解析几何综合问题圆与椭圆双曲线抛物线等课后限时作业(四)带答案人教版高中数学高考真题汇编
- 格式:doc
- 大小:440.50 KB
- 文档页数:7
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2-bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)________.①必在圆x 2+y 2=2上 ②必在圆x 2+y 2=2外 ③必在圆x 2+y 2=2内解析:由e =12=ca ,得a =2c ,b =3c .所以x 1+x 2=b a =32,x 1x 2=-c a =-12.于是,点P (x 1,x 2)到圆心(0,0)的距离为x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2, 所以点P 在圆x 2+y 2=2内. 3.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ . 评卷人得分三、解答题4.设A 为椭圆221259x y +=上任一点,B 为圆22(1)1x y -+=上任一点,求AB 的最大值及最小值.5.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得OyxMF1F2到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标;(2)当3arctan 4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数.6.已知圆1F :16)1(22=++y x ,定点,动圆过点2F ,且与圆1F 相内切。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 的值为 .3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分三、解答题4.如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q . (1)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (2)过点Q 作直线1QR AF 交12F F 于点R ,记1PRF∆的外接圆为圆C .①求证:圆心C 在定直线7480x y ++=上;②圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.5.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标 原点,设圆C 是△OAB 的外接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为(x -4-7cos θ)2+(y -7sin θ)2=1,过圆M 上任意一点P 分别作圆C的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.第20题 PAR OF 1Q xy F 26.已知椭圆()22220y x C a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C相交于A 、B 两点,且(13)B --,. (1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440x mx y y m-+++-=与D 有公共点,试求实数m 的最小值.7.若椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,椭圆上的点到焦点的最短距离为1,椭圆的离心率为45,以原点为圆心、短轴长为直径作圆O ,过圆O 外一点P 作圆O 的两条切线,PA PB 。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点.3.以椭圆 22221x y a b+=(a>b>0)的右焦点为圆心的圆经过原点O ,且与该椭圆的右准线交与A ,B 两点,已知△OAB 是正三角形,则该椭圆的离心率是 ▲ . 评卷人得分三、解答题4.已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离心率为5的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .(1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(本小题满分14分)5.设A 为椭圆221259x y +=上任一点,B 为圆22(1)1x y -+=上任一点,求AB 的最大值及最小值.6.设椭圆2222:1(0)x y C a b a b+=>>的上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 的斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M . (1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且21 2ME MF a⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于62,求椭圆C 的短轴长的取值范围.7.已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.如图8—3. (Ⅰ)写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线;(Ⅱ)当直线FH 与OB 平行时,求顶点C 的轨迹.(汇编北京,21)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.2 3.63评卷人得分三、解答题4.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .……………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,因为双曲线的离心率为5,所以2151b +=,即2b =. 所以双曲线C 的方程为2214y x -=.……………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩…………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.……………………………………6分 同理可得,21244k x k +=-.……………………………………………………………7分所以121x x ⋅=.……………………………………………………………………8分 证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分因为A P A T k k =,所以121211y y x x =++,即()()2212221211y y x x =++.………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.…………………………………7分 所以121x x ⋅=.………………………………………………………………………8分证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,……………………4分联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦,解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.……………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =---,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.………………………10分 因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.…………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t tf t =--,则()()()222241t t f t t t -+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.………………………12分当2t =,即12x =时,()()2212max21S S f -==.……………………………13分所以2212S S -的取值范围为[]0,1.…………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分. 5.(选修4—4:坐标系与参数方程)解:设圆22(1)1x y -+=的圆心C(1,0),求AB 的最大值只需求AC 的最大值.A 在椭圆上,设A(5cos ,3sin )θθ,22225135(5cos 1)9sin 16(cos )1616AC θθθ=-+=-+, ∴当5cos 16θ=时,mi n 3154AC =,当cos 1θ=-时,mi n 6AC =, min 7AB ∴=,min 31514AB =-.………………………………………………………10分 6.(1)由条件可知⎪⎪⎭⎫ ⎝⎛--ab c P 2,,⎪⎪⎭⎫⎝⎛a b c Q 2, 因为23=PQ k ,所以得:=e 12………4分 (2)由(1)可知,c b c a 3,2==,所以,()()()0,3,0,,3,01c B c F c A -,从而()0,c M 半径为a ,因为212ME MF a ⋅=-,所以︒=∠120EMF ,可得:M 到直线距离为2a从而,求出2=c ,所以椭圆方程为:2211612x y +=; ………9分 (3)因为点N 在椭圆内部,所以b>3 ………10分 设椭圆上任意一点为()y x K ,,则()()2222263≤-+=y x KN由条件可以整理得:018941822≥+-+b y y 对任意[]()3,>-∈b b b y 恒成立,所以有:()()⎪⎩⎪⎨⎧≥+--+--≤-0189418922b b b b 或者()()⎪⎩⎪⎨⎧≥+--+-->-018949189922b b解之得: 2∈b (6,1226]- ………15分7.(Ⅰ)解:由△OBC 三顶点坐标O (0,0),B (1,0),C (b ,c )(c ≠0),可求得重心G (3,31cb +),外心F (c b c b 2,2122-+),垂心H (b ,cb b 2-).当b =21时,G 、F 、H 三点的横坐标均为21,故三点共线; 当b ≠21时,设G 、H 所在直线的斜率为k G H ,F 、G 所在直线的斜率为k F G . 因为)21(33313222b c b b c b b c b b c k GH--+=-+--=,)21(332131232222b c b b c b c b c b c k FG--+=-+-+-=,所以,k G H =k F G ,G 、F 、H 三点共线. 综上可得,G 、F 、H 三点共线.(Ⅱ)解:若FH ∥OB ,由k F H =)21(3322b c bb c --+=0,得3(b 2-b )+c 2=0(c ≠0,b ≠21), 配方得3(b -21)2+c 2=43,即 1)23()21()21(2222=+-c b .即2222)23()21()21(y x +-=1(x ≠21,y ≠0).因此,顶点C 的轨迹是中心在(21,0),长半轴长为23,短半轴长为21,且短轴在x 轴上的椭圆,除去(0,0),(1,0),(21,23),(21,-23)四点.评述:第(Ⅰ)问是要求用解析的方法证明平面几何中的著名问题:三角形的重心、外心、垂心三心共线(欧拉线)且背景深刻,是有研究意义的题目.。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )
A .22x +y +2x=0
B .22x +y +x=0
C .22x +y -x=0
D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.圆心在抛物线y x 42=上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )
A .22x +y +2x=0
B .22x +y +x=0
C .22x +y -x=0
D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2. 已知直线l 的方程为2x =-,圆22:1O x y +=,则以l 为准线,中心在原点,且与圆O 恰好有两个公共点的椭圆方程为 .。
高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编年高考重庆卷(文))设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是zhangwlx
( ) A .23(,2]3 B .23[,2)3 C .23(
,)3+∞ D .23[,)3+∞ 2.1 .( 汇编年高考福建卷(文))双曲线122=-y x 的顶点到其渐近线的距离等于
( ) A .21 B .22 C .1
D .2 3.2 .(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中
心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于
(A )9π (B )8π (C )4π (D )π
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.已知椭圆()22
2210x y a b a b
+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .若90APB ∠=,则椭圆离心率e 的取值范围是 ▲ .
3.已知圆22670x y x +--=与抛物线2
2(0)y px p =>的准线相切,则p 的值为 . 评卷人
得分 三、解答题
4.(汇编年高考新课标1(理))已知圆M :22
(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C. (Ⅰ)求C 的方程;
(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.
5.在平面直角坐标系xOy 中,已知双曲线1C :122
2=-y x .
(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;
(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;
(3)设椭圆2C :142
2=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【汇编高考真题上海理22】(4+6+6=16分)
6.如图,椭圆22143
x y +=的左焦点为F ,上顶点为A , 过点A 作直线AF 的垂线分别交椭圆、x 轴于,B C 两点.
⑴若AB BC λ=,求实数λ的值;[来源:Z|xx|]
⑵设点P 为ACF △的外接圆上的任意一点,
当PAB △的面积最大时,求点P 的坐标. (江苏省苏州市汇编年1月高三调研) (本小题满分16分)
7.已知椭圆16
242
2y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. (汇编全国文,26)
94.如图8—25,设点P 、Q 、R 的坐标分别为(12,y P ),(x ,y ),(x R ,y R ),由题设知x R >0,x >0.
由点R 在椭圆上及点O 、Q 、R 共线,得方程组
⎪⎪⎩⎪⎪⎨⎧==+x y
x y y x R R R R 1162422 解得:⎪⎪⎩
⎪⎪⎨⎧+=+=2222222
232483248y x y
x y x x x R R 由点O 、Q 、R 共线,得x y y P =12,即x y y P 12= ③
由题设|OQ |·|OP |=|OR |2,得
22
22222)(12R R P y x y y x +=+⋅+.
将①、②、③代入上式,整理得点Q 的轨迹方程 (x -1)2+32
2
y =1(x >0). 所以,点Q 的轨迹以(1,0)为中心,长、短半轴长分别为1和
3
6且长轴在x 轴上的椭圆,去掉坐标原点. 评述:本题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法等解析几何的基本思想及综合运用知识的能力.
图8—25
① ③
【参考答案】***试卷处理标记,请不要删除
评卷人
得分 一、选择题
1.B
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.
212e ≤< 3. 评卷人
得分 三、解答题
4.由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.
设动圆P 的圆心为P (x ,y ),半径为R.
(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,短半轴长为3的
椭圆(左顶点除外),其方程为22
1(2)43
x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.
∴当圆P 的半径最长时,其方程为22
(2)4x y -+=,
当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=23.
当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1R r ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M 相切得2|3|11k k =+,解得24
k =±. 当k =24时,将224
y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x =4627
-±,∴|AB|=2121||k x x +-=187. 当k =-24时,由图形的对称性可知|AB|=187
, 综上,|AB|=187
或|AB|=23. 5
.
过点A 与渐近线x y 2=平行的直线方程为22,2 1.2y x y x ⎛⎫=+=+ ⎪ ⎪⎝
⎭即
1=ON ,22=OM ,则O 到直线MN 的距离为33
. 设O 到直线MN 的距离为d .
【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .
6.(1)由条件得()()
1,0,0,3,F A - 3.AF k = 因为,AB AF ⊥所以3,3AB k =-3: 3.3
AB y x =-+ 令0,y =得3,x =所以点C 的坐标为()3,0. 由2233314
3y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得213240,x x -=解得10x =(舍)224.13x = 所以点B 的坐标为2453,1313⎛⎫
⎪ ⎪⎝⎭
.
因为AB BC λ=,所以0,λ>且24813.245
313
AB BC λ===- (2)因为ACF △是直角三角形,
所以ACF △的外接圆的圆心为()1,0D ,半径为2.
所以圆D 的方程为()2
214x y -+=. 因为AB 为定值,所以当PAB △的面积最大时点P 到直线AC 的距离最大. 过D 作直线AC 的垂线m ,则点P 为直线m 与圆D 的交点 .
直线():31m y x =-与()2
214x y -+=联立得2x =(舍)或0,x = 所以点P 的坐标为()0,3.
7.。