+⨯= 2.(本小题满分14分)解:(Ⅰ)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+=…………….6分(Ⅱ)0,1,2,3,ξ=31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ======== …………………….10分其分布列为5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯= …………………….14分3.解:(1)从3种服装商品、2种家电商品、4种日用商品中,选出3种商品,一共有39C 种不同的选法,选出的3种商品中,没有日用商品的选法有35C 种,……2分 所以选出的3种商品中至少有一种日用商品的概率为 3539537114242C P C =-=-=……4分 (2)顾客在三次抽奖中所获得的奖金总额是一随机变量ξ,其所有可能的取值为0,100,200,300。
概率分布列练习题1.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是(A. B. C. D. 答案:D2.三个人独立地破译一个密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译出的概率为(A. B. C. D.不确定答案:A3.已知P(A=0.3,P(B=0.5,当事件A、B相互独立时,P(A∪B=________,P(A|B=________.答案0.650.34.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为________.答案:5.在一条马路上的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆汽车在这条马路上行驶,那么在这三处都不停车的概率是________.答案:6.事件A、B、C相互独立,若P(A·B=,P(·C=,P(A·B·=,则P(B=________,P(·B=________,P(B+C=__________,P(B|C=________.答案:7.有一个数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,2人试图独立地在半小时内解决它,则2人都未解决的概率为________,问题得到解决的概率为________.8.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是(A.0.45 B.0.6 C.0.65 D.0.75 答案:D解析:令事件A、B分别表示甲、乙两人各射击一次击中目标,由题意可知P(A=0.6,P(B=0.5,令事件C表示目标被击中,则C=A∪B,则P(C=1-P(P(=1-0.4×0.5=0.8,所以P(A|C===0.75.9.设10件产品中有4件不合格,从中任意取出2件,在所取得的产品中发现有一件不合格品,则另一件也是不合格品的概率为.答案:10.已知随机变量ξ~B(6,,则P(ξ≥2=(A. B. C. D. 答案C11.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是(A. B. C. D. 答案B12.某电子管正品率为,次品率为,现对该批电子管进行测试,设第ξ次首次测到正品,则P(ξ=3的值为(A.C(2× B. C(2× C.(2× D.(2×答案C13.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n}:a n=如果S n为数列{a n}的前n项和,那么S7=3的概率为( A.C×(2×(5 B.C×(2×(5 C.C×(2×(5 D.C×(2×(514.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用ξ表示这5位乘客在第20层下电梯的人数,则P(ξ=4=________.答案15.某单位6个员工借助互联网开展工作,每天每个员工上网的概率是0.5(相互独立,则一天内至少3人同时上网的概率为________.答案16.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(1分别求甲、乙两人考试合格的概率;(2求甲、乙两人至少有一人考试合格的概率.解析(1设甲、乙两人考试合格的事件分别为A、B,则P(A===,P(B===17.2013年初,一考生参加北京大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被考生正确做出的概率都是.(1求该考生首次做错一道题时,已正确做出了两道题的概率;(2若该考生至少做出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.解析(1记“该考生正确做出第i道题”为事件A i(i=1,2,3,4,则P(A i=,由于每一道题能否被正确做出是相互独立的,所以这名考生首次做错一道题时,已正确做出两道题的概率为P(A1A2=P(A1·P(A2·P(=××=.(2记“这名考生通过书面测试”为事件B,则这名考生至少正确做出3道题,即正确做出3道或4道题,故P(B=C×(3×+C×(4=.18.某射手每次射击击中目标的概率是,且各次射击的结果互不影响。
概率统计与期望方差分布列大题基础练新高考数学复习分层训练(新高考通用)1.(2023·安徽宿州·统考一模)宿州号称“中国云都”,拥有华东最大的云计算数据中心、CG动画集群渲染基地,是继北京、上海、合肥、济南之后的全国第5家量子通信节点城市.为了统计智算中心的算力,现从全市n个大型机房和6个小型机房中随机抽取若干机房进行算力分析,若一次抽取2个机房,全是小型机房的概率为1 3 .(1)求n的值;(2)若一次抽取3个机房,假设抽取的小型机房的个数为X,求X的分布列和数学期望.E X=⨯+⨯+⨯+⨯=.则X的数学期望()012330102652.(2023秋·浙江湖州·高三安吉县高级中学校考期末)某运动品牌旗舰店在双十一线下促销期间,统计了5个城市的专卖店销售数据如下:款式/专卖店甲乙丙丁戊男装606013080110女装120901306050(1)若分别从甲、乙两家店的销售数据记录中各抽一条进行追踪调查,求抽中的两条记录中至少有一次购买的是男装的概率;(2)现从这5家店中任选3家进行抽奖活动,用X表示其中男装销量超过女装销量的专E X.卖店个数,求随机变量X的分布列和数学期望()∴()1336 012 105105E X=⨯+⨯+⨯=.3.(2023·广东深圳·深圳中学校联考模拟预测)为提高学生的数学应用能力和创造力,学校打算开设“数学建模”选修课,为了解学生对“数学建模”的兴趣度是否与性别有关,学校随机抽取该校30名高中学生进行问卷调查,其中认为感兴趣的人数占70%. (1)根据所给数据,完成下面的22⨯列联表,并根据列联表判断是否有85%的把握认为学生对“数学建模”选修课的兴趣度与性别有关?感兴趣不感兴趣合计男生12女生5合计30(2)若感兴趣的女生中恰有4名是高三学生,现从感兴趣的女生中随机选出3名进行二次访谈,记选出高三女生的人数为X,求X的分布列与数学期望.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.150.100.050.0250.0100.0050.001 0k 2.072 2.706 3.841 5.024 6.6357.87910.82820.4082 2.0721614219K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有85%的把握认为学生对“数学建模”选修课的兴趣度与性别有关;(2)由题意可知X 的取值可能为0,1,2,3,则3539C 5(0)C 42P X ===,124539C C 10(1)C 21P X ===,214539C C 5(2)C 14P X ===,3439C 1(3)C 21P X ===,故X 的分布列为X 0123P5421021514121510514()0123422114213E X =⨯+⨯+⨯+⨯=.4.(2023秋·江苏·高三统考期末)为深入贯彻党的教䏍方针,全面落实《中共中央国务院关于全面加强新时代大中小学劳动教育的意见》,某校从2022年起积极推进劳动课程改革,先后开发开设了具有地方特色的家政、烹饪、手工、园艺、非物质文化遗产等劳动实践类校本课程.为调研学生对新开设劳动课程的满意度并不断改进劳动教育,该校从2022年1月到10月每两个月从全校3000名学生中随机抽取150名学生进行问卷调查,统计数据如下表:月份x 246810满意人数y8095100105120(1)由表中看出,可用线性回归模型拟合满意人数y 与月份x 之间的关系,求y 关于x 的回归直线方程ˆˆˆybx a =+,并预测12月份该校全体学生中对劳动课程的满意人数;(2)10月份时,该校为进一步深化劳动教育改革,了解不同性别的学生对劳动课程是否满意,经调研得如下统计表:满意不满意合计男生651075女生552075合计12030150请根据上表判断是否有95%的把握认为该校的学生性别与对劳动课程是否满意有关?参考公式:()()()1122211ˆˆˆ,nni i i ii i nn iii i x y nxyx x yy bay bx xnx x x ====---===--∑∑∑∑.()20P K k ≥0.100.050.0250.0100.005k 2.7063.8415.0246.6357.879()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X,求X的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.()101612412E X=-⨯+⨯+⨯=.(2)经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464 P⎛⎫==⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C41264 P⎛⎫=⨯=⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C4632 P⎛⎫=⨯=⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C412192 P⎛⎫=⨯⨯=⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192 P=+++=.6.(2023·浙江·校联考模拟预测)某地区2016至2022年生活垃圾无害化处理量(单位:万吨)如下表:年份2016201720182019202020212022年份代号x1234567生活垃圾无害化处理量y 3.9 4.3 4.6 5.4 5.8 6.2 6.9(1)求y 关于x 的线性回归方程;(2)根据(1)中的回归方程,分析过去七年该地区生活垃圾无害化处理的变化情况,并预测该地区2024年生活垃圾无害化处理量.附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy bx x ==--=-∑∑,ˆˆay bx =-.参考数据7162.4i i x y =∑7.(2023秋·浙江嘉兴·高三统考期末)为积极响应“反诈”宣传教育活动的要求,某企业特举办了一次“反诈”知识竞赛,规定:满分为100分,60分及以上为合格.该企业从甲、乙两个车间中各抽取了100位职工的竞赛成绩作为样本.对甲车间100位职工的成绩进行统计后,得到了如图所示的成绩频率分布直方图.(1)估算甲车间职工此次“反诈”知识竞赛的合格率;(2)若将频率视为概率,以样本估计总体.从甲车间职工中,采用有放回的随机抽样方法抽取3次,每次抽1人,每次抽取的结果相互独立,记被抽取的3人次中成绩合格的人数为X .求随机变量X 的分布列;(3)若乙车间参加此次知识竞赛的合格率为60%,请根据所给数据,完成下面的22⨯列联表,并根据列联表判断是否有99%的把握认为此次职工“反计”知识竞赛的成绩与其所在车间有关?2×2列联表甲车间乙车间合计合格人数不合格人数合计附参考公式:①()()()()22()n ad bc a c b d a b c d χ-=++++,其中n a b c d =+++.②独立性检验临界值表【答案】(1)80%(2)分布列见解析(3)表格见解析,有【分析】(1)根据频率分布直方图的性质,可得答案;(2)根据二项分布的分布列的解题步骤,可得答案;(3)由题意,补全列联表,利用独立性检验的解题步骤,可得答案.【详解】(1)根据频率分布直方图可求得甲车间此次参加“反诈”知识竞赛的合格率0.02100.03100.02100.01100.8=⨯+⨯+⨯+⨯=,即80%.(3)根据题中统计数据可填写22⨯列联表如下,甲车间乙车间合计合格人数8060140不合格人数204060合计10010020022200(80402060)9.524 6.635,10010014060χ⨯-⨯=≈>⨯⨯⨯所以有99%的把握认为“此次职工‘反计’知识竞赛的成绩与职工所在车间有关系”.8.(2023春·江苏扬州·高三统考开学考试)云计算是信息技术发展的集中体现,近年来,我国云计算市场规模持续增长.从中国信息通信研究院发布的《云计算白皮书(2022年)》可知,我国2017年至2021年云计算市场规模数据统计表如下:年份2017年2018年2019年2020年2021年年份代码x12345云计算市场规模y /亿元692962133420913229经计算得:51ln i i y =∑=36.33,51(ln )i i i x y =∑=112.85.(1)根据以上数据,建立y 关于x 的回归方程ˆˆˆebxa y +=(e 为自然对数的底数).(2)云计算为企业降低生产成本、提升产品质量提供了强大助推力.某企业未引入云计算前,单件产品尺寸与标准品尺寸的误差4~(0,N mε,其中m 为单件产品的成本(单位:元),且(11)P ε-<<=0.6827;引入云计算后,单件产品尺寸与标准品尺寸的误差1~(0,)N mε.若保持单件产品的成本不变,则(11)P ε-<<将会变成多少?若保持产品质量不变(即误差的概率分布不变),则单件产品的成本将会下降多少?附:对于一组数据1122(,),(,),,(,),n n x y x y x y ⋯其回归直线ˆˆˆyx βα=+的斜率和截距的最小二乘估计分别为ˆβ=1221niii nii x ynx y xnx ==--∑∑,ˆˆy x αβ=-.若2~(,)XN μσ,则(||)0.6827P X μσ-<=,(|2)0.9545P X μσ-<=,(||3)0.9973.P X μσ-<=9.(2023春·重庆永川·高三重庆市永川北山中学校校考开学考试)近年来,各平台短视频、网络直播等以其视听化自我表达、群圈化分享推送、随时随地传播、碎片化时间观看等特点深受人们喜爱,吸引了眼球赚足了流量,与此同时,也存在功能失范、网红乱象、打赏过度、违规营利、恶意营销等问题.为促使短视频、网络直播等文明、健康,有序发展,依据《网络短视频平台管理规范》、《网络短视频内容审核标准细则》等法律法规,某市网信办、税务局、市场监督管理局联合对属地内短视频制作、网络直播进行审查与监管.(1)对短视频、网络直播的整体审查包括总体规范、账户管理、内容管理等三个环节,三个环节均通过审查才能通过整体审查.设某短视频制作团队在这三个环节是否通过审查互不影响,且各环节不能通过审查的概率分别为4131,,25485.①求该团不.能通过整体审查的概率:②设该团队通过整体审查后,还要进入技术技能检测环节,若已知该团队最终通过整体审查和技术技能检测的概率为35%,求该团队在已经通过整体审查的条件下通过技术技能检测的概率;(2)某团队为提高观众点击其视频的流量,通过观众对其视频的评论分析来优化自己的创作质量,现有100条评论数据如下表:试问是否有99.9%的把握可以认为观众对该视频的满意度与该视频改拍相关程度有关联?参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++,n a b c d=+++()20P x χα≥=0.10.050.010.0050.001nx 2.7063.8416.6357.87910.82810.(2023·重庆沙坪坝·高三重庆八中校考阶段练习)2023年3月的体坛属于“冰上运动”,速滑世锦赛、短道速滑世锦赛、花滑世锦赛将在荷兰、韩国、日本相继举行.中国队的“冰上飞将”们将在北京冬奥会后再度出击,向奖牌和金牌发起冲击.据了解,甲、乙、丙三支队伍将会参加2023年3月10日~12日在首尔举行的短道速滑世锦赛5000米短道速滑男子5000米接力的角逐.接力赛分为预赛、半决赛和决赛,只有预赛、半决赛都获胜才能进入决赛.已知甲队在预赛和半决赛中获胜的概率分别为23和34;乙队在预赛和半决赛中获胜的概率分别为34和45;丙队在预赛和半决赛中获胜的概率分别为p和3 2p-,其中34p<<.(1)甲、乙、丙三队中,谁进入决赛的可能性最大;(2)若甲、乙、丙三队中恰有两对进入决赛的概率为3790,求p的值;(3)在(2)的条件下,设甲、乙、丙三队中进入决赛的队伍数为ξ,求ξ的分布列・11.(2023·重庆酉阳·重庆市酉阳第一中学校校考一模)某市从2020年5月1日开始,若电子警察抓拍到机动车不礼让行人的情况后,交警部门将会对不礼让行人的驾驶员进行扣3分,罚款200元的处罚,并在媒体上曝光.但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患和机动车通畅率降低点情况.交警部门在某十字路口根据以往的监测数据,得到行人闯红灯的概率为0.2,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯的情况进行统计,得到2×2列联表如下:45岁以下45岁以上合计闯红灯人数25未闯红灯数85合计200近期,为了整顿“行人闯红灯”这一不文明的违法行为,交警部门在该十字路口试行了对闯红灯的行人进行5元以上,50元以下的经济处罚.在试行经济处罚一段时间后,交警部门再次对穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯的情况进行统计,得到2×2列联表如下:45岁以下45岁以上合计闯红灯人数51520未闯红灯人9585180数合计100100200将统计数据所得频率视为概率,完成下列问题:(1)将2×2列联表填写完整(不需要写出填写过程),并根据表中数据分析,在试行对闯红灯的行人进行经济处罚前,是否有90%的把握认为闯红灯行为与年龄有关;(2)在试行对闯红灯的行人进行经济处罚后,闯红灯现象是否有明显改善,请说明理由;(3)结合调查结果,请你对“如何治理行人闯红灯现象”提出合理的建议(至少提出两条建议).【答案】(1)列联表见解析,有(2)有明显改善,理由见解析(3)答案见解析K的值,结合附表,即可【分析】(1)根据题意,填写出2×2列联表,利用公式求得2得到结论;(2)求得试行对闯红灯的行人进行经济处罚后,行人闯红灯的概率,结合试行对闯红灯的行人进行经济处罚前的概率,可得出结论;(3)结合表格中的数据,可针对45岁以上人群开展“道路安全”宣传教育;也可进行适因为()2220015752585253.125 2.706100100401608K⨯⨯-⨯===>⨯⨯⨯,所以有90%的把握认为闯红灯行为与年龄有关.(2)在试行对闯红灯的行人进行经济处罚后,行人闯红灯的概率为20=0.1 200,而在试行对闯红灯的行人进行经济处罚前,行人闯红灯的概率为0.2,因为0.10.2<,故在试行对闯红灯的行人进行经济处罚后,闯红灯现象有明显改善.(3)①根据调查数据显示,行人闯红灯与年龄有明显关系,故可以针对45岁以上人群开展“道路安全”宣传教育;②由于经济处罚可以明显降低行人闯红灯的概率,故可以在法律允许范围内进行适当的经济处罚.12.(2023·辽宁·新民市第一高级中学校联考一模)为了了解男、女学生对航天知识的了解情况,某调查机构进行了一个随机问卷调查(总分100分),调查的结果如下表所示.若本次问卷调查的得分不低于90分,则认为该学生非常了解航天知识.男学生女学生不低于90分82低于90分2228(1)判断是否有95%的把握认为性别与是否非常了解航天知识有关;(2)现将3个航天器模型纪念品随机分配给参与本次调查且非常了解航天知识的学生,设获得纪念品的女生人数为X,求X的分布列以及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.()2P k αχ=≥0.050.010.0050.001k3.8416.6357.87910.828所以()012.1515155E X =⨯+⨯+⨯=13.(2023春·辽宁朝阳·高三校联考开学考试)千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛应用;第二次工业革命后,科技的进步带动了电讯事业的发展,电报电话的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则使得“千里眼”、“顺风耳”变为现实.现在,5G 的到来给人们的生活带来了颠覆性的变革.某科技创新公司基于领先技术的支持,5G 经济收入在短期内逐月攀升,该创新公司在1月份至5月份的5G 经济收入y (单位:百万元)关于月份x 的数据如表:时间(月份)12345收入(百万元)1015192328(1)根据上表中的数据,求出y 关于x 的线性回归方程,并预测该公司6月份的5G 经济收入;(2)从前5个月的收入中随机抽取3个月,记月收入超过15百万元的个数为X ,求X 的分布列和数学期望.参考公式:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-.所以()123105105E X=⨯+⨯+⨯=.14.(2023春·河北承德·高三河北省隆化存瑞中学校考阶段练习)一般来说,市场上产品的宣传费用与产品的销量存在一定关系.已知产品甲的年宣传费用(x百万元)和年销量(y万箱)的统计数据如下:年宣传费用(x百万元)35610131518年销量y(万箱)1.522.533.544.5(1)求y与x的相关系数(r精确到0.01),并判断y与x的关系是否可用线性回归方程模型拟合?(规定:0.75r≥);(2)从年销量不少于3万箱中任取两个数据作为样本,求恰有1个数据不少于4万箱的概率.附:①相关系数ni ix y nxyr-=∑;71246i iix y==∑②,721888iix==∑,72170iiy==∑,36.28≈36.41≈15.(2023春·河北·高三统考阶段练习)某电影院对观众按照性别进行了分层抽样调查,一共调查了900名观众对A影片和B影片的喜爱度,获得了以下数据:(1)哪个影片更受学生欢迎?(不用说明理由)(2)分别估计该电影院男观众和女观众对B影片表示“非常喜爱”的概率;(3)该电影院为了进一步调查观众对B影片的看法,对样本中的女观众用分层抽样抽取了6人,再从这6人中随机抽取2人参加座谈,求这两人均来自“一般喜爱”群体的概率.16.(2023秋·福建厦门·高三厦门外国语学校校考期末)冬奥会的成功举办极大鼓舞了人们体育强国的热情,掀起了青少年锻炼身体的热潮.某校为了解全校学生“体能达标”的情况,从高三年级1000名学生中随机选出40名学生参加“体能达标”测试,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为合格.若高三年级“不合格”的人数不超过总人数的5%,则该年级体能达标为“合格”;否则该年级体能达标为“不合格”,.现将这40名学生随机分成甲、乙两个组,其中甲组有24名学生,乙组有16名学生.经过预测后,两组各自将预测成绩统计分析如下:甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6.(数据的最后结果都精确到整数)(1)求这40名学生测试成绩的平均分x和标准差s;(2)假设高三学生的体能达标预测成绩服从正态分布N(μ,2σ),用样本平均数x作为μ的估计值μ,用样本标准差s作为σ的估计值σ.利用估计值估计,高二学生体能达标预测是否“合格”;(3)为增强趣味性,在体能达标的跳绳测试项目中,同学们可以向体育特长班的强手发起挑战.每场挑战赛都采取七局四胜制.积分规则如下:以4:0或4:1获胜队员积4分,落败队员积0分;以4:2或4:3获胜队员积3分,落败队员积1分.假设体育生王强每局比赛获胜的概率均为23,求王强在这轮比赛中所得积分为3分的条件下,他前3局比赛都获胜的概率.附:①n 个数的方差2211()n i i s x x n ==-∑;②若随机变量Z ~N (μ,2σ),则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=,()330.9974P Z μσμσ-<<+=.17.(2023·山东淄博·统考一模)某电商平台统计了近七年小家电的年度广告费支出i x (万元)与年度销售量i y (万台)的数据,如表所示:年份2016201720182019202020212022广告费支出x 1246111319销售量y1.93.24.04.45.25.35.4其中71279.4i i i x y ==∑,721708i i x ==∑(1)若用线性回归模型拟合y 与x 的关系,求出y 关于x 的线性回归方程;(2)若用y c =+模型拟合得到的回归方程为1.63y =+,经计算线性回归模型及该模型的2R 分别为0.75和0.88,请根据2R 的数值选择更好的回归模型拟合y 与x 的关系,进而计算出年度广告费x 为何值时,利润200zy x =- 的预报值最大?参考公式:()()()1122211nniiiii i nniii i x ynx y xxy y bxnxxx====---==--∑∑∑∑ ,a y bx =-$$;18.(2023·山东济南·一模)为了切实加强学校体育工作,促进学生积极参加体育锻炼,养成良好的锻炼习惯,某高中学校计划优化课程,增加学生体育锻炼时间,提高体质健康水平,某体质监测中心抽取了该较10名学生进行体质测试,得到如下表格:记这10名学生体质测试成绩的平均分与方差分别为x ,2s ,经计算()102111690i x x =-=∑,102133050ii x==∑.(1)求x ;(2)规定体质测试成绩低于50分为不合格,从这10名学生中任取3名,记体质测试成绩不合格的人数为X ,求X 的分布列;(3)经统计,高中生体质测试成绩近似服从正态分布()2,N μσ,用x ,2s 的值分别作为μ,2σ的近似值,若监测中心计划从全市抽查100名高中生进行体质测试,记这100名高中生的体质测试成绩恰好落在区间[]30,82的人数为Y ,求Y 的数学期望()E Y .附:若()2,N ξμσ ,则()0.6827P μσξμσ-≤≤+≈,(22)0.9545P μσξμσ-≤≤+≈,330.9()973P μσξμσ-≤≤+≈.(3)因为()22111156,16901691010i x s x x===-=⨯=∑,所以56,13μσ==.因为(3082)(22)0.9545P X P μσξμσ≤≤=-≤≤+≈,所以学生的体质测试成绩恰好落在区间[30,82]得概率约为0.9545,故(100,0.9545)Y B ~,所以()1000.954595.45E Y =⨯=.19.(2023·江苏泰州·泰州中学校考一模)某公司对40名试用员工进行业务水平测试,根据测试成绩评定是否正式录用以及正式录用后的岗位等级,测试分笔试和面试两个环节.笔试环节所有40名试用员工全部参加;参加面试环节的员工由公司按规则确定.公司对40名试用员工的笔试得分(笔试得分都在[75,100]内)进行了统计分析,得到如下的频率分步直方图和22⨯列联表.男女合计优(得分不低于90分)8良(得分低于90分)12合计40(1)请完成上面的22⨯列联表,并判断是否有90%的把握认为“试用员工的业务水平优良与否”与性别有关;(2)公司决定:85分的员工直接淘汰,得分不低于85分的员工都正式录用.笔试得分在[95,100]内的岗位等级直接定为一级(无需参加面试环节);笔试得分在[90,95)内的岗位等级初定为二级,但有25的概率通过面试环节将二级晋升为一级;笔试分数在[85,90)内的岗位等级初定为三级,但有35的概率通过面试环节将三级晋升为二级.若所有被正式录用且岗位等级初定为二级和三级的员工都需参加面试.已知甲、乙为该公司的两名试用员工,以频率视为概率.①若甲已被公司正式录用,求甲的最终岗位等级为一级的概率;②若乙在笔试环节等级初定为二级,求甲的最终岗位等级不低于乙的最终岗位等级的概率.参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++,.n a b c d =+++()20P k χ0.150.100.050.0100k 2.0722.7063.8416.635所以20.317 2.706(84)(1612)(816)(412)χ=<++++,因此没有90%的把握认为“试用员工的业务水平优良与否”与性别有关;(2)不低于85分的员工的人数为:40(0.060.040.02)524⨯++⨯=,直接定为一级的概率为0.025401246⨯⨯=,岗位等级初定为二级的概率为:0.045401243⨯⨯=,岗位等级初定为三级的概率为:0.065401242⨯⨯=.①甲的最终岗位等级为一级的概率为:112363510+⨯=;②甲的最终岗位等级不低于乙的最终岗位等级的概率为:2333390.0250.0450.0450.0655555525⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯=.20.(2023·山东·沂水县第一中学校联考模拟预测)为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免,全省国有A 级旅游景区免首道门票,鼓励非国有A 级旅游景区首道门票至少半价优惠.本次门票优惠几乎涵盖了全省所有知名的重点景区,据统计,活动开展以来游客至少去过两个及以上景区的人数占比约为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的22⨯列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上22⨯列联表,并根据小概率值0.001α=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X ,若以本次活动中至少去过两个及以上景区的人数的频率为概率.①求X 的分布列和数学期望;②求()11P X -≤.参考公式及数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()2P k αχ=≥0.1000.0500.0100.001k2.7063.8416.63510.828【答案】(1)补全的22⨯列联表见解析;有关;(2)①分布列见解析;() 2.7E X =;②0.271【分析】(1)由题意,抽取的100人年龄在50周岁及以下的有60人,则年龄在50周岁以上的有40人,即可补全22⨯列联表,再根据公式计算212.76χ=,即可判断;(2)①由题意可知(3,0.9)X B ,根据二项分布即可求解分布列及数学期望;②根据则2100(5251555)12.7610.82820806040χ⨯⨯-⨯==>⨯⨯⨯.所以在犯错误的概率不超过0.001的情况下认为对全省实施景区门票减免活动是否满意与年龄有关联.(2)①由题意可得,游客至少去过两个及以上景区的概率为0.9,则(3,0.9)X B ,X 的所有可能取值为0,1,2,3,033(0)C 0.10.001P X ==⨯=,123(1)C 0.90.10.027P X ==⨯⨯=,223(2)C 0.90.10.243P X ==⨯⨯=,333(3)C 0.90.729X ==⨯=,所以X 的分布列如下:因为(3,0.9)X B ,所以数学期望()30.9 2.7E X =⨯=.②()(11)(0)(1)(2)13P X P X P X P X P X -≤==+=+==-=10.7290.271=-=.21.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)皮影戏是一种民间艺术,是我国民间工艺美术与戏曲巧妙结合而成的独特艺术品种,已有千余年的历史.而皮影制作是一项复杂的制作技艺,要求制作者必须具备扎实的绘画功底和高超的雕刻技巧,以及持之以恒的毅力和韧劲.每次制作分为画图与剪裁,雕刻与着色,刷清与装备三道主要工序,经过以上工序处理之后,一幅幅形态各异,富有神韵的皮影在能工巧匠的手里浑然天成,成为可供人们欣赏和操纵的富有灵气的影人.小李对学习皮影制作产生极大兴趣,师从名师勒学苦练,目前水平突飞猛进,三道主要工序中每道工序制作合格的概率依次为323,534,,三道序彼此独立,只有当每道工序制作都合格才为一次成功的皮影制作,该皮影视为合格作品.(1)求小李进行3次皮影制作,恰有一次合格作品的概率;(2)若小李制作15次,其中合格作品数为X ,求X 的数学期望与方差;(3)随着制作技术的不断提高,小李制作的皮影作品被某皮影戏剧团看中,聘其为单位制作演出作品,决定试用一段时间,每天制作皮影作品,其中前7天制作合格作品数y 与时间:如下表:(第1天用数字1表示)时间(t )1234567合格作品数(y )3434768其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第15天能制作多少个合格作品(四舍五入取整)?(参考公式()()()11222ˆnni i i ii i nn iix ynxyx x yybxnxx x ==---==--∑∑∑∑,ˆˆa y bx =-,参考数据:71163i i i t y ==∑).。
概率、随机变量与分布列1,学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望()E X.2.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料。
(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.3.现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.4.甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望5.已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).6.(2012年高考(广东理))某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)40,50、[)50,60、[)60,70、[)70,80、[)80,90、[]90,100.(Ⅰ)求图中x的值;(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.7.(2010广东理数)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,]495,(495,]500,……(510,]515,由此得到样本的频率分布直方图,如图4所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.8.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立(I )求该地1位车主至少购买甲、乙两种保险中的l 种的概率;(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。
概率论与数理统计练习题系第二章专业班姓名随机变量及其分布(一)学号一.选择题:1 .设X是失散型随机变量,以下可以作为X的概率分布是[B]X x1x2x3x4X x1x2x3x4( A)1111(B)1111 p p248162488X x1x2x3x4(D)X x1x2x3x4( C)1111p1111 p23412234122 .设随机变量ξ的分布列为X0123C ] p0.10.30.4F ( x) 为其分布函数,则 F ( 2) = [0.2( A)(B)( C)(D)1二、填空题:1 .设随机变量X的概率分布为X012,则 a = p a0.20.52 .某产品 15 件,其中有次品 2 件。
现从中任取3 件,则抽得次品数X 的概率分布为P(X 0)C13366, P( x1)C21 C13236, P( xC22 C1313 C153105C1531052)105C1533 .设射手每次击中目标的概率为, 连续射击10 次,则击中目标次数X 的概率分布为P( X k ) C10k(0.7)k (0.3)10 k(k0,1, 2,L ,10)三、计算题:1 .同时掷两颗骰子,设随机变量X为“两颗骰子点数之和”求:( 1)X的概率分布;(2)P( X3) ;(3)P( X12)解:(1)P( X2)1P( X3)2P( X4)3P(X 5)4,,,,36363636P( X6)5,P( X7) 6 , P( X5 436 8), P(X 9)363636P( X10)3 ,P( X11)2 ,P( X 1363612)36所以 X 的概率分布列:X 2 34 5 6 7 89 10 11 12P12 34 5 6 5 4 3 2 1363636363636 3636363636(2) P(X3) 336( 3) P(X>12)=02 .产品有一、 二、三等品及废品四种, 其中一、 二、三等品及废品率分别为 60%,10%,20%及 10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。
概率分布列答案 2014.4
1. A
2. 72
3. B
4. 5
5. D
6. B
7. 180 8 48 9.(本小题满分13分) 解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A ,则
12
51031545()91
C C P A C ==,
∴15条鱼中任选3条恰好有1条鱼汞含量超标的概率为
45
91
. (Ⅱ)依题意可知,这批罗非鱼中汞含量超标的鱼的概率51()153
P B =
=, ξ可能取0,1,2,3.
则3
3
18(0)1327
P C ξ⎛⎫==-= ⎪⎝⎭ ,2
13114(1)1339P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭,
2
23112(2)1339P C ξ⎛⎫
⎛⎫==⨯-= ⎪
⎪
⎝⎭
⎝⎭,3
3311(3)327
P C ξ⎛⎫=== ⎪⎝⎭. 其分布列如下:
ξ
0 1 2 3
10. (本小题满分13分)
解:(I )设事件A :从20位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.
由题意可知,运动协调能力或逻辑思维能力优秀的学生共有(6)a +人. 则62
()205
a P A +=
=. 解得 2a =.
所以4b =. …………… 4分 (II )设事件B :从20人中任意抽取2人,至少有一位运动协调能力或逻辑思维能力优秀的学生.
由题意可知,至少有一项能力测试优秀的学生共有8人.
则2
1222062
()1()195
C P B P B C =-=-=. …………… 7分
(III )ξ的可能取值为0,1,2.
20位学生中运动协调能力或逻辑思维能力优秀的学生人数为8人.
所以21222033
(0)95
C P C ξ===,
1112822048
(1)95
C C P C ξ===
, 2822014
(2)95
C P C ξ===.
所以ξ的分布列为
所以,0E ξ=⨯33951+⨯48952+⨯
1495764
955
==
11.(本小题满分13分)
(I )从甲组抽取2人, 从乙组抽取1人. --------2分
(II ).从甲组抽取的工人中至少1名女工人的概率
.32311C C 1P 21026=-=-=
--------5分
(III )ξ的可能取值为0,1,2,3
12
34211056
(0)75
C C P C C ξ==⋅=
,
1112146342212110510528
(1)75
C C C C C P C C C C ξ==⋅+⋅=
,
21622110510(3)75C C P C C ξ==⋅=,
31
(2)1(0)(1)(3)75P P P P ξξξξ==-=-=-==
ξ
0 1 2 3
P
756
7528 7531 75
10 5
8
E =
ξ.
ξ 0 1 2
P
3395 4895 1495
12.(Ⅰ)该地区80岁以下老龄人生活能够自理的频率为
2502606523
250260652524
++=+++,
所以该地区80岁以下老龄人生活能够自理的概率约为23
24
.--------------5分
(Ⅱ)该地区老龄人健康指数X 的可能取值为2,1,0,-1,其分布列为(用频率估计 概率):
X 2
1
-1
p
270700 305700 85700 40
700
E X =2703058540
210(1)700700700700
⨯+⨯+⨯+-⨯=1.15 因为E X <1.2,所以该地区不能被评为“老龄健康地区”.------
13.解:(Ⅰ)甲公司员工A 投递快递件数的平均数为36,众数为33. (Ⅱ)设a 为乙公司员工B 投递件数,则
当a =34时,X =136元,当a >35时,354(35)7X a =⨯+-⨯元,
X 的可能取值为136,147,154,189,203 -------------------------------4
分
{说明:X 取值都对给4分,若计算有错,在4分基础上错1个扣1分,4分扣完为止} X 的分布列为:
X 136 147 154 189 203
P
110
310 210 310
110
{说明:每个概率值给1分,不化简不扣分,随机变量值计算错误的此处不再重复扣分}
13231()1361471541892031010101010
E X =⨯
+⨯+⨯+⨯+⨯ 1655
=
=165.5()10
元 (Ⅲ)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月
收入4965
14.(本小题满分13分)
(Ⅰ)解:0.15a =,30b =.
(Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,
所以优等品、正品和次品的比例为50:100:501:2:1=.
所以按分层抽样法,购买灯泡数24()*
=++=∈n k k k k k N ,新 课 标 第 一 网 所以n 的最小值为4.
(Ⅲ)解:X 的所有取值为0,1,2,3.
由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, 从本批次灯泡中购买3个,可看成3次独立重复试验, 所以0
3
3127(0)C (1)4
64
P X ==⨯-=
, 123
1127
(1)C (1)4464P X ==⨯⨯-=, 2
213119(2)C ()(1)4464P X ==⨯-=,
333
11
(3)C ()464
P X ==⨯=. 所以随机变量X 的分布列为:
X 0 1 2 3
P
2764 2764 964 164
所以X 的数学期望2727913()0123646464644
E X =⨯
+⨯+⨯+⨯=.
(注:写出1(3,)4X
B ,3311()
C ()(1)44
k k
k P X k -==-,0,1,2,3k =. 请酌情给分)。