青岛市市北区2015年数学一模试题
- 格式:doc
- 大小:11.16 MB
- 文档页数:8
理科答案一、选择题:本大题共10小题.每小题5分,共50分. D A B C D A C A B C二、填空题:本大题共5小题,每小题5分,共25分.11. 4028 12. 132 13.24- 14.(4,2)- 15.②④三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)解:(Ⅰ) sin()sin sin a b a c A B A B +-=+- ∴a b a cc a b+-=- …………………………2分 222a b ac c ∴-=-2221cos 222a c b ac B ac ac +-∴=== ………………………………5分 (0,)B π∈,3B π∴= ………………………………………………………6分(Ⅱ)由3b =,sin A =,sin sin a b A B =,得2a = ……………………………7分 由a b <得A B <,从而cos A = …………………………………………9分故sin sin()sin cos cos sin C A B A B A B =+=+= …………………10分所以ABC ∆的面积为1sin 2S ab C ==. ……………………………12分17.(本小题满分12分)解:(Ⅰ)从20名学生随机选出3名的方法数为320C ,选出3人中任意两个均不属于同一学院的方法数为111111111111464466446646C C C C C C C C C C C C ⋅⋅+⋅⋅+⋅⋅+⋅⋅ ……………………4分 所以111111111111464466446646320819C C C C C C C C C C C C P C ⋅⋅+⋅⋅+⋅⋅+⋅⋅== …………………6分 (Ⅱ)ξ可能的取值为0,1,2,33211616433202057162881548(0),(1),32019573201919C C C P P C C ξξ⨯⨯⨯⨯========⨯⨯⨯⨯1231644332020166841(2),(3)320199532019285C C C P P C C ξξ⨯========⨯⨯⨯⨯…………10分 所以ξ的分布列为所以2888157()012357199528595E ξ=⨯+⨯+⨯+⨯=……………………………………12分 18.(本小题满分12分)证明:(Ⅰ)连结1A D 交1AD 于G , 因为1111ABCD A B C D -为四棱柱, 所以四边形11ADD A 为平行四边形, 所以G 为1A D 的中点,又1E 为11 A B 中点,所以1E G 为11A B D ∆的中位线, 从而11//B D E G ……………………………………4分 又因为1B D ⊄平面11AD E ,1E G ⊂平面11AD E ,所以1//B D 平面11AD E . …………………………5分(Ⅱ)因为1AA ⊥底面ABCD ,AB ⊂面ABCD ,AD ⊂面ABCD ,所以11,,AA A B A A AD ⊥⊥又090BAD ∠=,所以1,,AB AD AA 两两垂直. ……………6分如图,以A 为坐标原点,1,,AB AD AA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 设AB t =,则()0,0,0A ,(),0,0B t ,(),1,0C t ,()0,3,0D ,()1,1,3C t ,()10,3,3D .从而(,1,0)AC t =,(,)3,0BD t -=.因为AC BD ⊥,所以2300ACBD t ⋅=-+=+,解得t = ……………………8分所以1(0,3,3)AD =,(3,1,0)AC =.设1111,,()n x y z =是平面1ACD 的一个法向量,则1110,0.AC n AD n ⎧⋅=⎪⎨⋅=⎪⎩即11110330y y z +=+=⎪⎩令11x =,则1(13,),3n =-. …………………………………………………………9分又1(0,0,3)CC =,(CD =-.设2222,,()n x y z =是平面11CDD C 的一个法向量,则1220, n CD n ⎧⋅=⎪⎨⋅=⎪⎩即222020z y =⎧⎪⎨+=⎪⎩令21x =,则2(1,)n =. ………………………………………………………10分∴121212|11(0|1cos ,7n n n n n n ⨯+⋅<>===⋅ ∴平面1ACD 和平面11CDD C 所成角(锐角)的余弦值17. ……………………………12分19.(本小题满分12分) 解:(Ⅰ)设{}n a 的公差为d ,则101919,a a d =+=101109101002S a d ⨯=+⨯= 解得11,2a d ==,所以21n a n =- ………………………………………………………3分所以123121n n b b b b b n -⋅⋅⋅=+ …… ①当11,3n b ==时2,n ≥当时123121n b b b b n -⋅⋅=-……②①②两式相除得21(2)21n n b n n +=≥- 因为当11,3n b ==时适合上式,所以21(N )21n n b n n *+=∈-………………………………6分 (Ⅱ)由已知24(1)(21)nnn n b c n ⋅=-+, 得411(1)(1)()(21)(21)2121nn n n c n n n n =-=-+-+-+则123n n T c c c c =++++1111111(1)()()(1)()335572121n n n =-+++-+++-+-+ ………………………7分当n 为偶数时,1111111(1)()()(1)()335572121n n T n n =-+++-+++-+-+1111111(1)()()()335572121n n =--+++--+++-+1212121nn n =-+=-++ ………………………………………………………………9分当n 为奇数时,1111111(1)()()(1)()335572121n n T n n =-+++-+++-+-+1111111(1)()()()335572121n n =--+++--++---+12212121n n n +=--=-++ ……………………………………………………………11分综上:2,2122,21n n n n T n n n ⎧-⎪⎪+=⎨+⎪-⎪+⎩为偶数为奇数… ………………………………………………………12分20.(本小题满分13分) 解:(Ⅰ)因为直线l 与圆O 相切 所以圆2223x y +=的圆心到直线l的距离d ==,从而222(1)3m k =+…2分 由2212x y y kx m ⎧+=⎪⎨⎪=+⎩可得:222(12)4220k x kmx m +++-= 设11(,)E x y ,22(,)F x y则122412km x x k +=-+,21222212m x x k-=+ …………………………………………………4分 所以12121212()()OE OF x x y y x x kx m kx m ⋅=+=+++2222222121222222222224(1)()(1)12123222(1)2201212m k m k x x km x x m k m k km k k k k k--=++++=+++++--+--===++ 所以OE OF ⊥ ………………………………………………………………………………6分(Ⅱ)直线l 与圆O 相切于W ,222212121,1,22x x y y +=+=∴EWFWλ====………………………………8分 由(Ⅰ)知12120x x y y +=,∴1212x x y y =-,即22221212x x y y = 从而22221212(1)(1)22x x x x =--,即2212214223x x x -=+∴21234x λ+==……………………………………………………………12分因为1x ≤≤,所以1[,2]2λ∈ ………………………………………………13分21.(本小题满分14分) 解:(Ⅰ)原函数定义域为(1,)-+∞,()ln(1)1g x x '=++,则(0)0g =,(0)1g '=,:l y x ∴= ………………………………………………………2分由22112(1)202y x kx x k x y x ⎧=++⎪⇒+-+=⎨⎪=⎩l 与函数()f x的图象相切,24(1)801k k ∴∆=--=⇒=4分(Ⅱ)由题21()1ln(1)12h x x kx x =+++++,1()1h x x k x '=+++ 令1()1x x k x ϕ=+++,因为221(2)()10(1)(1)x x x x x ϕ+'=-=>++对[0,2]x ∈恒成立, 所以1()1x x k x ϕ=+++,即()h x '在[0,2]上为增函数 ………………………………6分max 7()(2)3h x h k ''∴==+()h x 在[0,2]上单调递减()0h x '∴≤对[0,2]x ∈恒成立,即max 7()03h x k '=+≤73k ∴≤- …………………………………………………………………………………8分(Ⅲ)当1]x ∈时,()ln(1)10g x x '=++> ()(1)ln(1)g x x x ∴=++在区间1]上为增函数,∴1]x ∈时,0()g x ≤≤ …………………………………………………………………………10分21()12f x x kx =++的对称轴为:x k =-,∴为满足题意,必须14k -<-<……11分此时2min 1()()12f x f k k =-=-,()f x 的值恒小于(1)f -和(4)f 中最大的一个对于1]t ∀∈,总存在12,(1,4)x x ∈-,且12x x ≠满足()()i f x g t =(1,2)i =,min ((),min{(1),(4)})f x f f ∴⊆-2min 41141()0102(4)493(1)2k k f x k f k f k -<<⎧-<-<⎧⎪⎪⎪<-<⎪⎪⎪∴⇒⎨<+⎪⎪<-⎪<-⎪⎩ …………………………………………………13分94k <<……………………………………………………………………14分。
2015年青岛市中考数 学预测 试 题第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分). 1.9-的相反数是( )A .19B .19-C .9-D .92.某种流感病毒的直径是0.00000008m ,这个数据用科学记数法表示为( ) A .6810m -⨯B .5810m -⨯C .8810m -⨯D .4810m -⨯3.下列各式计算正确的是( ) A .34x x x += B .2510·x x x =C .428()x x =D .224(0)x x x x +=≠4.下列图形中,由AB CD ∥,能得到12∠=∠的是( )5) A .1B .1-CD6.化简22422b a a b b a+--的结果是( ) A .2a b --B .2b a -C .2a b -D .2b a +7.已知1O ⊙和2O ⊙相切,1O ⊙的直径为9C m ,2O ⊙的直径为4cm .则12O O 的长是( )A .5cm 或13cmB .2.5cmC .6.5cmD .2.5cm 或6.5cm 8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP9.对于数据:80,88,85,85,83,83,84.下列说法中错误的有( ) A .这组数据的平均数是84 B .这组数据的众数是85 C .这组数据的中位数是84 D .这组数据的方差是36 A .1个 B .2个 C .3个 D .4个 10.若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y>11.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD =a ,BC =b ,则四边形AEFD 的周长是( ) A .3a b +B .2()a b +C .2b a +D .4a b +12.如图是一个包装盒的三视图,则这个包装盒的体积是( ) A .3192πcmB .31152πcmC .3D .313.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一 个两位数,则这个两位数能被3整除的概率是( )A .13B .14C .16D .11214.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )A CB D 1 2 AC B D1 2 A . B . 1 2A CB DC . B DCAD .12 DC ABO(第11题图)(第12AD F CEHB(第14题图)A .B .C .D .O (第8题图)BA P第Ⅱ卷(非选择题 共78分)二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上. 15.分解因式:22x xy xy -+=_________________.16.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,.则这种药品的成本的年平均下降率为______________.17.若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是____ _度.18.如图,在菱形ABCD 中,72ADC ∠=,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则CPB ∠=______度. 19.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是_______. 三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(本小题满分6分)解不等式组3(21)2102(1)3(1)x x x ---⎧⎨-+-<-⎩≥,并把解集在数轴上表示出来.21.(本小题满分7分)为了了解全校1800名学生对学校设置的体操、球类、跑步、踢毽子等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1) 在这次问卷调查中,一共抽查了多少名学生? (2) 补全频数分布直方图;(3) 估计该校1800名学生中有多少人最喜爱球类活动?22.(本小题满分7分) 如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东45方向上.(1)求出A ,B两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置(保留清晰的作图痕迹,并简要写明作法).北 东A CD(第22题图)lD C BAEP(第18题图) 体操 球类 踢毽子 跑步 其他 项目 0四、认真思考,你一定能成功!(本大题共2小题,共19分) 23.(本小题满分9分)如图,AC 是O ⊙的直径,P A ,PB 是O ⊙的切线,A ,B 为切点,AB =6,P A =5. 求(1)O ⊙的半径;(2)sin BAC ∠的值.24.(本小题满分10分)在全市中学运动会800m 比赛中,甲乙两名运动员同时起跑,刚跑出200m 后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩.图中分别表示甲、乙两名运动员所跑的路程y (m )与比赛时间x (s )之间的关系,根据图像解答下列问题: (1)甲摔倒前,________的速度快(填甲或乙); (2)甲再次投入比赛后,在距离终点多远处追上乙?五、相信自己,加油啊!(本大题共2小题,共24分) 25.(本小题满分11分)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF . 经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.C (第23题图)(第24题图)A D F GB 图1 A D FG B 图2 A D FG B 图3 (第25题图)青岛市中考数学试题 参考答案及评分标准说明:第三、四、五大题给出了一种或两种解法,考生若用其它解法,应参照本评分标准给分.一、选择题(每小题3分,共42分)二、填空题(每小题3分,共15分)15.2(1)x y - 16.10% 17.120 18.72 19.三、开动脑筋,你一定能做对!(共20分)20.解:解不等式()3212x ---≥,得3x ≤. ······················································· (2分) 解不等式102(1)3(1)x x -+-<-,得1x >-. ························································· (4分) 所以原不等式组的解集为13x -<≤. ········································································ (5分)把解集在数轴上表示出来为·········································································· (6分)21.解:(1)1012580.%÷=(人). 一共抽查了80人. ········································································································· (2分)(2)802520%⨯=(人), 图形补充正确. ·············································································································· (4分)(3)36180081080⨯=(人). 估计全校有810人最喜欢球类活动. ············································································ (7分)22.解:(1)方法一:设AB 与CD 的交点为O ,根据题意可得45A B ∠=∠=°.ACO ∴△和BDO △都是等腰直角三角形. ································································ (1分)AO ∴=,BO =∴A B ,两村的距离为AB AO BO =+(km ). ·························(4分方法二:过点B 作直线l 的平行线交AC 的延长线于E .易证四边形CDBE 是矩形, ··························································································(1分∴2CE BD ==.在Rt AEB △中,由45A ∠=°,可得3BE EA ==.∴AB ==km )∴A B ,两村的距离为. (4分)(2)作图正确,痕迹清晰. ··········································· (5分) 作法:①分别以点A B ,为圆心,以大于12AB 的长为 半径作弧,两弧交于两点M N ,, 作直线MN ;②直线MN 交l 于点P ,点P 即为所求. ····················· (7分)四、认真思考,你一定能成功!(共19分)23.解:(1)连接PO OB ,.设PO 交AB 于D .PA PB ,是O ⊙的切线.∴90PAO PBO ∠=∠=°,PA PB =,APO BPO ∠=∠. ∴3AD BD ==,PO AB ⊥. ································· (2∴4PD . ··············································· (3分) 在Rt PAD △和Rt POA △中,tan AD AOAPD PD PA==∠. ∴·351544AD PA AO PD ⨯===,即O ⊙的半径为154.(5分) (2)在Rt AOD △中,94DO ===.(7分)C(第23题图)BAC D第22题图N MOP∴934sin 1554OD BAC AO ∠===. ··················································································· (9分) 24.解:(1)甲. ··········································································································· (3分) (2)设线段OD 的解析式为1y k x =.把(125800),代入1y k x =,得1325k =.∴线段OD 的解析式为325y x =(0125x ≤≤). ···················································· (5分) 设线段BC 的解析式为2y k x b =+.把(40200),,(120800),分别代入2y k x b =+. 得2220040800120k b k b =+⎧⎨=+⎩,. 解得2152100k b .⎧=⎪⎨⎪=-⎩,∴线段BC 的解析式为151002y x =-(40120x ≤≤). ········································ (7分) 解方程组325151002y x,y x .⎧=⎪⎪⎨⎪=-⎪⎩得100011640011x y .⎧=⎪⎪⎨⎪=⎪⎩, ····································································· (9分)640024008001111-=. 答:甲再次投入比赛后,在距离终点2400m 11处追上了乙. ···································· (10分) 五、相信自己,加油啊!(共24分) 25.解:(1)正确. ··························································· (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分) BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°, 135ECF ∴∠=°.AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ).(5分)AE EF ∴=.(6分)(2)正确.(7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE .(8分) BN BE ∴= 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ).(10分) AE EF ∴=.(11分)A DF GBM ADC GBN。
青岛市2015年学业水平模拟考试数学试题1一、选择题:本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,并将其字母标号填写在括号内.每小题选对得3分,选错、不选或选出的答案超过一个均记0分,满分36分。
1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0 C.210x += D.220x x -++=2、菱形的对角线长为8cm 和6cm ,则该菱形面积为( )A .48 cm 2B .24 cm 2C .25 cm 2D .14 cm 23、下列各式计算正确的是( )A .3x -2x =1B .a 2+a 2=a 4C .a 5÷a 5=a D . a 3•a 2=a 54、一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为() A .x =2 B .y =2 C .x =-1 D .y =-15、把分式)0(≠++y x yx x中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小2倍 C. 改变原来的14D. 不改变6、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.17、如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( )A .13 B .12 C D .3 8、在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D9、下列各函数中,y 随x 增大而增大的是( )①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③10、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 11、 如图,D 是△ABC 一边BC上一点,连接AD,使 △ABC ∽ △DBA 的条件是( ). A . AC :BC=AD :BD B . AC :BC=AB :AD C . AB 2=CD·BC D . AB 2=BD·BCDAC B12、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为( )二、填空题:本大题共6个小题,每小题填对最后结果得4分,满分24分。
青岛市高三统一质量检测数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 为虚数单位,复数21ii+等于 A .i +-1B .i --1C .i -1D .i +12.设全集R I =,集合2{|log ,2},{|A y y x x B x y ==>==,则 A .A B ⊆ B .AB A =C .A B ⋂=∅D . ()I A B ⋂≠∅ð3.在“魅力青岛中学生歌手大赛”比赛现场上七位评委为某选手打 出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所 剩数据的平均数和方差分别为A .5和1.6B .85和1.6C .85和0.4D .5和4.“*12N ,2n n n n a a a ++∀∈=+”是“数列{}n a 为等差数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.某几何体的三视图如图所示,且该几何体的体积是3,则 正视图中的x 的值是A .2B .92 C .32 D .3 6.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线平行于直线:250l x y ++=,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221205x y -= B .221520x y -= C .2233125100x y -= D .2233110025x y -= 7.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则αβ⊥D .若//,,//m n m n αβ⊥,则//αβ 8.函数4cos xy x e =-(e 为自然对数的底数)的图象可能是9.对于函数sin 26y x π⎛⎫=-⎪⎝⎭,下列说法正确的是 A.函数图象关于点,03π⎛⎫⎪⎝⎭对称 B.函数图象关于直线56x π=对称 C.将它的图象向左平移6π个单位,得到sin 2y x =的图象 第5题图正视图 侧视图xD.将它的图象上各点的横坐标缩小为原来的12倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭ 10.已知点G 是ABC ∆的外心,,,GA GB GC u u r u u u r u u u r是三个单位向量,且20GA AB AC ++=u u r u u u r u u u r r ,如图所示,ABC ∆的顶点,B C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,O 是坐标原点,则OA uu r的最大值为AC .2D .3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.已知函数()tan sin 2015f x x x =++,若()2f m =, 则()f m -= ;12.执行如图所示的程序框图,则输出的结果是 ; 13.设()22132a x x dx =-⎰,则二项式621ax x ⎛⎫- ⎪⎝⎭展开式中的第6项的系数为 ;14. 若目标函数2z kx y =+在约束条件2122x y x y y x -≤⎧⎪+≥⎨⎪-≤⎩下当且仅当在点(1,1)处取得最小值,则实数k 的取值范围是 ;15. 若X 是一个集合, τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合{,,}X a b c =,对于下面给出的四个集合τ: ①{,{},{},{,,}}a c a b c τ=∅; ②{,{},{},{,},{,,}}b c b c a b c τ=∅; ③{,{},{,},{,}}a a b a c τ=∅; ④{,{,},{,},{},{,,}}a c b c c a b c τ=∅. 其中是集合X 上的一个拓扑的集合τ的所有序号是 . 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)设ABC ∆的内角A,B,C 所对的边分别为,,,a b c 已知(),sin sin sin a b a cA B A B+-=+-3b =.(I )求角B ;(II )若sin A =,求ABC ∆的面积. 17.(本小题满分12分)某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:学院的概率;(II )从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.18.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ⊥底面ABCD ,底面ABCD 是直角梯形,//AD BC ,90BAD ∠=︒,13AD AA ==,1BC =,1E 为11A B 中点. (Ⅰ)证明:1//B D 平面11AD E ;(Ⅱ)若AC BD ⊥,求平面1ACD 和平面11CDD C 所成角(锐角)的余弦值.19.(本小题满分12分)已知数列{}n a 是等差数列,n S 为{}n a 的前n 项和,且1019a =,10100S =;数列{}n b 对任意N n *∈,总有12312n n n b b b b b a -⋅⋅⋅⋅⋅⋅=+成立. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)记()()24121nnn n b c n ⋅=-+,求数列{}n c 的前n 项和n T .20.(本小题满分13分)已知椭圆22:12x C y +=与直线:l y kx m =+相交于E 、F 两不同点,且直线l 与圆222:3O x y +=相切于点W (O 为坐标原点). (Ⅰ)证明:OE OF ⊥; (Ⅱ)设EW FWλ=,求实数λ的取值范围.21.(本小题满分14分)已知函数()()()()()()21()1,1ln 1,2f x x kxg x x xh x f x g x '=++=++=+. (Ⅰ)若函数()g x 的图象在原点处的切线l 与函数()f x 的图象相切,求实数k 的值; (Ⅱ)若()h x 在[0,2]上为单调递减,求实数k 的取值范围.(III )若对于1t ⎡⎤∀∈⎣⎦,总存在()()()1212,1,4,i x x x x f x g t ∈-≠=且满()1,2i =,其中e 为自然对数的底数,求实数k 的取值范围.- 11 -。
2015年山东省青岛市高考数学一模试卷(文科)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•青岛一模)设i为虚数单位,复数等于()A.﹣1+i B.﹣1﹣i C.1﹣i D.1+i【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:直接利用复数代数形式的乘除运算化简求值.【解析】:解:=.故选:D.【点评】:本题考查了复数代数形式的乘除运算,是基础的计算题.2.(5分)(2015•青岛一模)设全集I=R,集合A={y|y=log2x,x>2},B={x|y=},则()A.A⊆B B.A∪B=A C.A∩B=∅ D.A∩(∁I B)≠∅【考点】:集合的包含关系判断及应用.【专题】:计算题;集合.【分析】:化简集合A,B,即可得出结论.【解析】:解:由题意,A={y|y=log2x,x>2}=(1,+∞),B={x|y=}=[1,+∞),∴A⊆B,故选:A.【点评】:本题考查集合的包含关系判断及应用,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.3.(5分)(2015•青岛一模)如图是某体育比赛现场上七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.5和1.6 B.85和1.6 C.85和0.4 D.5和0.4【考点】:茎叶图;众数、中位数、平均数.【专题】:图表型.【分析】:根据均值与方差的计算公式,分布计算出所剩数据的平均数和方差分即可.【解析】:解:根据题意可得:评委为某选手打出的分数还剩84,84,84,86,87,所以所剩数据的平均数为=85,所剩数据的方差为[(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=1.6.故选B.【点评】:本题考查茎叶图、平均数和方差,对于一组数据通常要求的是这组数据的众数,中位数,平均数,方差,它们分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.4.(5分)(2015•青岛一模)“∀n∈N*,2a n+1=a n+a n+2”是“数列{a n}为等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件【考点】:必要条件、充分条件与充要条件的判断;等差数列的性质.【专题】:等差数列与等比数列.【分析】:由2a n+1=a n+a n+2,可得a n+2﹣a n+1=a n+1﹣a n,可得数列{a n}为等差数列;若数列{a n}为等差数列,易得2a n+1=a n+a n+2,由充要条件的定义可得答案.【解析】:解:由2a n+1=a n+a n+2,可得a n+2﹣a n+1=a n+1﹣a n,由n的任意性可知,数列从第二项起每一项与前一项的差是固定的常数,即数列{a n}为等差数列,反之,若数列{a n}为等差数列,易得2a n+1=a n+a n+2,故“∀n∈N*,2a n+1=a n+a n+2”是“数列{a n}为等差数列”的充要条件,故选C【点评】:本题考查充要条件的判断,涉及等差数列的判断,属基础题.5.(5分)(2015•青岛一模)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A. 2 B.C.D.3【考点】:简单空间图形的三视图.【专题】:计算题;空间位置关系与距离.【分析】:根据三视图判断几何体为四棱锥,再利用体积公式求高x即可.【解析】:解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】:由三视图正确恢复原几何体是解题的关键.6.(5分)(2015•青岛一模)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:x+2y+5=0,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】:双曲线的标准方程.【专题】:圆锥曲线的定义、性质与方程.【分析】:由已知得,由此能求出双曲线方程.【解析】:解:∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:x+2y+5=0,双曲线的一个焦点在直线l上,∴,解得a=2,b=,∴双曲线方程为﹣=1.故选:A.【点评】:本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线性质的合理运用.7.(5分)(2015•青岛一模)设m,n是不同的直线,α,β是不同的平面,下列命题中正确的是()A.若m∥α,n⊥β,m⊥n,则α⊥β B.若m∥α,n⊥β,m⊥n,则α∥βC.若m∥α,n⊥β,m∥n,则α⊥β D.若m∥α,n⊥β,m∥n,则α∥β【考点】:平面与平面之间的位置关系.【专题】:空间位置关系与距离.【分析】:利用线面平行、垂直的判定定理和性质定理及面面垂直的判定定理即可判断出答案.【解析】:解:选择支C正确,下面给出证明.证明:如图所示:∵m∥n,∴m、n确定一个平面γ,交平面α于直线l.∵m∥α,∴m∥l,∴l∥n.∵n⊥β,∴l⊥β,∵l⊂α,∴α⊥β.故C正确.故选C.【点评】:正确理解和掌握线面平行、垂直的判定定理和性质定理及面面垂直的判定定理是解题的关键.8.(5分)(2015•青岛一模)函数y=4cosx﹣e|x|(e为自然对数的底数)的图象可能是()A.B.C.D.【考点】:函数的图象.【专题】:函数的性质及应用.【分析】:先验证函数y=4cosx﹣e|x|是否具备奇偶性,排除一些选项,在取特殊值x=0时代入函数验证即可得到答案.【解析】:解:∵函数y=4cosx﹣e|x|,∴f(﹣x)=4cos(﹣x)﹣e|﹣x|=4cosx﹣e|x|=f(x),函数y=4cosx﹣e|x|为偶函数,图象关于y轴对称,排除BD,又f(0)=y=4cos0﹣e|0|=4﹣1=3,只有A适合,故选:A.【点评】:本题主要考查函数的图象,关于函数图象的选择题,通常先验证奇偶性,排除一些选项,再代特殊值验证,属于中档题.9.(5分)(2015•青岛一模)已知△ABC的三边分别为4,5,6,则△ABC的面积为()A.B.C.D.【考点】:余弦定理的应用;三角形中的几何计算.【专题】:解三角形.【分析】:根据余弦定理先求出其中一个角的余弦值,然后求出对应的正弦值,利用三角形的面积公式即可得到结论.【解析】:解:∵△ABC的三边长a=4,b=5,c=6,∴由余弦定理得cosC==,∴sinC===∴三角形的面积为S=absinC=×4×5×=.故选:B.【点评】:本题主要考查了三角形的面积的计算,利用余弦定理和正弦定理求出其中一个角的正弦值是解决本题的关键.10.(5分)(2015•青岛一模)已知点G是△ABC的外心,,,是三个单位向量,且2++=,如图所示,△ABC的顶点B,C分别在x轴的非负半轴和y轴的非负半轴上移动,则G点的轨迹为()A.一条线段B.一段圆弧C.椭圆的一部分D.抛物线的一部分【考点】:轨迹方程.【专题】:计算题;直线与圆.【分析】:确定点G是BC的中点,△ABC是直角三角形,∠A是直角,BC=2,根据△ABC的顶点B、C分别在x轴和y轴的非负半轴上移动,即可得出结论.【解析】:解:∵点G是△ABC的外心,且2++=,|∴点G是BC的中点,△ABC是直角三角形,∠A是直角∵,,是三个单位向量,∴BC=2∵△ABC的顶点B、C分别在x轴和y轴的非负半轴上移动∴G的轨迹是以原点为圆心1为半径的圆弧,故选:B.【点评】:本题考查向量在几何中的应用,解题的关键是判断三角形的形状,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•青岛一模)已知函数f(x)=tanx+sinx+2015,若f(m)=2,则f(﹣m)= 4028.【考点】:函数奇偶性的性质.【专题】:函数的性质及应用.【分析】:根据解析式得出f(﹣x)+f(x)=4030,f(m)+f(﹣m)=4030,即可求解.【解析】:解:∵函数f(x)=tanx+sinx+2015,∴f(﹣x)=﹣tanx﹣sinx+2015,∵f(﹣x)+f(x)=4030,∴f(m)+f(﹣m)=4030,∵f(m)=2,∴f(﹣m)=4028.故答案为:4028.【点评】:本题考查了函数的性质,整体运用的思想,属于容易题,难度不大.12.(5分)(2015•青岛一模)执行如图所示的程序框图,则输出的结果是132;【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序框图,依次写出每次循环得到的s,i的值,当i=10时,不满足条件i≥11,退出循环,输出s的值为132.【解析】:解:模拟执行程序框图,可得i=12,s=1满足条件i≥11,s=12,i=11满足条件i≥11,s=132,i=10不满足条件i≥11,退出循环,输出s的值为132.故答案为:132.【点评】:本题主要考查了程序框图和算法,依次正确写出每次循环得到的s,i的值是解题的关键,属于基本知识的考查.13.(5分)(2015•青岛一模)在长为12cm的线段AB上任取一点C,现作一矩形,使邻边长分别等于线段AC、CB的长,则该矩形面积大于20cm2的概率为.【考点】:几何概型.【专题】:概率与统计.【分析】:设AC=x,则BC=12﹣x,由矩形的面积S=x(12﹣x)>20可求x的范围,利用几何概率的求解公式可求.【解析】:解:设AC=x,则BC=12﹣x矩形的面积S=x(12﹣x)>20∴x2﹣12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率P==.故答案为:.【点评】:本题主要考查了二次不等式的解法,与区间长度有关的几何概率的求解公式的应用,属于基础试题14.(5分)(2015•青岛一模)设z=x+y其中x,y满足,若z的最大值为6,则z 的最小值为﹣3.【考点】:简单线性规划.【分析】:先根据条件画出可行域,观察可行域,当直线z=x+y过A点时取最大值,从而求出k值,再当直线z=x+y过B点时取最小值,求出z最小值即可.【解析】:解:作出可行域如图:直线x+y=6过点A(k,k)时,z=x+y取最大,∴k=3,z=x+y过点B处取得最小值,B点在直线x+2y=0上,∴B(﹣6,3),∴z的最小值为=﹣6+3=﹣3.故填:﹣3.【点评】:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.(5分)(2015•青岛一模)若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a},{c},{a,b,c}};②τ={∅,{b},{c},{b,c},{a,b,c}};③τ={∅,{a},{a,b},{a,c}};④τ={∅,{a,c},{b,c},{c},{a,b,c}}.其中是集合X上的拓扑的集合τ的序号是②④.【考点】:集合的包含关系判断及应用.【专题】:压轴题;新定义.【分析】:根据集合X上的拓扑的集合τ的定义,逐个验证即可:①{a}∪{c}={a,c}∉τ,③{a,b}∪{a,c}={a,b,c}∉τ,因此①③都不是;②④满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ,因此②④是,从而得到答案.【解析】:解:①τ={∅,{a},{c},{a,b,c}};而{a}∪{c}={a,c}∉τ,故①不是集合X上的拓扑的集合τ;②τ={∅,{b},{c},{b,c},{a,b,c}},满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ因此②是集合X上的拓扑的集合τ;③τ={∅,{a},{a,b},{a,c}};而{a,b}∪{a,c}={a,b,c}∉τ,故③不是集合X上的拓扑的集合τ;④τ={∅,{a,c},{b,c},{c},{a,b,c}}.满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ因此④是集合X上的拓扑的集合τ;故答案为②④.【点评】:此题是基础题.这是考查学生理解能力和对知识掌握的灵活程度的问题,重在理解题意.本题是开放型的问题,要认真分析条件,探求结论,对分析问题解决问题的能力要求较高.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16.(12分)(2015•青岛一模)某市甲、乙两社区联合举行迎“五一”文艺汇演,甲、乙两社区各有跳舞、笛子演奏、唱歌三个表演项目,其中甲社区表演队中表演跳舞的有1人,表演笛子演奏的有2人,表演唱歌的有3人.(Ⅰ)若从甲、乙社区各选一个表演项目,求选出的两个表演项目相同的概率;(Ⅱ)若从甲社区表演队中选2人表演节目,求至少有一位表演笛子演奏的概率.【考点】:列举法计算基本事件数及事件发生的概率.【专题】:概率与统计.【分析】:(Ⅰ)若从甲、乙社区各选一个表演项目,选出的两个表演项目所有基本事件的个数,求出相同的事件的个数,即可求解概率;(Ⅱ)从甲社区表演队中选2人表演节目,列出所有基本事件的个数,找出至少有一位表演笛子演奏的事件个数,然后求解概率.【解析】:(本小题满分12分)解:(Ⅰ)记甲、乙两社区的表演项目:跳舞、笛子演奏、唱歌分别为A1,B1,C1;A2,B2,C2则从甲、乙社区各选一个表演项目的基本事件有(A1,A2),(A1,B2),(A1,C2),(B1,A2),(B1,B2),(B1,C2),(C1,A2),(C1,B2),(C1,C2)共9种,…(4分)其中选出的两个表演项目相同的事件3种,所以…(6分)(Ⅱ)记甲社区表演队中表演跳舞的、表演笛子演奏、表演唱歌的分别为a1,b1,b2,c1,c2,c3则从甲社区表演队中选2人的基本事件有(a1,b1),(a1,b2),(a1,c1),(a1,c2),(a1,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)共15种…(10分)其中至少有一位表演笛子演奏的事件有9种,所以…(12分)【点评】:本题考查古典概型的概率的求法,列出所有基本事件,做到不重复不漏是解题的关键.17.(12分)(2015•青岛一模)已知函数f(x)=4cosωx•sin(ωx+)+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(Ⅰ)求a和ω的值;(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.【考点】:正弦函数的单调性;两角和与差的正弦函数.【专题】:三角函数的图像与性质.【分析】:(Ⅰ)根据条件确定函数最值和周期,利用三角函数的公式进行化简即可求a和ω的值;(Ⅱ)根据三角函数的单调性即可求出函数的单调递减区间.【解析】:解:(Ⅰ)==.…(4分)当时,f(x)取得最大值2+1+a=3+a又f(x)最高点的纵坐标为2,∴3+a=2,即a=﹣1.…(6分)又f(x)图象上相邻两个最高点的距离为π,∴f(x)的最小正周期为T=π故,ω=1…(8分)(Ⅱ)由(Ⅰ)得由.得.…(10分)令k=0,得:.故函数f(x)在[﹣π,π]上的单调递减区间为…(12分)【点评】:本题主要考查三角函数的图象和性质,利用三角函数的图象以及三角函数的辅助角公式求出函数的解析式是解决本题的关键.18.(12分)(2015•青岛一模)如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=1,AB=,AD=AA1=3,E1为A1B1中点.(Ⅰ)证明:B1D∥平面AD1E1;(Ⅱ)证明:平面ACD1⊥平面BDD1B1.【考点】:直线与平面平行的判定;平面与平面垂直的判定.【专题】:空间位置关系与距离.【分析】:(Ⅰ)连结A1D交AD1于G,证明B1D∥E1G,利用直线与平面平行的判定定理证明B1D∥平面AD1E1.(Ⅱ)设AC∩BD=H,通过△BHC~△DHA,结合BC=1,AD=3,求出,,证明AC⊥BD,然后证明BB1⊥AC,得到AC⊥平面BDD1B1,利用平面与平面垂直的判定定理证明平面ACD1⊥平面BDD1B1.【解析】:(本小题满分12分)证明:(Ⅰ)连结A1D交AD1于G,因为ABCD﹣A1B1C1D1为四棱柱,所以四边形ADD1A1为平行四边形,所以G为A1D的中点,又E1为A1B1中点,所以E1G为△A1B1D的中位线,所以B1D∥E1G…(4分)又因为B1D⊄平面AD1E1,E1G⊂平面AD1E1,所以B1D∥平面AD1E1.…(6分)(Ⅱ)设AC∩BD=H,因为AD∥BC,所以△BHC~△DHA又BC=1,AD=3,所以,∵AD∥BC,∠BAD=90°,所以∠ABC=90°∴,从而,,所以CH2+BH2=BC2,CH⊥BH,即AC⊥BD…(9分)因为ABCD﹣A1B1C1D1为四棱柱,AA1⊥底面ABCD所以侧棱BB1⊥底面ABCD,又AC⊂底面ABCD,所以BB1⊥AC…(10分)因为BB1∩BD=B,所以AC⊥平面BDD1B1…(11分)因为AC⊂平面ACD1,所以平面ACD1⊥平面BDD1B1.…(12分)【点评】:本题考查直线与平面平行,平面与平面垂直的判定定理的应用,考查空间想象能力以及逻辑推理能力.19.(12分)(2015•青岛一模)已知数列{a n}是等差数列,S n为{a n}的前n项和,且a10=28,S8=92;数列{b n}对任意n∈N*,总有b1•b2•b3…b n﹣1•b n=3n+1成立.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)记c n=,求数列{c n}的前n项和T n.【考点】:数列的求和.【专题】:等差数列与等比数列.【分析】:(Ⅰ)设出{a n}的首项和公差,由已知列方程组求得首项和公差,代入等差数列的通项公式求通项;再由b1•b2•b3…b n﹣1•b n=3n+1,得b1•b2•b3…b n﹣1=3n﹣2(n≥2),两式相除可得数列{b n}的通项公式;(Ⅱ)把{a n}、{b n}的通项公式代入c n=,化简后利用错位相减法求得数列{c n}的前n项和T n.【解析】:解:(Ⅰ)设{a n}的首项为a1,公差为d,由a10=28,S8=92,得a10=a1+9d=28,,解得a1=1,d=3,a n=1+3(n﹣1)=3n﹣2;又∵b1•b2•b3…b n﹣1•b n=3n+1,∴b1•b2•b3…b n﹣1=3n﹣2(n≥2),两式相除得,当n=1时b1=4适合上式,∴;(Ⅱ)把{a n}、{b n}的通项公式代入c n=,得,则,,两式作差得:,∴,即.【点评】:本题考查了等差数列和等比数列的通项公式,考查了错位相减法求数列的和,是中档题.20.(13分)(2015•青岛一模)已知椭圆C:+=1(a>b>0)上顶点为A,右顶点为B,离心率e=,O为坐标原点,圆O:x2+y2=与直线AB相切.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l:y=k(x﹣2)(k≠0)与椭圆C相交于E、F两不同点,若椭圆C上一点P满足OP∥l.求△EPF面积的最大值及此时的k2.【考点】:直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】:圆锥曲线的定义、性质与方程.【分析】:(Ⅰ)设出直线AB的方程为:,利用圆O与直线AB相切,列出关系式,设椭圆的半焦距为c,通过b2+c2=a2,利用离心率,求出a,b,得到椭圆C的标准方程.(Ⅱ)了直线与椭圆方程,设E(x1,y1),F(x2,y2),利用韦达定理,以及弦长公式,点到直线的距离,求出=分离常数,利用二次函数的最值,求解△EPF的面积的最大值,以及k的中.【解析】:解:(Ⅰ)由题意,直线AB的方程为:,即为bx+ay﹣ab=0因为圆O与直线AB相切,所以,…①…(2分)设椭圆的半焦距为c,因为b2+c2=a2,,所以…②…(3分)由①②得:a2=2,b2=1所以椭圆C的标准方程为:…(5分)(Ⅱ)由可得:(1+2k2)x2﹣8k2x+8k2﹣2=0设E(x1,y1),F(x2,y2)则,…(7分)所以又点O 到直线EF 的距离,∵OP ∥l ,∴=…(10分)又因为,又k≠0,∴令t=1+2k 2∈(1,2),则,所以当时,最大值为所以当时,△EPF 的面积的最大值为…(13分)【点评】: 本题考查椭圆的方程的求法,直线与圆的我最关心,直线与椭圆的综合应用,考查分析问题解决问题的能力,考查转化思想的应用.21.(14分)(2015•青岛一模)已知函数f (x )=(ax 2+2x ﹣a )e x ,g (x )=f (lnx ),其中a ∈R ,e=2.71828…为自然对数的底数.(Ⅰ)若函数y=f (x )的图象在点M (2,f (2))处的切线过坐标原点,求实数a 的值; (Ⅱ)若f (x )在[﹣1,1]上为单调递增函数,求实数a 的取值范围.(Ⅲ)当a=0时,对于满足0<x 1<x 2的两个实数x 1,x 2,若存在x 0>0,使得g′(x 0)=成立,试比较x 0与x 1的大小.【考点】: 导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】: 导数的综合应用.【分析】: (Ⅰ)求出函数的导函数f'(x )=[ax 2+2(a+1)x+2﹣a ]e x ,通过f'(2),求出函数y=f (x )的图象在点M (2,f (2))处的切线方程,通过切线过坐标原点,求出a 即可. (Ⅱ)通过f (x )在[﹣1,1]上为单调递增函数,只要f'(x )≥0,构造Γ(x )=ax 2+2(a+1)x+2﹣a通过①当a=0时,推出函数f (x )在[﹣1,1]上为单调递增函数.②当a >0时,Γ(x )=ax 2+2(a+1)x+2﹣a ,利用二次函数的性质,Γ(x )min =Γ(﹣1)=﹣2a≥0⇒a≤0 推出矛盾.③当a <0时,Γ(x )=ax 2+2(a+1)x+2﹣a 类比②,得到结果.(Ⅲ)利用,g'(x)=lnx+1.通过导数的几何意义,说明存在x0>0,使得,然后构造函数,利用新函数的导数,判断函数的单调性,然后推出x0>x1即可.【解析】:(本小题满分14分)解:(Ⅰ)∵f(x)=(ax2+2x﹣a)e x,∴f'(x)=[ax2+2(a+1)x+2﹣a]e x则f'(2)=(7a+6)e2,f(2)=(3a+4)e2∴函数y=f(x)的图象在点M(2,f(2))处的切线为:y﹣f(2)=(7a+6)e2(x﹣2)∵切线过坐标原点,0﹣f(2)=(7a+6)e2(0﹣2),即(3a+4)e2=2(7a+6)e2,∴…(3分)(Ⅱ)f'(x)=[ax2+2(a+1)x+2﹣a]e x要使f(x)在[﹣1,1]上为单调递增函数,只要ax2+2(a+1)x+2﹣a≥0令Γ(x)=ax2+2(a+1)x+2﹣a①当a=0时,Γ(x)=2x+2,在[﹣1,1]内Γ(x)≥Γ(﹣1)=0,∴f'(x)≥0函数f(x)在[﹣1,1]上为单调递增函数…(4分)②当a>0时,Γ(x)=ax2+2(a+1)x+2﹣a是开口向上的二次函数,其对称轴为,∴Γ(x)在[﹣1,1]上递增,为使f(x)在[﹣1,1]上单调递增,必须Γ(x)min=Γ(﹣1)=﹣2a≥0⇒a≤0而此时a>0,产生矛盾∴此种情况不符合题意…(6分)③当a<0时,Γ(x)=ax2+2(a+1)x+2﹣a是开口向下的二次函数,为使f(x)在[﹣1,1]上单调递增,必须f'(x)≥0,即Γ(x)≥0在[﹣1,1]上恒成立,∴⇒又a<0,∴﹣2≤a<0综合①②③得实数a的取值范围为[﹣2,0]…(8分)(Ⅲ),g'(x)=lnx+1.因为对满足0<x1<x2的实数x1,x2,存在x0>0,使得成立,所以,即,从而==.…(11分)设φ(t)=lnt+1﹣t,其中0<t<1,则,因而φ(t)在区间(0,1)上单调递增,φ(t)<φ(1)=0,∵0<x1<x2,∴,从而,又所以lnx0﹣lnx1>0,即x0>x1…(14分)【点评】:本题考查函数的导数的综合应用,切线方程的求法,构造法的应用,导数的几何意义,考查函数的单调性的应用,转化思想的应用.。
青岛市2015年学业水平模拟考试数学试题2(满分:120分 时间:120分钟)一、选择题(本大题共6个小题,每小题3分,共计36分) 1.如图,数轴上表示数﹣2的相反数的点是( )A .点PB .点QC .点MD .点N2.下列各图中,既是轴对称图形,又是中心对称图形的是( )..A B CD3.与如图所示的三视图对应的几何体是( )4.如图,AD BC ∥,点E 在BD 的延长线上,若155ADE ∠=,则DBC ∠的度数为( ) A.35 B.50C.45D.255.同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是( )A. 41B. 21C. 43D. 16.不等式组1340x x +>⎧⎨-⎩≥的解集用数轴表示为( )C .2 4B.2 4A .2 4D.2 4DE B7. a 4b ﹣6a 3b+9a 2b 分解因式得正确结果为( )A .a 2b (a 2﹣6a+9) B .a 2b (a ﹣3)(a+3) C .b (a 2﹣3)2 D .a 2b (a ﹣3)28.若分式2362x xx--的值为0,则x 的值为( )A.0 B.2 C.2-D.0或29.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( ) A .B .C .D .10.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠使AB 落在对角线AC 上,得到折痕AE ,那么BE 的长度为( )A 2/3B 2/5C 3/2 D5/211.如图,已知AD 是△ABC 的外接圆的直径,AD =13 cm ,5cos 13B =,则AC的长等于( )A .5 cmB .6 cmC .10 cmD .12 cm12.如图,DE 与ABC △的边AB AC ,分别相交于D E ,两点,且DE BC ∥.若22cm 3cm cm 3DE BC EC ===,,,则AC 等于( )A. 1B. 34C. 35D. 2 二、(本大题共6个小题,每小题4分,共计24分)13、已知点P (1-a,2a )在第二象限,那么的取值范围是________________(第11题)ADCBA B C D E14、 某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为________________ 15、边长为3cm 的等边三角形中,其一边的高的长度为________________ 16、把0、001306用科学记数法表示为________________17、已知矩形ABCD 中,AB=8㎝,AD= 6㎝,则O C=________________18、在实数范围内分解因式:2x 5-8x=________________三、解答题:本大题共7个小题,共计60分 19.(本小题满分6分) 计算: |﹣5|﹣2cos60°++.20.(本小题满分7分) 先化简,再求值:(1﹣)÷+3x ﹣4,其中x=.21. (本小题满分8分)已知关于x 的一元二次方程 (m -2)x 2 + 2mx + m +3 = 0 有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.22. (本小题满分8分)某高速公路建设中,需要确定隧道AB 的长度,己知在离地面1500m 高度C 处的飞机,测量人员测得正前方A 、B 两点的俯角分别为600和450,求隧道AB 的长。
59中 2014-2015学年度第二学期第一次学业水平模拟测试 一、选择题1.下列运算正确的是( ) A 、aa3131=- B 、3222a a a =+ C 、623.)(a a a -=- D 、a a a =-÷-)()(234.如图,在Rt △ABC 中,∠C=90°,∠B=30°,BC=4cm ,以点C 为圆心,以2cm 的长为半径作圆,则圆C 与AB 的位置关系是( )A 、相切B 、相离C 、相交D 、相切或相交5.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩x 与方差2s 如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则应该选( )。
选手 甲 乙 丙 丁 平均数x8.5998.5 方差2s11.211.3A 、乙B 、甲C 、丁D 、丙6.如图,在方格纸上的△ABC 经过变换得到△DEF ,正确的是( ) A 、把△ABC 绕点A 逆时针旋转90°,再向右平移6格 B 、把△ABC 向右平移6格,再向上平移1格C 、把△ABC 绕点A 顺时针旋转90°,再向右平移6格D 、把△ABC 向右平移4格,再向上平移1格7.钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是( )A 、cm 310πB 、cm 320πC 、cm 325πD 、cm 350π8.若ab ﹤0,则一次函数b ax y -=与反比例函数xby =在同一直角坐标系中的大致图象可能是( )二、填空题9.计算:________281-2sin45-21-0=++︒)( 10.一车间有甲、乙两个小组,甲组的工作效率比乙组的高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间还少30分钟,若设乙每小时加工x 个零件,则可列方程为_______________ 11.如图,AB 切圆O 于点A ,BO 交圆O 于点C ,点D 是CmA 上异于点C 、A 的一点,若∠ABO=32°,则∠ADC 的度数是_________12.在不透明的袋子中黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,请估算袋中的白棋子数量为_______枚13.如图,P 是矩形ABCD 的边AD 上一个动点,矩形的两条边AB 、BC 的长分别为6和8,那么点P 到矩形的两条对角线AC 和BD 的距离之和是________14.观察下列由棱长为1的小立方体摆成的图形,若将地面上露出的表面都涂上颜色(只有下底面不涂色),则第n 个图中只有一个面涂色的小立方体共有________个。
2015年山东省青岛市初级中学学业水平考试数学模拟试题一、选择题 1.12-的相反数是() A.2- B.12- C.2 D.122.下列图形中,是中心对称图形,但不是轴对称图形的是()A B C D3.如图所示,是某一几何体的三种视图,这个几何体是()A B C D4.据研究,一种H7N9病毒直径为30纳米(1纳米910-=米),用科学记数法表示这个病毒直径的大小,正确的是()A.93010-⨯米B.83.010-⨯米C.103.010-⨯米D.70.310-⨯米5.如图,点A 、B 、C 在O 上,45ABC ∠=︒,弦8AC =,则O 半径的长是()A.B. C.9 D.166.如图,把图中的A 经过平移得到O (如下图),如果左图中A 上一点P 的坐标为(),m n ,那么平移后在右图中的对应点'P 的坐标为()7.如图,ABC △中,6AB =,8AC =,10BC =,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆与BC 的位置关系是()A.相切B.相交C.相离D.无法确定8.如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .下列结论:①AE CG =,②AE CG ⊥,③DM GE ∥,④OM OD =,⑤45DME ∠=︒.正确结论的个数为()A.2个B.3个C.4个D.5个二、填空题9.化简:)01=____________. 10.国家实施的中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调台数,条例实施后比实施前多10%,若设条例实施前此款空调的售价为每台x 元,则可列方程为____________.11.如图,是两块完全一样的含30︒角的三角板,分别记作ABC △与'''A B C △,现将两块三角板重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角板ABC ,使其直角顶点C 恰好落在三角板'''A B C 的斜边''A B 上,当30A ∠=︒,10AC =时,则两直角顶点C ,'C 之间的距离是__________.12.如图,A 是反比例函数图象上一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上,ABP △面积为2,则这个反比例函数的解析式为___________.13.如图,一张圆心角为45︒的扇形纸板和圆形纸板按如图方式各剪一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是____________.14.抛物线2y ax bx c =++的顶点为()1,2D -,与x 轴的一个交点A 在点()3,0-和()2,0-之间,其部分图像如图,则以下结论:(1)240b ac -<;(2)0a b c ++<;(3)2c a -=;(4)方程220ax bx c ++-=有两个相等的实数根.其中正确结论的序号是_________________三、作图题:15.已知:如图线段a.P HG J I求作:ABC △,使AB BC a ,AC12a结论:四、解答题 16.(1)解不等式组:()12221x x x ->⎧⎪⎨+-⎪⎩≥ 解:(2)化简并求值:211x x x x x --⎛⎫-÷ ⎪⎝⎭,其中0x =,1,2中代入一个合适的数求值. 解:17.图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的中位数是_________℃;(3)计算这8天的日最高气温的平均数.18.“五·一”期间,某西餐厅为了吸引顾客,举行吃套餐优惠活动.套餐每套20元,每消费一套即可直接获得10元餐券,或者参与游戏赢得餐券.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐券,下次就餐时可以代替现金消费.(1)写出转动一次转盘获得15元餐券的概率;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐券?请说明理由.19.如图所示,CD ,EF 表示高度不同的两座建筑物,已知CD 高15米,小明站在A 处,视线越过CD ,能看到它后面的建筑物的顶端E ,此时小明的视角44FAE ∠=︒,为了能看到建筑物EF 上点M 的位置,小明沿直线FA 由点A 移动到点N 的位置,此时小明的视角31FNM ∠=︒,求AN 之间的距离(结果保留整数,参考数据:7sin 4410︒≈,7cos4410︒≈,tan 441︒≈,1sin312︒≈,9cos3110︒≈,3tan315︒≈)20.一座隧道的截面由抛物线和长方形构成,长方形的长OC 为8米,宽BC 为2米,隧道最高点P 距地面6米,建立如图所示的坐标系.求这条抛物线的表达式:一辆货车高4米,宽2米,能否从该隧道内通过?请说明理由.21.如图,在ABC △中,AD 是BC 边上的中点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF DC =;(2)若AB AC ⊥,试判断四边形ADCF 的形状,并证明你的结论.22.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A 、B 两组,采用不同工艺做降温对比实验,设降温开始后经过min x 时,A 、B 两组材料的温度分别为A y ℃、B y ℃,A y ,B y 与x 的函数关系式分别为A y kx b =+,()21604B y x m =-+(部分图象如图所示),当40x =时,两组材料的温度相同.(1)分别求A y 、B y 关于x 的函数关系式;(2)当A 组材料的温度降至120℃时,B 组材料的温度是多少?(3)在040x <<的什么时刻,两组材料温差最大?23.【问题提出】我们探究过这样一个问题:“任意给定一个矩形A ,是否一定存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”【特别探究】在解决这个问题时,我们先取已知矩形A 的边长分别为2和1,设所求矩形B 的两边分别是x 和y ,由题意得方程组:321x y xy ⎧+=⎪⎨⎪=⎩ 消去y 化简得:22320x x -+=249160b ac -=-< ∴方程无解∴满足要求的矩形B 不存在.如果已知矩形A 的边长分别为6和1,请你探究是否存在满足要求的矩形B ,若存在,求出矩形B 的长和宽;若不存在,请说明理由.【拓展思考】上面解决问题的基本方法是“代数”的,我们也可以从“图形”的角度来研究,即可以把矩形B 的两边x 、y 所满足的两个方程看成函数,在同一直角坐标系中画出这两个函数图像,如果两个图像有交点,就说明满足要求的矩形B 是存在的,否则不存在.下面请你从“图形”的角度来研究:已知矩形A 的边长分别为8和1,根据题意矩形B 的两边x 、y 将满足92x y +=,4xy =,请你画出这两个函数图象,并根据图像判断满足要求的矩形B 是否存在?解:x。
2015-2016学年山东省青岛市市北区七年级(下)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.“任意买一张电影票,座位号是奇数”,此事件是()A.不可能事件B.不确定事件C.必然事件D.确定事件2.对折一张矩形的纸,用笔尖在上面扎出大写字母“B”,再把它铺平,你可见到()A.B.C.D.3.下列运算中正确的是()A.(a4)3=a7B.a6÷a3=a2C.(2ab)3=6a3b3D.﹣a5×a4=﹣a94.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离S(米)与离家时间t(分)之间的函数关系.下列说法中正确的个数是()(1)修车时间为15分;(2)学校离家的距离为2000米;(3)到达学校时共用时间20分;(4)自行车发生故障时离家距离为1000米.A.1个B.2个C.3个D.4个5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个6.如图,直线AB∥CD,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°7.△ABC在正方形网格中的位置如图所示,点A,B,C,P均在格点上,则点P是△ABC 的()A.三条垂直平分线的交点B.三条内角角平分线的交点C.重心D.无法确定8.如图,已知将△ABE沿AD所在直线翻折,点B恰好与BE上的点C重合,对折边AE,折痕也经过点C,则下列说法正确的是()①∠ADC=90°;②AB=AC=CE;③AB+BD=DE;④S△ACD:S△ACE=CD:CE;⑤若∠E=30°,则△ABC是等边三角形.A.只有①②正确B.①②③C.①②③④D.①②③④⑤二、填空题(本题满分24分,共有8道小题,每小题3分)9.太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,则到达地球的辐射能功率为千瓦.10.口袋中有红色、黄色、蓝色(除颜色外都相同)的玻璃球共120个,小明通过大量的摸球试验,发现摸到红球的概率为40%,摸到篮球的概率为25%,估计这个口袋中大约有个红球,个黄球,篮球.11.若4a2+2ka+9是一个完全平方式,则k应为.12.如图,把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为.13.一个角的补角的2倍与它的余角的和为240°,则这个角的度数为度.14.如果小球在如图所示的七巧板上自由滚动,并随机停留在这七巧板的某个位置上(不考虑停在边线的情况),那么它最终停留在四边形EFLH的概率是.15.一种树苗栽种时的高度为80cm,为研究它们的生长情况,测得数据如表;栽种以后的年数n/年 1 2 3 4 …高度h/m105 130 155 180 …则按照表中呈现的规律,树苗的高度h与栽种年数n的关系式为,栽种年后,树苗能长到280cm.16.如图,△ABC的三边AB,BC,AC的长分别为45,50,60,其中三条角平分线相交于点O,则S△ABO:S△BCO:S△CAO=.三、解答题(满分72分)17.作图题:青岛西海岸新区将举行马拉松挑战赛,规划在如图区域设置一个能量补给站,用点P表示,使其到赛道OA段河道到赛道OB段的距离相等,同时要求该能量补给站到观测点C和到观测点D的距离也相等,请在图中做出补给站点P的位置.18.计算与化简(1)()﹣1÷(4﹣π)0﹣(﹣2)2;(2)899×901+1(用乘法公式计算)(3)(a+3)(2a﹣1)﹣a(a﹣2);(4)先化简,再求值x(x+2y)﹣(x﹣2)2﹣2xy,其中x=﹣,y=5.19.本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定,顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等).(1)顾客小华消费150元,获得打折待遇的概率是多少?(2)顾客小明消费120元,获得五折待遇的概率是多少?(3)小华对小明说:“我们用这个转盘来做一个游戏,指针指到五折你赢,指针指到七折算我赢”,你认为这个游戏规则公平吗?请说明理由.20.现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一次操作),如图甲(虚线表示折痕).除图甲外,请你再给出三种不同的操作,分别将折痕画在图①至图③中.规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果是全等的图形,那么就认为是相同的操作,如图乙和图甲示相同的操作.21.如图所示:∠AFD和∠BEC中,点A、E、F、C在同一直线上,有下面四个选项:①AD=CB;②AE=CF;③∠B=∠D;④AD∥BC,请用上述选项完成填空,使填完的语句成为一个正确的判断,并说明理由.如果已知、、,那么,(从①、②、③、④中选填)22.在20km的越野比赛中,甲乙两选手均跑完全程,他们的行程y(单位:km)随时间x (单位:h)变化的图象如图所示,根据图中提供的信息,解答下列问题:(1)请解释点A的实际意义;(2)求出发1.5小时,乙的行程比甲多多少?(3)甲若要和乙同时到达终点,他出发1.5小时后应将速度调整为km/h.23.(1)特例导航:请根据所给的运算程序完成填空.(2)探索与归纳:运算程序例如按左侧的形式完成你的举例①从1~9这9个数字中,任意选择3个3、2、5不同的数字325、352、253、235、523、532②由这三个数字组成6个不同的三位数(个位数字、十位数字、百位数字互相不重复)③将②中这6个三位数相加325+352+253+235+523+532=a=a÷(3+2+5)=④用③所得的和除以这三个数字的和,得结果如果把你最初任意选择的三个不同的数字分别用a、b、c表示,且a≠b≠c,请再次根据所给运算程序完成填空.运算程序运算过程①从1~9这9个数字中,任意选择3个不同的数字a、b、c,且a≠b≠c②由这三个数字组成6个不同的三位数(个位数字、十位数字、百位数字互相不重复)③将②中这6个三位数相加④用③所得的和除以这三个数字的和,得结果归纳:从1~9这9个数字中,任意选择3个不同的数字,由这三个数字组成6个不同的三位数(个位数字、十位数字、百位数字互相不重复),把这6个三位数相加,然后用所得的和除以这三个数字的和,结果是.24.已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,试说明一下论断正确的理由:(1)∠BDC=90°;(2)BF=AC;(3)CE=.2015-2016学年山东省青岛市市北区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.“任意买一张电影票,座位号是奇数”,此事件是()A.不可能事件B.不确定事件C.必然事件 D.确定事件【考点】随机事件.【分析】根据随机事件的定义进行解答即可.【解答】解:∵任意买一张电影票,座位号不是奇数就是偶数,∴任意买一张电影票,座位号是奇数,此事件是不确定事件.故选B.2.对折一张矩形的纸,用笔尖在上面扎出大写字母“B”,再把它铺平,你可见到()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解即可.【解答】解:A、沿中间折痕对称轴折叠,两个字母B能够完全重合,故本选项正确;B、沿中间折痕对称轴折叠,两个字母B不能够完全重合,故本选项错误;C、沿中间折痕对称轴折叠,两个字母B不能够完全重合,故本选项错误;D、沿中间折痕对称轴折叠,两个字母B不能够完全重合,故本选项错误.故选A.3.下列运算中正确的是()A.(a4)3=a7 B.a6÷a3=a2C.(2ab)3=6a3b3 D.﹣a5×a4=﹣a9【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法,积的乘方,幂的乘方,即可解答.【解答】解:A、(a4)3=a12,故本选项错误;B、a6÷a3=a3,故本选项错误;C、(2ab)3=8a3b3,故本选项错误;D、正确;故选:D.4.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离S(米)与离家时间t(分)之间的函数关系.下列说法中正确的个数是()(1)修车时间为15分;(2)学校离家的距离为2000米;(3)到达学校时共用时间20分;(4)自行车发生故障时离家距离为1000米.A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:(1)修车时间为15﹣10=5分,错误;(2)学校离家的距离为2000米,正确;(3)到达学校时共用时间20分,正确;(4)自行车发生故障时离家距离为1000米,正确;故选C.5.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定.【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.6.如图,直线AB∥CD,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°【考点】平行线的性质.【分析】根据平行线的性质可得∠4=∠1=55°,再根据对顶角相等可得∠5,∠6的度数,再利用三角形内角和为180°可得答案.【解答】解:∵AB∥CD,∴∠4=∠1=55°,∴∠5=55°,∵∠2=65°,∴∠6=65°,∴∠3=180°﹣55°﹣65°=60°,故选:C.7.△ABC在正方形网格中的位置如图所示,点A,B,C,P均在格点上,则点P是△ABC 的()A.三条垂直平分线的交点 B.三条内角角平分线的交点C.重心 D.无法确定【考点】三角形的重心.【分析】根据三角形的重心的概念进行判断即可.【解答】解:如图点E、F分别是BC、AC的中点,∴AE、BF是△ABC的中线,∴点P是△ABC的重心,故选:C.8.如图,已知将△ABE沿AD所在直线翻折,点B恰好与BE上的点C重合,对折边AE,折痕也经过点C,则下列说法正确的是()①∠ADC=90°;②AB=AC=CE;③AB+BD=DE;④S△ACD:S△ACE=CD:CE;⑤若∠E=30°,则△ABC是等边三角形.A.只有①②正确 B.①②③C.①②③④ D.①②③④⑤【考点】翻折变换(折叠问题);全等三角形的判定与性质;等边三角形的判定.【分析】①正确,根据B、C关于AD对称即可证明.②正确,先证明AB=AC,再证明CA=CE即可.③正确,根据AB=CE,BD=CD,即可证明.④正确,根据三角形面积公式即可证明.⑤正确,只要证明∠ACB=60°即可.【解答】解:∵B、C关于直线AD对称,∴AD⊥BC,BD=DC,∴AB=AC,∠ADC=90°,故①正确,∵对折边AE,折痕也经过点C,∴CA=CE,∴AB=AC=CE,故②正确,∵AB+BD=CE+CD=DE,故③正确,S△ACD:S△ACE=•CD•AD:•CE•AD=CD:CE,故④正确,∵CA=CE,∠E=30°,∴∠CAE=∠E=30°,∴∠ACE=∠E+∠CAE=60°,∵AB=AC,∴△ABC是等边三角形.故⑤正确.∴①②③④⑤正确,故选D.二、填空题(本题满分24分,共有8道小题,每小题3分)9.太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,则到达地球的辐射能功率为 1.9×1014千瓦.【考点】科学记数法—表示较大的数.【分析】利用3.8×1023乘以20亿分之一,再用科学记数法表示即可.【解答】解:3.8×1023×=1.9×1014,故答案为:1.9×1014.10.口袋中有红色、黄色、蓝色(除颜色外都相同)的玻璃球共120个,小明通过大量的摸球试验,发现摸到红球的概率为40%,摸到篮球的概率为25%,估计这个口袋中大约有48个红球,42个黄球,30篮球.【考点】模拟实验.【分析】让球的总数分别乘以红球和黄球的概率即为所求玻璃球数,再求出篮球的个数即可.【解答】解:∵摸到红球、蓝球的频率分别为40%、25%,∴摸到红球的个数=120×40%=48(个),摸到篮球的个数=120×25%=30(个);∴摸到黄球的个数=120﹣48﹣30=42(个);故答案为:48,42,30.11.若4a2+2ka+9是一个完全平方式,则k应为±6.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【解答】解:∵4a2+2ka+9=(2a)2+2ka+32,∴2ka=±2×2a×3,解得k=±6.故答案为:±6.12.如图,把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为35°.【考点】平行线的性质.【分析】先根据三角形内角和定理求出∠3,根据平行线的性质得出∠2=∠3,求出即可.【解答】解:∵∠1=25°,∴∠3=90°﹣30°﹣25°=35°,∵AB∥CD,∴∠2=∠3=35°,故答案为:35°.13.一个角的补角的2倍与它的余角的和为240°,则这个角的度数为70度.【考点】余角和补角.【分析】设这个角的度数为n°,根据互余两角之和等于90°,互补两角之和等于180°,列出方程求解即可.【解答】解:设这个角的度数为n°,则由题意得,2×+(90﹣n)=240解得:n=70经检验n=70符合题意,所以这个角的度数为70度.故答案为:70.14.如果小球在如图所示的七巧板上自由滚动,并随机停留在这七巧板的某个位置上(不考虑停在边线的情况),那么它最终停留在四边形EFLH的概率是.【考点】几何概率;七巧板.【分析】直接利用七巧板得出各边长之间的关系,再利用四边形面积求法结合概率公式得出答案.【解答】解:由题意可得:EF=DF,平行四边形EFLH的高为:AF,故四边形EFLH的面积为:四边形ABDF的面积,故最终停留在四边形EFLH的概率是:.故答案为:.15.一种树苗栽种时的高度为80cm,为研究它们的生长情况,测得数据如表;1 2 3 4 …栽种以后的年数n/年高度h/m105 130 155 180 …则按照表中呈现的规律,树苗的高度h与栽种年数n的关系式为h=25n +80,栽种8年后,树苗能长到280cm.【考点】函数关系式.【分析】根据函数的定义即可解答.【解答】解:根据题意和表格中数据可知,树苗高度h与栽种的年数n的关系式为h=80+25n;当h=280时,n=8,故栽种后8年后,树苗能长到280厘米;故答案为:h=25n+80,8.16.如图,△ABC的三边AB,BC,AC的长分别为45,50,60,其中三条角平分线相交于点O,则S△ABO:S△BCO:S△CAO=9:10:12.【考点】角平分线的性质.【分析】作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【解答】解:作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,∵点O是三条角平分线的交点,∴OD=OE=OF,则S△ABO:S△BCO:S△CAO=×AB×OD:×BC×OE:×AC×OF=AB:BC:AC=45:50:60=9:10:12,故答案为:9:10:12.三、解答题(满分72分)17.作图题:青岛西海岸新区将举行马拉松挑战赛,规划在如图区域设置一个能量补给站,用点P表示,使其到赛道OA段河道到赛道OB段的距离相等,同时要求该能量补给站到观测点C和到观测点D的距离也相等,请在图中做出补给站点P的位置.【考点】作图—应用与设计作图.【分析】到角的两边距离相等的点在角的平分线上,到线段两个端点距离相等的点在线段的垂直平分线上,依此作图即可.【解答】解:如图,连接CD,作∠AOB的平分线和线段CD的垂直平分线,它们的交点即为补给站点P的位置.∴点P即为所求.18.计算与化简(1)()﹣1÷(4﹣π)0﹣(﹣2)2;(2)899×901+1(用乘法公式计算)(3)(a+3)(2a﹣1)﹣a(a﹣2);(4)先化简,再求值x(x+2y)﹣(x﹣2)2﹣2xy,其中x=﹣,y=5.【考点】整式的混合运算—化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用多项式乘多项式,单项式乘多项式法则计算,去括号合并即可得到结果;(4)原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=3÷1﹣4=﹣1;(2)原式=×+1=810000﹣1+1=810000;(3)原式=2a2﹣a+6a﹣3﹣a2+2a=a2+7a﹣3;(4)原式=x2+2xy﹣x2+4x﹣4﹣2xy=4x﹣4,当x=﹣时,原式=﹣.19.本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定,顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等).(1)顾客小华消费150元,获得打折待遇的概率是多少?(2)顾客小明消费120元,获得五折待遇的概率是多少?(3)小华对小明说:“我们用这个转盘来做一个游戏,指针指到五折你赢,指针指到七折算我赢”,你认为这个游戏规则公平吗?请说明理由.【考点】游戏公平性;概率公式.【分析】(1)由顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,即可得顾客小华消费150元,能获得1次转动转盘的机会;由共有8种等可能的结果,有5次打折机会,直接利用概率公式求解即可求得答案(2)利用获得打五折待遇的有2种情况,直接利用概率公式求解即可求得答案;(3)由共有8种等可能的结果,获得七折待遇的有2种情况,直接利用概率公式求解即可求得答案,进而比较得出答案.【解答】解:(1)∵顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,∴顾客小华消费150元,能获得1次转动转盘的机会,∵共有8种等可能的结果,获得打折待遇的有5种情况,∴小华获得打折待遇的概率是:;(2)∵共有8种等可能的结果,获得五折待遇的有2种情况,∴获得五折待遇的概率是:=;(3)公平,∵共有8种等可能的结果,获得七折待遇的有2种情况,∴获得七折待遇的概率是:=;则两人获胜的概率相同都为:,故此游戏公平.20.现有一张长和宽之比为2:1的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一次操作),如图甲(虚线表示折痕).除图甲外,请你再给出三种不同的操作,分别将折痕画在图①至图③中.规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果是全等的图形,那么就认为是相同的操作,如图乙和图甲示相同的操作.【考点】翻折变换(折叠问题);全等三角形的性质;矩形的性质.【分析】主要根据全等图形的思想去分割长方形.分成4个全等的图形即可.【解答】解:举例如下:21.如图所示:∠AFD和∠BEC中,点A、E、F、C在同一直线上,有下面四个选项:①AD=CB;②AE=CF;③∠B=∠D;④AD∥BC,请用上述选项完成填空,使填完的语句成为一个正确的判断,并说明理由.如果已知①或②或①、③或③或②、④或④或④,那么②或①或③,(从①、②、③、④中选填)【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】可根据全等三角形判定中AAS、ASA、SSS、SAS等条件来判断需要哪些条件可证得两三角形全等.然后根据全等三角形的性质看两三角形全等后能得出什么样的等量条件【解答】解:若①AD=BC,③∠B=∠D,④AD∥BC,则②AE=CF.理由:∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE,∴AF=CE,∴AE=CF,故答案分别为①,③,④,②.(2)若②AE=CF,③∠B=∠D,④AD∥BC,则①AD=B C.理由:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AF=EC,在△ADF和△CBF中,,∴△ADF≌△CBE,∴AD=BC,故答案分别为②,③,④,①.(3)若①AD=BC,②AE=CF,④AD∥BC,则,③∠B=∠D.理由:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AF=EC,在△ADF和△BCE中,,∴△ADF≌△CBE,∴∠B=∠D.故答案为①,②,④,③.22.在20km的越野比赛中,甲乙两选手均跑完全程,他们的行程y(单位:km)随时间x (单位:h)变化的图象如图所示,根据图中提供的信息,解答下列问题:(1)请解释点A的实际意义;(2)求出发1.5小时,乙的行程比甲多多少?(3)甲若要和乙同时到达终点,他出发1.5小时后应将速度调整为16km/h.【考点】一次函数的应用.【分析】(1)根据图形可以得到点A表示的实际意义;(2)根据图象可以分别求得甲乙在0.5≤x≤1.5时的函数解析式,从而可以解答本题;(3)根据(2)中的函数关系式和图象可以求得甲出发1.5小时后应将速度调整为多少.【解答】解:(1)由图可知,点A的实际意义是乙在0.5小时时,跑了5千米;(2)设过点(0.5,8)、(1,10)的直线的解析式为y=kx+b,,解得,,即过点(0.5,8)、(1,10)的直线的解析式为y=4x+6,当x=1.5时,y=4×1.5+6=12;设过点(0.5,5)的函数解析式为y=mx,则5=0.5m,得m=10,∴过点(0.5,5)的函数解析式为y=10x,当x=1.5时,y=10×1.5=15,∵15﹣12=3,∴出发1.5小时,乙的行程比甲多3千米;(3)将x=2代入y=10x得,y=20,∴甲若要和乙同时到达终点,他出发1.5小时后应将速度调整为:=16km/h,即甲若要和乙同时到达终点,他出发1.5小时后应将速度调整为16km/h.23.(1)特例导航:请根据所给的运算程序完成填空.(2)探索与归纳:运算程序例如按左侧的形式完成你的举例①从1~9这9个数字中,任意选择3个不同的数字3、2、5 1、2、3②由这三个数字组成6个不同的三位数(个位数字、十位数字、百位数字互相不重复)325、352、253、235、523、532 123、132、213、231、312、321③将②中这6个三位数相加325+352+253+235+523+532=a=22201332④用③所得的和除以这三个数字的和,得结果a÷(3+2+5)=222222如果把你最初任意选择的三个不同的数字分别用a、b、c表示,且a≠b≠c,请再次根据所给运算程序完成填空.运算程序运算过程①从1~9这9个数字中,任意选择3个不同的数字a、b、c,且a≠b≠c②由这三个数字组成6个不同的三位数(个位数字、十位数字、百位数字互相不重复)③将②中这6个三位数相加④用③所得的和除以这三个数字的和,得结果归纳:从1~9这9个数字中,任意选择3个不同的数字,由这三个数字组成6个不同的三位数(个位数字、十位数字、百位数字互相不重复),把这6个三位数相加,然后用所得的和除以这三个数字的和,结果是222.【考点】整式的混合运算;规律型:数字的变化类.【分析】举出数1、2、3,再依次求出即可;举出数a、b、c再依次求出即可.【解答】解:1、2、3;数为123、132、213、231、312、321;a=325+352+253+235+523+532=2220;123+132+213+231+312+321=1332;2220÷(3+2+5)=222,1332÷(1+2+3)=222;a、b、c;数为100a+10b+c、100a+10c+b、100b+10a+c、100b+10c+a、100c+10b+a、100c+10a+b;和为++++=222(a+b+c);222(a+b+c)÷(a+b+c)=222;故答案为:1、2、3;123、132、213、231、312、321;2220;1332;222;222;222.24.已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,试说明一下论断正确的理由:(1)∠BDC=90°;(2)BF=AC;(3)CE=.【考点】三角形综合题.【分析】(1)由线段垂直平分线的性质得出BD=CD,由等腰三角形的性质得出∠DCB=∠ABC=45°,再由三角形内角和定理求出∠BDC=90°即可;(2)由ASA证△BDF≌△CDA,由全等三角形的性质即可得出结论;(3)在△ABC中由垂直平分线可得AB=BC,即点E是AC的中点,再结合(2)的结论即可求解.【解答】证明:(1)∵DH垂直平分BC,∴BD=CD,∴∠DCB=∠ABC=45°,∴∠BDC=180°﹣45°﹣45°=90°;(2)∵DH垂直平分BC,且∠ABC=45°,∴BD=DC,且∠BDC=90°,∵∠A+∠ABF=90°,∠A+∠ACD=90°,∴∠ABF=∠ACD,在△BDF和△CDA中,,∴△BDF≌△CDA(ASA),∴BF=A C.(3)由(1)得BF=AC,∵BE平分∠ABC,且BE⊥AC,∴∠ABE=∠CBE,∠AEB=∠CEB=90°,在△ABE和△CBE中,,∴△ABE≌△CBE(ASA),∴CE=AE=AC=BF.2017年3月19日。