2019届湖北省九年级下学期2月月考数学试卷【含答案及解析】
- 格式:docx
- 大小:472.98 KB
- 文档页数:22
2019届湖北省九年级上学期第二次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 自行车车轮要做成圆形,实际上是根据圆的特征()A. 圆是轴对称图形B. 直径是圆中最长的弦C. 圆上各点到圆心的距离相等D. 圆是中心对称图形3. 函数y=-x2+1的图象大致为()A. B. C. D.4. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A. 2.5B. 3C. 3.5D. 45. 将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A. y=(x+1)2+2B. y=(x-1)2+2C. y=(x-1)2-2D. y=(x+1)2-26. 如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()A. 60°B. 90°C. 120°D. 150°7. 从正方形铁片上截取2 cm宽的一个矩形,剩余矩形的面积为80 cm2,则圆正方形的面积为()A. 100 cm2B. 121 cm2C. 144 cm2D. 169 cm28. 如图,在三个等圆上各有一条劣弧,弧AB、弧CD、弧EF,如果弧AB+弧CD=弧EF,那么AB+CD与EF的大小关系是()A. AB+CD=EFB. AB+CD<EFC. AB+CD>EFD. 大小关系不确定9. 已知抛物线y=mx2+4x+m+3开口向下,且与坐标轴的公共点有且只有2个,则m的值为( )A. m=-4B. m=-3或-4C. m-3、-4、0或1D. -4<m<010. 如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为-1、3,则下列结论:① abc>0;② 2a+b=0;③ 4a+2b+c<0;④ 对于任意x均有ax2-a+bx-b >0,其中正确的个数有()A. 1B. 2C. 3D. 4二、填空题11. 点A(3,n)关于原点对称的点的坐标为(-3,2),那么n=___________12. 已知方程x2+kx-2=0的一个根是1,则k的值是___________,另一个根是___________13. 如图,AB⊥BC,AB=BC=2 cm,弧OA与弧OC关于点O成中心对称,则AB、BC、弧CO、弧OA所围成的面积是_______cm2.三、判断题14. 如图,残破的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,AB=24 cm,CD=8 cm,则圆的半径为___________cm四、填空题15. 已知△ABC的顶点坐标为A(1,2)、B(2,2)、C(2,1),若抛物线y=ax2与该三角形无公共点,则a的取值范围是__________________________16. 如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,在线段AC上有一动点P(P不与C 重合),以PC为直径作⊙O交PB于Q点,连AQ,则AQ的最小值为___________五、判断题17. 解方程:(1) x(2x-5)=4x-10 (2) x2-4x-7=0六、解答题18. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?19. 已知抛物线y=x2-4x+3(1) 直接写出它的开口方向、对称轴、顶点坐标(2) 当y<0时,直接写出x的取值范围七、判断题20. 如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-1)、B(-3,3)、C(-4,1)(1) 画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标(2) 画出△ABC绕点A按逆时针旋转90°后的△AB2C2,并写出点C的对应点C2的坐标21. 如图,已知⊙O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD(1) 求证:E是OB的中点(2) 若AB=8,求CD的长22. 2016年里约,中国女排力克塞尔维亚夺得冠军,女排姑娘们平常刻苦训练,关键时刻为国争光.如图,训练排球场的长度OD为15米,位于排球场中线处网球的高度AB为2.5米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞出.当排球运行至离点O的水平距离OE为5米时,到达最高点G.将排球看成一个点,它运动的轨迹是抛物线,建立如图所示的平面直角坐标系(1) 当球上升的最大高度为3米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式(不要求写自变量x的取值范围)(2) 在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为2.7米,问这次她是否可以拦网成功?请通过计算说明(3) 若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)23. △ABC中,P为△ABC内∠A的平分线上,过P作PD⊥AB,PE⊥AC,垂足分别为D、E,连接PB、PC,使得∠BPC=120°(1) 如图1,∠A=60°,若PB=PC,证明:BD+CE=BC(2) 如图2,∠A=60°,若PB≠PC,问上述结论是否还成立?若成立,请证明;若不成立,请说明理由(3) 如图3,∠BAC=135°,D、E为线段BC上的两点,∠DAE=90°,且AD=AE.若BD=5,CE=2,请你直接写出线段DE=_________24. 已知如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于点C.若A(-1,0),且OC=3OA(1) 求抛物线的解析式(2) 若M点为抛物线上第四象限内一动点,顺次连接AC、CM、MB,求四边形MBAC面积的最大值(3) 将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方.若∠NBD=∠DCA,试求E点的坐标参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第24题【答案】。
2023-2024学年湖北省学高一下册2月月考数学试题一、单选题1.已知πcos()63x -=,则πcos cos(3x x +-等于()A B .±C .-1D .1【正确答案】D【分析】根据两角差的余弦公式以及辅助角公式即可求解.【详解】π1πcos cos()cos cos sin cos 132263x x x x x x ⎛⎫+-=++-⨯= ⎪⎝⎭,故选:D2.已知a ,b ∈R ,则“0ab ≠”的一个必要条件是()A .0a b +≠B .220a b +≠C .330a b +≠D .110a b+≠【正确答案】B【分析】利用3,3a b ==-否定ACD 选项,进而得答案.【详解】解:对于A 选项,当3,3a b ==-时,0ab ≠,此时0a b +=,故0a b +≠不是0ab ≠的必要条件,故错误;对于B 选项,当0ab ≠时,220a b +≠成立,反之,不成立,故220a b +≠是0ab ≠的必要条件,故正确;对于C 选项,当3,3a b ==-时,0ab ≠,但此时330a b +=,故330a b +≠不是0ab ≠的必要条件,故错误;对于D 选项,当3,3a b ==-时,0ab ≠,但此时110a b +=,故故110a b+≠不是0ab ≠的必要条件,故错误.故选:B3.函数()()23log 45f x x x =-++的单调减区间是()A .(),2∞-B .()2,∞+C .()2,5D .()1,2-【正确答案】C【分析】先求出函数定义域,再根据复合函数单调性的判断法则求解单调区间.【详解】由题:2450x x -++>,()()150x x +-<,解得:()1,5x ∈-,()()23log 45f x x x =-++的减区间,即245y x x =-++的减区间,对称轴为2x =结合二次函数单调性,所以()()23log 45f x x x =-++的减区间()2,5.故选:C此题考查求复合函数的单调区间,需要熟练掌握单调性的讨论方式,易错点在于漏掉考虑定义域,导致出错.4.在平行四边形ABCD 中,E 是对角线AC 上靠近点C 的三等分点,点F 在BE 上,若13AF x AB AD =+,则x =()A .23B .45C .56D .67【正确答案】C【分析】根据平面向量三点共线定理和平面向量基本定理,由对应系数相等列方程求解即可.【详解】由题可知()23AE AB AD =+,∵点F 在BE 上,∴()1AF AB AE λλ=+- ,∴2133AF λ⎛⎫=+ ⎪⎝⎭ 2233AB AD λ⎛⎫+- ⎪⎝⎭ .∴221333λ-=,12λ=.∴21153326x =+⨯=.故选:C .5.设(0,)x π∈,则函数()f x =)A.⎡⎣B .[]0,2C.⎡⎣D .[)0,2【正确答案】A利用二倍角公式化简函数表达式,再利用辅助角公式以及三角函数的性质即可求解.【详解】由(0,)x π∈,则0,22x π⎛⎫∈ ⎪⎝⎭所以()f x ==sin 2sin 2224x x x π⎛⎫=-=- ⎪⎝⎭,又,2444x πππ⎛⎫-∈- ⎪⎝⎭,所以sin 2242x π⎛⎫-<-< ⎪⎝⎭,所以0sin 242x π⎛⎫≤-< ⎪⎝⎭,所以()0f x ≤<故选:A本题考查了三角恒等变换、求三角函数的值域,考查了基本运算求解能力,属于中档题.6.已知0x >,0y >,且420x y xy +-=,则2x y +的最小值为()A .16B .8+C .12D .6+【正确答案】A【分析】由题意得,241x y+=,再根据基本不等式乘“1”法即可得最小值.【详解】由题可知241x y+=,乘“1”得24822(2)82816x y x y x y x y y x ⎛⎫+=++=++≥= ⎪⎝⎭,当且仅当82x y y x =时,取等号,则2x y +的最小值为16.故选:A7.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,过点,012A π⎛⎫ ⎪⎝⎭,,23B π⎛⎫⎪⎝⎭,当5,1212x ππ⎡⎤∈⎢⎥⎣⎦,()()2cos 43g x mf x x π⎛⎫=+- ⎪⎝⎭的最大值为9,则m 的值为()A .2B .52C .2和52D .2±【正确答案】B由图可得()2sin 26f x x π⎛⎫=- ⎪⎝⎭,所以()4sin 26g x m x π⎛⎫=-+ ⎪⎝⎭212sin 26x π⎛⎫-- ⎪⎝⎭,令sin 2[0,1]6x t π⎛⎫-=∈ ⎪⎝⎭,转化为求2241y t mt =-++的最大值问题.【详解】由已知,43124T πππ=-=,所以2T ππω==,2ω=,又()23f π=,||2ϕπ<,所以sin(2)13πϕ⨯+=,6πϕ=-,故()2sin 26f x x π⎛⎫=- ⎪⎝⎭,所以()()2cos 43g x mf x x π⎛⎫=+-= ⎪⎝⎭4sin 26m x π⎛⎫-+ ⎪⎝⎭212sin 26x π⎛⎫-- ⎪⎝⎭,因5,1212x ππ⎡⎤∈⎢⎥⎣⎦,所以220,63x ππ⎡⎤-∈⎢⎥⎣⎦,sin 2[0,1]6x π⎛⎫-∈ ⎪⎝⎭,令sin 26x t π⎛⎫-= ⎪⎝⎭,则[0,1]t ∈,故2241y t mt =-++,若0m ≤,易得max 1y =,不符合题意;若01m <<,易得2max 129y m =+=,解得2m =±(舍);若m 1≥,易得max 419y m =-=,解得52m =.故选:B.本题考查已知正弦型函数的最大值求参数的问题,涉及到由图象确定解析式、二次函数最值等知识,是一道有一定难度的题.8.已知平面向量a 、b 、c满足2a b a c ==⋅= ,且12a c a λ+≥- 对任意实数λ恒成立,则1122a b b c ++-的最小值为()A 31B .23C 35D .5【正确答案】B【分析】不等式12a c a c λ+≥- ,两边平方得到关于实数λ的不等式,进而得到2c =,再利用模长公式将1122a b b c ++- 转化为1122a b c b ++- ,再利用不等式a b a b +≥+即可得解.【详解】由12a c a c λ+≥- ,两边平方得22222124a a c c a a c cλλ+⋅+⋅≥-⋅+ 又2a c ⋅=,且12a c a λ+≥- 对任意实数λ恒成立,即22214204c c λλ⋅++-≥ 恒成立,所以221164204c c ⎛⎫∆=-⋅-≤ ⎪⎝⎭ ,即()2240c -≤ ,所以24c =,即2c = .由2a b c ===,知1122a b a b +=+ ,1122b c c b -=-所以11112222a b b c a b c b a c ++-=++-≥+=当且仅当12a b + 与12c b -同向时取等号.故选:B关键点睛:本题考查向量的综合应用,不等式恒成立问题,解题的关键先利用12a c a c λ+≥- 对任意实数λ恒成立,求得2c =,再利用a b a b +≥+ 求最值,考查了转化思想与运算能力.二、多选题9.若函数()22f x +为偶函数,()1f x +为奇函数,且当(0,1]x ∈时,()ln f x x =,则()A .()f x 为偶函数B .()e 1f =C .141e f ⎛⎫-=- ⎪⎝⎭D .当[1,2)x ∈时,()ln(2)f x x =--【正确答案】ACD【分析】根据题意可得()f x 关于2x =与()1,0对称,再根据对称性满足的等式化简,逐个选项判断即可【详解】对A ,因为函数()22f x +为偶函数,故()()2222f x f x +=-+,故()f x 关于2x =对称.又()1f x +为奇函数,关于原点对称,故()f x 关于()1,0对称.综上,()f x 关于2x =与()1,0对称.关于2x =对称有()()4f x f x =-,关于()1,0对称有()()42f x f x -=--,()()=2f x f x --,故()()22f x f x --=--,即()()=f x f x -,所以()f x 为偶函数,故A正确;对B ,由A ,因为()e 2,3∈,()()()()e 2e e 2ln e 2f f f =--=--=--,故B 错误;对C ,由A ,1114ln 1e e e f f ⎛⎫⎛⎫⎛⎫-===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 正确;对D ,当[1,2)x ∈时,(]20,1x -∈,故()()()2ln 2f x f x x =--=--,故D 正确;故选:ACD10.设a ,b是互相垂直的单位向量,2AB a b λ=+ ,()1AC a b λ=+- ,下列选项正确的是()A .若点C 在线段AB 上,则2λ=B .若AB AC ⊥,则23λ=C .当1λ=时,与AB+ D .当1λ=-时,a 在AC 上的投影向量为1255a b-【正确答案】ABD【分析】对A :根据向量共线分析运算;对B :根据向量垂直运算求解;对C :根据单位向量分析运算;对D :根据投影向量分析运算.【详解】由题意可得:221,0a b a b ==⋅=r r r r,对A :若点C 在线段AB 上,则[),1,AB k AC k =∈+∞uu u r uuu r,则()()211a b k a b ka k b λλλ⎡⎤+=+-=+-⎣⎦r r r r r r,可得()12k k λλ=⎧⎨-=⎩,解得2k λ==或1k λ==-(舍去),故A 正确;对B :由AB AC ⊥,可得()()()()22221221320AB AC a b a b a a b b λλλλλλλ⎡⎤⋅=+⋅+-=+-+⋅+-=-=⎣⎦uu u r uuu r r r r r r r r r ,解得23λ=,故B 正确;对C :当1λ=时,则2AB a b =+===uu u r r r与AB共线的单位向量是⎫=±⎪⎪⎝⎭,故C 错误;对D :当1λ=-时,可得()22221,a AC a a b a a b AC ⋅=⋅-=-⋅====r uuu r r r r r r r uuu r 则a 在AC上的投影向量为()2112cos ,555AC a AC AC a AC a a AC a AC AC a bAC a ACAC AC⋅⋅<>====-uuu r r uuu ruuu r r uuu rr r uuu r r uuu r uuu r r ruuu r r uuu ruuu r uuu r ,故D 正确.故选:ABD .11.某摩天轮共有32个乘坐舱,按旋转顺序依次为1~33号(因忌讳,没有13号),并且每相邻两个乘坐舱与旋转中心所成的圆心角均相等,已知乘客在乘坐舱距离底面最近时进入,在min t 后距离地面的高度()()()()sin 0,0,0,2πf t A t B A ωϕωϕ=++>>∈,已知该摩天轮的旋转半径为60m ,最高点距地面135m ,旋转一周大约30min ,现有甲乘客乘坐11号乘坐舱,当甲乘坐摩天轮15min 时,乙距离地面的高度为(75m +,则乙所乘坐的舱号为()A .6B .7C .15D .16【正确答案】BD【分析】先由最小正周期求出15πω=,进而由最高点和最低点与地面的距离求出6075A B =⎧⎨=⎩,由甲乘坐摩天轮15min 时,距底面为最大高度,求出3π2ϕ=,得到解析式,令()075f t =+求出0454t =min 或754min ,求出每相邻两个乘坐舱旋转到同一高度的时间间隔,分别求出0454t =min 和754min 时,甲乙相差的乘坐舱个数,得到答案.【详解】由题意得:30T =min ,故2π2ππ3015T ω===,摩天轮最低点距底面13560215-⨯=m ,故13515A B A B +=⎧⎨-+=⎩,解得:6075A B =⎧⎨=⎩,故()π60sin 7515f t t ϕ⎛⎫=++ ⎪⎝⎭,由于30T =min ,故甲乘坐摩天轮15min 时,距地面为最大高度,即()π1560sin 157513515f ϕ⎛⎫=⨯++= ⎪⎝⎭,故()sin π1ϕ+=,因为()0,2πϕ∈,所以()ππ,3πϕ+∈,故5ππ2ϕ+=,解得:3π2ϕ=,故()π3π60sin 75152f t t ⎛⎫=++ ⎪⎝⎭,令()00π3π60sin 7575152f t t ⎛⎫=++=+ ⎪⎝⎭()00,30t ∈,解得:0π3πsin 1522t ⎛⎫+=⎪⎝⎭,令0π3ππ2π1524t k +=+,Z k ∈,解得:075304t k =-+,Z k ∈,因为()00,30t ∈,所以()07530,403k +∈-,解得:1k =,此时0454t =令0π3π3π2π1524t k +=+,Z k ∈,解得:045304t k =-+,Z k ∈,因为()00,30t ∈,所以()04530,403k +∈-,解得:1k =,此时0754t =综上:0454t =min 或754min ,每相邻两个乘坐舱与旋转中心所成的圆心角为π16,故每相邻两个乘坐舱旋转到同一高度的时间间隔为π1516minπ1615=,当0454t =min 时,乙比甲晚出发45151544-=min ,甲乙相差15441516=个乘坐舱,由于没有13号乘坐舱,故乙在16号乘坐舱,当0754t =min 时,乙比甲早出发75151544-=min ,甲乙相差15441516=个乘坐舱,故乙在7号乘坐舱.故选:BD12.对任意两个非零的平面向量α 和β,定义αβαβββ⋅=⋅,若平面向量a b 、满足0,a b a≥> 与b 的夹角π0,4θ⎡⎤∈⎢⎥⎣⎦,且a b 和b a都在集合Z,Z n m n m ⎧⎫∈∈⎨⎬⎩⎭∣中.给出以下命题,其中一定正确的是()A .若1m =时,则1a b b a ==B .若2m =时,则12a b =C .若3m =时,则a b的取值个数最多为7D .若2014m =时,则a b的取值个数最多为220142【正确答案】AC【分析】由新定义可知22||cos ||cos ,||||a b a b a b a b b a a a b bθθ⋅⋅====,再对每个命题进行判断,即可得出结论.【详解】对A ,若1m =时,'22||cos ||cos ,||||a b a b a b a b n b a n a a b bθθ⋅⋅======,两式相乘得2'cos n n θ=⋅,又π0,4θ⎡⎤∈⎢⎥⎣⎦,21cos 12θ∴≤≤,即'112n n ≤⋅≤,'1n n ∴==,即1a b b a ==,故A 正确;对B ,若2m =时,则2||cos 2||a b a n a b b bθ⋅=== ,同理||cos ||2b n b a a θ'==,相乘得到2cos 4nn θ'=,又π0,4θ⎡⎤∈⎢⎥⎣⎦,所以21cos 12θ≤≤,即1124nn '≤≤,则()',n n 取值(2,1)时符合1124nn '≤≤,此时1a b = ,故B 错误;对C ,若3m =时,则2||cos 3||a b a n a b b bθ⋅===,同理||co |3s |b n b a a θ'==,相乘得2cos 9nn θ'=,又π0,4θ⎡⎤∈⎢⎥⎣⎦,21cos 12θ∴≤≤,1129nn '∴≤≤,又0≥> a b ,得'n n ≥,3,2,3n n '∴==,4,2n n '==,5,6,7,8,9,1n n '==,a b ∴的取值个数最多为7个,故C 正确;对D ,若2014m =时,由上面推导方法可知22014112nn '≤≤,2220142n nn '≥∴≥,n ∴≥214252014n ∴≤≤,a b ∴ 的取值个数最多为2220141425202114-+≠,故D 错误.故选:AC.数学中的新定义题目解题策略:①仔细阅读,理解新定义的内涵;②根据新定义,对对应知识进行再迁移.三、填空题13.210341272(e 1)16lglg254+--+-=__________.【正确答案】5+5【分析】根据指数幂和对数公式计算即可.【详解】210341272(e 1)16lglg254+-+-()()21343411322lg 425⎛⎫=++⨯ ⎪⎝⎭92222=++--5=故答案为.5+14.已知平面上不共线的向量,,a b c的夹角两两相等,且a b c == ,则,a b b c +-=__________.【正确答案】π6##30︒【分析】由题可得,,a b c两两的夹角为2π3,根据平面向量数量积的定义,运算律及向量夹角公式即得.【详解】因为平面上不共线的向量,,a b c的夹角两两相等,且a b c == ,,,a b c ∴两两的夹角为2π3,22πcos 32a a a b b ∴⋅=⨯=-,22a c c ab ⋅=⋅=- ,∴()()22222223222a b a c b b a a a a a b c b c a ⋅-⋅+-⋅=+⋅-=-+++=,()2222222222a a b a a ab a a b ⋅+=-⨯++=+=,即a b a +=r r r ,()22222222322b b a bc c ca a a -⋅+=+⨯+=-=,即b c -= ,所以()()23cos ,2a a b b c a b b c a b b c +⋅-+-=+- [],0,πa b b c +-∈ ,所以π,6a b b c +-=.故答案为.π615.函数()1,111,12x a x f x x -=⎧⎪=⎨⎛⎫+≠⎪⎪⎝⎭⎩,若关于x 的方程2[f (x )]2-(2a +3)·f (x )+3a =0有五个不同的实数解,则a 的取值范围是________.【正确答案】331,,222⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【分析】要使关于x 的方程2[f (x )]2-(2a +3)·f (x )+3a =0有五个不同的实数解,只需使函数y =f (x )的图象与直线y =32、y =a 共有五个不同的交点,画出函数的大致图象,利用数形结合可得结果.【详解】由2[f (x )]2-(2a +3)·f (x )+3a =0,得[2f (x )-3][f (x )-a ]=0,∴f (x )=32或f (x )=a .画出函数y =f (x )的大致图象,如图,要使关于x 的方程2[f (x )]2-(2a +3)·f (x )+3a =0有五个不同的实数解,即要使函数y =f (x )的图象与直线y =32、y =a 共有五个不同的交点,则a 的取值范围是331,,222⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,故331,,222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.16.对任意实数11,2x y >>,不等式222241(21)(1)x y a y a x +≥--恒成立,则实数a 的最大值为________.【正确答案】不等式222241(21)(1)x y a y a x +≥--恒成立,转化为2224211x y a y x ≤+--,其中11,2x y >>,令()()()()222212112122114211211x x y y x y t y x y x -+-+-+-+=+=+----,两次利用基本不等式即可得出结果.【详解】不等式222241(21)(1)x y a y a x +≥--恒成立,可得转化为2224211x y a y x ≤+--,其中11,2x y >>,令()()()()222212112122114211211x x y y x y t y x y x -+-+-+-+=+=+----≥8=≥=,当且仅当22x y ==时取等号,28a ∴≤,解得a -≤∴实数a 的最大值为.故易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方四、解答题17.已知R a ∈,解关于x 的不等式()2330ax a x +++>.【正确答案】答案见解析【分析】分类讨论求解含参数的一元二次不等式作答即可.【详解】当0a =时,不等式为330x +>,解得1x >-;当0a ≠时,不等式化为()310a x x a ⎛⎫++> ⎪⎝⎭,当a<0时,不等式为()310x x a ⎛⎫++< ⎪⎝⎭,解得31x a -<<-;当0a >时,不等式为()310x x a ⎛⎫++> ⎪⎝⎭,若3a =,不等式为()210x +>,解得1x ≠-;若0<<3a ,解得3x a <-或1x >-;3a >,解得1x <-或3x a>-.综上所述,当a<0时,原不等式的解集是31x x a ⎧⎫-<<-⎨⎬⎩⎭;当0a =时,原不等式的解集是{}|1x x >-;当03a <≤时,原不等式的解集是3|x x a ⎧<-⎨⎩或}1x >-;当3a >时,原不等式的解集是{|1x x <-或3x a ⎫>-⎬⎭.18.如图所示,在ABC 中,D 是边BC 的中点,E 在边AB 上,2,BE EA AD =与CE 交于点O.(1)若BO x AB y AC =+,求,x y 的值;(2)若6AB AC AO EC ⋅=⋅,求AB AC的值.【正确答案】(1)3,41,4x y ⎧=-⎪⎪⎨⎪=⎪⎩【分析】(1)由,,E O C 三点共线,以及,,A O D 三点共线结合共线定理得出,x y 的值;(2)由11()23n AO m AB AC AB nAC -=+=+得出,m n ,进而得出2213622AO EC AB AB AC AC ⋅=-+⋅+ ,结合6AB AC AO EC ⋅=⋅ 得出AB AC的值.【详解】(1)()()BO xAB y AC xAB y BC BA xBA yBA yBC x y BA yBC =+=+-=--+=--+因为12,23BD BC BE BA ==,所以3()2BO x y BE yBC =--+ ,因为,,E O C 三点共线,所以33122x y y --+=①又()2BO x y BA yBD =-++,所以()21x y y -++=②由①②可得,3,41,4x y ⎧=-⎪⎪⎨⎪=⎪⎩(2)设1()2AO mAD m AB AC ==+,()AO AE EO AE nEC AE n AC AE =+=+=+-=1(1)3n n AE nAC AB nAC --+=+ 所以11,231,2n m m n -⎧=⎪⎪⎨⎪=⎪⎩,解得1,21,4m n ⎧=⎪⎪⎨⎪=⎪⎩所以111(),243AO AD AB AC EC AC AE AB AC ==+=-=-+.22111366)4322AO EC AB AC AB AC AB AB AC AC ⎛⎫⋅=⨯+⋅-+=-+⋅+⎪⎝⎭又6AB AC AO EC ⋅=⋅ ,所以2213022AB AC =-+ ,223ABAC= 即3ABAC= 19.已知,42ππα⎛∈⎫- ⎪⎝⎭,且满足26sin sin24αα=+(1)求sin2α的值;(2)若20,,tan tan 602πβββ⎛⎫∈--= ⎪⎝⎭,求αβ+的值.【正确答案】(1)45(2)3π4【分析】(1)由平方关系以及商数关系得出tan 2α=,再由22tan sin22sin cos tan 1ααααα==+求解即可;(2)解方程得出tan 3β=,再由()tan 1αβ+=-以及π,π2αβ⎛⎫+∈ ⎪⎝⎭得出αβ+的值.【详解】(1)当0α=时,sin sin20αα==,不满足26sin sin24αα=+,故0α≠.因为26sin sin24αα=+,所以22sin sin cos 2cos αααα=+.即222sin cos 2cos tan 21sin tan αααααα++==,即2tan tan 20αα--=解得tan 2α=或tan 1α=-(舍)故2222sin cos 2tan 4sin22sin cos sin cos tan 15ααααααααα====++(2)()()2tan tan 6tan 3tan 20ββββ--=-+=,解得tan 3β=或tan 2β=-(舍).由(1)可知,πtan 2tan14α=>=,则,42⎛⎫∈ ⎪⎝⎭ππα,同理可得,42ππβ⎛⎫∈ ⎪⎝⎭即π,π2αβ⎛⎫+∈ ⎪⎝⎭,()tan tan 5tan 11tan tan 16αβαβαβ++===---因为函数tan y x =在π,π2⎛⎫⎪⎝⎭上为单调函数,所以3π4αβ+=20.已知函数()2sin sin 2cos ,R 662x f x x x x ππωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭(其中)0ω>(1)求函数()f x 的最大值;(2)若对任意R a ∈,函数()(],,y f x x a a π=∈+与直线1y =-有且仅有两个不同的交点,且关于x 的方程()12f x =在(]0,π上有两不等实数解()1212,x x x x <,求()12sin x x -的值.【正确答案】(1)1(2)4-【分析】(1)根据两和差的正弦公式,结合降幂公式、辅助角公式、正弦型函数最值性质进行求解即可;(2)根据正弦型函数的性质,得出2ω=,再由对称性以及诱导公式得出()12sin x x -的值.【详解】(1)2ππ()sin()sin()2cos,R 662x f x x x x ωωω=++--∈3131cos cos (cos 1)2222x x x x x ωωωωω=++--+1πcos )12sin()126x x x ωωω=--=--,所以函数()f x 的最大值为1;(2)若对任意R a ∈,函数(),(,π]y f x x a a =∈+与直线1y =-有且仅有两个不同的交点,则()y f x =的周期为π,又由0ω>,得2ππω=,得2ω=.1()2f x =,即4πsi 23n 6x ⎛⎫⎪⎝⎭=- 函数(]πsin 2,60,y x x π⎛⎫=-∈ ⎪⎝⎭与34y =的图象如下图所示由对称性可得,122π3x x +=,1ππ20,63x ⎛⎫-∈ ⎪⎝⎭因为14πsi 23n 6x ⎛⎫⎪⎝⎭=- ,所以1πc os 26x ⎛⎫= ⎝⎭=-⎪()1211112ππππππsin sin(2)sin (2)sin (2)cos(2362266x x x x x x ⎡⎤⎡⎤-=-=--=---=--=⎢⎥⎢⎥⎣⎦⎣⎦21.已知函数()()2ln f x a a x ⎛⎫=+∈ ⎪⎝⎭R .(1)若函数()()()ln 233F x f x a x a ⎡⎤=--+-⎣⎦有唯一零点,求实数a 的取值范围;(2)若对任意实数3,14m ⎡⎤∈⎢⎥⎣⎦,对任意[]12,,41x x m m ∈-,恒有()()12ln2f x f x -≤成立,求正实数a 的取值范围.【正确答案】(1)451,2,32⎛⎤⎧⎫-⎨⎬⎥⎝⎦⎩⎭U(2){12a a ≥-【分析】(1)将函数()()()ln 233F x f x a x a ⎡⎤=--+-⎣⎦有唯一零点转化成方程()()222320a x a x -+--=有唯一解的问题,对二次项系数进行分类讨论即可;(2)由复合函数单调性可知,函数()()2ln f x a a x ⎛⎫=+∈ ⎪⎝⎭R 为[],41m m -上的减函数,将()()12ln2f x f x -≤恒成立转化成()24420am a m -++≥在3,14m ⎡⎤∈⎢⎥⎣⎦上恒成立,讨论对称轴与区间的位置关系,求出其在区间3,14⎡⎤⎢⎥⎣⎦上的最小值,使最小值大于等于0即可求得正实数a 的取值范围.【详解】(1)函数()()2ln ln 233F x a a x a x ⎛⎫=+--+-⎡⎤ ⎪⎣⎦⎝⎭有唯一零点,即()22330a a x a x+=-+->①有唯一零点,即()()222320a x a x -+--=有唯一零点,当2a =时,20x -=,解得2x =,符合题意;当2a ≠时,方程为一元二次方程,其()22Δ(23)82(25)a a a =-+-=-当52a =时,Δ0=,方程有两个相等的实数根2x =,符合题意;当52a ≠时,Δ0>,方程有两个不等的实数根12x =,212x a =-;若12x =为①的解,则()2223302a a a +=-⨯+->,解得1a >-;若212x a =-为①的解,则()212330122a a a a a +=-⨯+->--,解得43a >;要使①有唯一实数解,则413a -<≤.综上,实数a 的取值范围为451,2,32⎛⎤⎧⎫-⎨⎬ ⎥⎝⎦⎩⎭U .(2)函数()2ln f x a x ⎛⎫=+ ⎪⎝⎭,其中内部函数2y a x =+在[],41x m m ∈-上为减函数,外部函数ln y x =为增函数,由复合函数性质知()2ln f x a x ⎛⎫=+ ⎪⎝⎭为[],41m m -上的减函数,()()max 2ln f x f m a m ⎛⎫==+ ⎪⎝⎭,()()min 241ln 41f x f m a m ⎛⎫=-=+ ⎪-⎝⎭,不等式()()12ln 2f x f x -≤转化为()()12max ln 2f x f x -≤,即转化为22ln ln ln 241a a m m ⎛⎫⎛⎫+-+≤ ⎪⎪-⎝⎭⎝⎭,即()222ln ln 224420224141a a m m am a m a a m m ⎛⎫++ ⎪≤⇒≤⇒-++≥ ⎪ ⎪++--⎝⎭令()()2442g m am a m =-++,3,14m ⎡⎤∈⎢⎥⎣⎦,即()min 0g m ≥.二次函数对称轴为411882a m a a+==+,由0a >,开口向上(i )当407a <≤时,11182a +≥,函数()g m 在3,14⎡⎤⎢⎥⎣⎦上单调递减,()()()min 14420g m g a a ==-++≥,解得23a ≥,不符合题意,舍去;(ii )当4475a <<时,3111482a <+<,函数()g m 在311,482a ⎡⎤+⎢⎥⎣⎦上单调递减,在11,182a ⎛⎤+ ⎥⎝⎦上单调递增,()min 11082g m g a ⎛⎫=+≥ ⎪⎝⎭,即224160a a -+≤,解得1212a -≤+即4125a -≤<;(iii )当45a ≥时,113824a +≤,函数()g m 在3,14⎡⎤⎢⎥⎣⎦上单调递增,()()min 39344204164g m g a a ⎛⎫==⨯-+⨯+≥ ⎪⎝⎭,解得23a ≥,即45a ≥;综上可知,正实数a 的取值范围{12a a ≥-.关键点点睛:本题第二小问的关键是将“对任意[]12,,41x x m m ∈-,恒有()()12ln2f x f x -≤成立”进行等价转化,只需满足()()12max ln2f x f x -≤,再利用函数()f x 的单调性,即可将问题转化成不等式()24420am a m -++≥在3,14m ⎡⎤∈⎢⎥⎣⎦上恒成立的问题,再讨论二次函数对称轴与区间的位置关系即可求得参数的取值范围.22.已知定义域不为R 的函数()212xxk f x k -=+⋅(k 为常数)为奇函数.(1)求实数k 的值;(2)若函数()()2π(0),2sin cos20,2g x x x h x x x x λ⎛⎫⎡⎤=>=+∈⎪⎢⎥⎣⎦⎝⎭,是否存在实数λ,使得()()g h x f h x ⎡⎤⎡⎤>⎣⎦⎣⎦成立?若存在,求出λ的值;若不存在,请说明理由.【正确答案】(1)1k =-(2)存在;12λ<<【分析】(1)根据题意,由函数奇偶性的定义,代入计算即可得到结果;(2)根据题意,得到函数()h x 的值域,然后根据函数()f x 与()g x 的单调性进行讨论,即可得到结果.【详解】(1)由题意可得,()()0f x f x -+=,则2201212x xx xk k k k ----+=+⋅+⋅化简得()()()()221210x f x f x k +-=+-=,因为2120x +>,所以210k -=,即1k =±当1k =时,()12211212x x xf x -==-+++,其定义域为R ,不符合题意;当1k =-时,()12211212x x xf x --==---,其定义域为{}0x x ≠,满足题意所以,1k =-(2)因为()2(0)g x x x =>,所以()2sin cos20h x x x λ=+>在π0,2x ⎡⎤∈⎢⎥⎣⎦上恒成立,则必有0x =时,()00h λ=>,当π2x =时,π202h λ⎛⎫=-> ⎪⎝⎭,则2λ<,所以02λ<<,()22112sin cos22sin 2sin 2sin 22h x x x x x x λλλλλλλ⎛⎫=+=-++=--++ ⎪⎝⎭,因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以[]sin 0,1∈x ,当102λ<≤时,()2112sin 22h x x λλλλ⎛⎫=--++ ⎪⎝⎭在π0,2x ⎡⎤∈⎢⎥⎣⎦单调递增,即()[],2h x λλ∈-当122λ<<时,()2112sin 22h x x λλλλ⎛⎫=--+ ⎪⎝⎭在π0,2x ⎡⎤∈⎢⎣⎦单调递增,先增后减,在0x =或π2处取得最小值,且()0h λ=,π22h λ⎛⎫=- ⎪⎝⎭,()max 12h x λλ=+,其中()12ϕλλλ=+为对勾函数,在122λ<<上单调递减,2λ<<上单调递增,又()139,22224ϕϕϕ⎛⎛⎫=== ⎪ ⎝⎭⎝⎭,故()94ϕλ⎤∈⎦综上,()[]0,3h x ∈因为()2112xf x =--在()0,∞+递减,()2g x x =在()0,∞+递增,当[]0,3x ∈时,令()()()k x g x f x =-,则其单调递增,且()()10,20k k <>,则存在()01,2x ∈,使得()00k x =,又()()g h x f h x ⎡⎤⎡⎤>⎣⎦⎣⎦,故()1h x >,所以()min 1h x >当102λ<≤时,()min 1h x λ=<,不符合要求;当122λ<<时,令()01π212h h λλ⎧=>⎪⎨⎛⎫=-> ⎪⎪⎝⎭⎩所以12λ<<,综上,存在()1,2λ∈。
2019版九年级数学下学期第二次联考试卷(含解析)一.选择题(共8小题,满分24分,每小题3分)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣42.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④3.下列图形中,不是中心对称图形的是()A.B.C.D.4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B.C.D.5.下列各式属于最简二次根式的是()A.B.C.D.6.在⊙O中,P为其内一点,过点P的最长弦的长为8cm,最短的弦的长为4cm,则OP的长为()A.cm B.cm C.2cm D.1cm7.如图,在四个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这四个三角形中,形状与众不同的是()A.B.C.D.8.如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()A.34πcm2B.128πcm2C.32πcm2D.16πcm2二.填空题(共8小题,满分24分,每小题3分)9.方程(x+5)(x﹣7)=﹣26,化成一般形式是,其二次项的系数和一次项系数的和是.10.选做题(从下面两题中任选一题,如果做了两题的,只按第(1)题评分)(Ⅰ)计算:=(Ⅱ)用计算器计算:≈(保留三位有效数字).11.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:12.如图,在Rt△ABC中,AB=3,BC=4,∠ABC=90°,过B作A1B⊥AC,过A1作A1B1⊥BC,得阴影Rt△A1B1B;再过B1作B1A2⊥AC,过A2作A2B2⊥BC,得阴影Rt△A2B2B1;…如此下去.请猜测这样得到的所有阴影三角形的面积之和为.13.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是.14.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=.15.如图所示:AP、PB、AB分别是三个半圆的直径,PQ⊥AB,面积为9π的圆O与两个半圆及PQ 都相切,而阴影部分的面积是39π,则AB的长是.16.如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似但不全等,则格点P的坐标是.三.解答题(共9小题,满分72分)17.(6分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.18.(6分)已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?19.(6分)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).(1)求反比例函数的解析式及E点的坐标;(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.20.(6分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.22.(8分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.23.(8分)某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.24.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.25.(12分)如图,点E在菱形ABCD的对角线BD上,连接AE,且AE=BE,⊙O是△ABE的外接圆,连接OB.(1)求证:OB⊥BC;(2)若BD=,tan∠OBD=2,求⊙O的半径.xx江西省南昌市八一中学九年级(下)第二次联考数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④【分析】根据抛物线与x轴的交点坐标为(1,0)对①进行判断;根据对称轴方程为x=﹣=﹣1对②进行判断;根据抛物线的对称性得到抛物线与x轴的交点坐标为(﹣3,0)和(1,0),由此对③进行判断;根据抛物线与y轴的交点在x轴下方,得到c<0,而a+b+c=0,则a﹣2b+c =﹣3b,由b>0,于是可对④进行判断.【解答】解:∵x=1时,y=0,∴a+b+c=0,所以①正确;∵x=﹣=﹣1,∴b=2a,所以②错误;∵点(1,0)关于直线x=﹣1对称的点的坐标为(﹣3,0),∴抛物线与x轴的交点坐标为(﹣3,0)和(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,所以③正确;∵抛物线与y轴的交点在x轴下方,∴c<0,而a+b+c=0,b=2a,∴c=﹣3a,∴a﹣2b+c=﹣3b,∵b>0,∴﹣3b<0,所以④错误.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).3.下列图形中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B.C.D.【分析】直接利用概率的意义分析得出答案.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选:B.【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.5.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.6.在⊙O中,P为其内一点,过点P的最长弦的长为8cm,最短的弦的长为4cm,则OP的长为()A.cm B.cm C.2cm D.1cm【分析】根据直径是圆中最长的弦,知该圆的直径是8cm;最短弦即是过点P且垂直于过点P的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=8cm,CD=4cm.∵CD⊥AB,∴CP=CD=2.根据勾股定理,得OP ==2(cm).故选:A.【点评】此题综合运用了垂径定理和勾股定理.解题关键是正确理解圆中过一点的最长的弦和最短的弦.7.如图,在四个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这四个三角形中,形状与众不同的是()A.B.C.D.【分析】分别求A、B、C、D选项中各边长,可以判定B、C、D中三角形为直角三角形,A为钝角三角形,即可解题.【解答】解:图A中三角形各边长为、、,故该三角形为钝角三角形;图B中各边长2、4、,故该三角形为直角三角形,且两直角边的比值为1:2;图C中各边长长、、,故该三角形为直角三角形,且两直角边的比值为1:2;图D中各边、2、5,故该三角形为直角三角形,且两直角边的比值为1:2,故B、C、D选项中的三角形均相似,故选:A.【点评】本题中考查了勾股定理的逆定理判定直角三角形,考查了相似三角形的证明,考查了勾股定理在直角三角形中的运用,本题中求证B、C、D选项中的直角三角形相似是解题的关键.8.如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()A.34πcm2B.128πcm2C.32πcm2D.16πcm2【分析】作辅助线,连接OE和OB,根据已知条件,可知△OEB为直角三角形,根据勾股定理可将直角三角形的各边长表示出来,阴影的面积等于以OB和OE为半径的半圆的面积差.【解答】解:若大半圆的圆心为O,过点O作OE⊥AB于点E,连接OB,∵弦AB与小半圆相切,AB∥CD,∴小圆半径为OE,∴OE⊥AB,EB=AB=8cm,在Rt△OBE中,OB2=OE2+EB2,∴OB2﹣OE2=EB2=64,S阴影=﹣==32πcm2;故图中阴影部分的面积为32πcm2.故选C.【点评】注意:不规则图形面积的求法可用几个规则图形面积相加或相减求得.二.填空题(共8小题,满分24分,每小题3分)9.方程(x+5)(x﹣7)=﹣26,化成一般形式是x2﹣2x﹣9=0 ,其二次项的系数和一次项系数的和是﹣1 .【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项,其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:①由方程(x+5)(x﹣7)=﹣26,得x2﹣2x﹣35=﹣26,即x2﹣2x﹣9=0;②x2﹣2x﹣9=0的二次项系数是1,一次项系数是﹣2,所以其二次项的系数和一次项系数的和是1+(﹣2)=﹣1;故答案为:x2﹣2x﹣9=0;﹣1.【点评】本题主要考查了一元二次方程的一般形式,在去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.10.选做题(从下面两题中任选一题,如果做了两题的,只按第(1)题评分)(Ⅰ)计算:=0.1(Ⅱ)用计算器计算:≈0.316 (保留三位有效数字).【分析】(1)此题需根据二次根式的乘法法则进行计算,再把所得结果进行化简即可得出答案.(2)此题须先把转化成,再与进行相乘,即可求出答案.【解答】解:(Ⅰ)===0.1;(Ⅱ)==≈0.316,故答案为:0.1,0.316.【点评】此题考查了二次根式的乘除法,此题较简单,在解题时要注意最后结果要化简.11.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.12.如图,在Rt△ABC中,AB=3,BC=4,∠ABC=90°,过B作A1B⊥AC,过A1作A1B1⊥BC,得阴影Rt△A1B1B;再过B1作B1A2⊥AC,过A2作A2B2⊥BC,得阴影Rt△A2B2B1;…如此下去.请猜测这样得到的所有阴影三角形的面积之和为2.【分析】根据相似三角形的性质,相似三角形的面积比等于相似比的平方,那么阴影部分面积与空白部分面积之比为16:25,那么所有的阴影部分面积之和可求了.【解答】解:易得△ABA1∽△BA1B1,∴相似比为A1B:AB=sin∠A=4:5,那么阴影部分面积与空白部分面积之比为16:25,同理可得到其他三角形之间也是这个情况,那么所有的阴影部分面积之和应等于=3×4÷2×=.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.13.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是(0,3).【分析】y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,3).【解答】解:当x=0时,y=3,即交点坐标为(0,3).【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,要明确y轴上点的坐标横坐标为0.14.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=30°.【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故答案为30°.【点评】此题主要考查了旋转的性质以及平行线的性质,得出AC=AC′,∠BAC=∠ACC′=75°是解题关键.15.如图所示:AP、PB、AB分别是三个半圆的直径,PQ⊥AB,面积为9π的圆O与两个半圆及PQ 都相切,而阴影部分的面积是39π,则AB的长是32 .【分析】设最大圆的圆心O1,中园圆心O2,小圆O3,小圆半径y,中圆半径x,过O点作ON ⊥AB于N,根据相切两圆的性质求出则OO1、OO3、O1N、O3N的长,由勾股定理得到方程求出xy=3(x+y),根据已知求出xy=48,代入即可求出AB.【解答】解:设最大圆的圆心O1,中园圆心O2,小圆O3,小圆半径y,中圆半径x,过O点作ON⊥AB于N,则OO1=x+y﹣3 OO3=y+3 O1N=O1P+PN=X﹣Y+3,O3N=Y﹣3,由勾股定理根据ON2=OO12﹣O1N2=OO32﹣O3N2,∴(x+y﹣3)2﹣(x﹣y+3)2=(y+3)2﹣(y﹣3)2,解方程得:xy=3(x+y),因为图中阴影部分的面积是39π,所以[π(x+y)2﹣πx2﹣πy2]﹣9π=39π,∴xy=48,x+y=16,∴AB=32,故答案为:32.【点评】本题主要考查对相切两圆的性质,勾股定理等知识点的理解和掌握,能推出xy=3(x+y)和xy=48是解此题的关键.16.如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似但不全等,则格点P的坐标是(1,4)或(3,4).【分析】根据题意作图,因为不全等,可以作相似比为1:2的相似三角形,根据图形即可得解.【解答】解:如图:此时AB对应PA或PB,且相似比为1:2.故点P的坐标为:(1,4)或(3,4).【点评】此题考查了相似三角形的性质.解题的关键是数形结合思想的应用即根据题意作图解此题.还要注意别漏解.三.解答题(共9小题,满分72分)17.(6分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.【分析】(1)直接利用平方差公式分别化简各式进而计算得出答案;(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.【解答】解:(1)∵a===+,b===﹣,∴ab=(+)×(﹣)=1,a+b=++﹣=2;(2)=+=(﹣)2+(+)2=5﹣2+5+2=10.【点评】此题主要考查了分母有理化,正确得出有理化因式是解题关键.18.(6分)已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?【分析】因为方程有两个实根,所以△>0,从而用k的式子表示方程的解,根据△ABC是等腰三角形,分AB=AC,BC=AC,两种情况讨论,得出k的值.【解答】解法一:∵△=[﹣(2k+2)]2﹣4(k2+2k)=4k2+8k+4﹣4k2﹣8k≥0,(2分)∴x=∴x1=k+2,x2=k,(4分)设AB=k+2,BC=k,显然AB≠BC而△ABC的第三边长AC为10(1)若AB=AC,则k+2=10,得k=8,即k=8时,△ABC为等腰三角形;(2)若BC=AC,则k=10,即k=10时.△ABC为等腰三角形.(9分)解法二:由已知方程得:(x﹣k﹣2)(x﹣k)=0∴x1=k+2,x2=k(4分)[以下同解法一].【点评】解本题要充分利用条件,选择适当的方法求解k的值,从而证得△ABC为等腰三角形.19.(6分)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).(1)求反比例函数的解析式及E点的坐标;(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.【分析】(1)把已知点代入反比例函数的解析式,求出其解析式;再进一步把当x=4时代入,从而求出E点的坐标.(2)利用矩形及相似三角形的性质,判断出F点与反比例函数图象的关系.【解答】解:(1)把D(1,3)代入y=,得3=,∴k=3.∴y=.∴当x=4时,y=,∴E(4,).(2)点F在反比例函数的图象上.理由如下:连接AC,OB交于点F,过F作FH⊥x轴于H.∵四边形OABC是矩形,∴OF=FB=OB.又∵∠FHO=∠BAO=90°,∠FOH=∠BOA,∴△OFH∽△OBA.∴===,∴OH=2,FH=.∴F(2,).即当x=2时,y==,∴点F在反比例函数y=的图象上.【点评】本题比较复杂,把反比例函数y =的图象、矩形的性质及相似三角形的性质相结合,考查了学生对所学知识的综合运用能力.20.(6分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小明先挑选或小亮先挑选的概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)根据题意可列表或树状图如下:第一次12 3 4第二次1(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)(5分)从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)=;(2)不公平.(8分)∵小明先挑选的概率是P(和为奇数)=,小亮先挑选的概率是P(和为偶数)=,∵,∴不公平.(10分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.(8分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.【分析】(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.【点评】本题考查了切线的性质,勾股定理,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.23.(8分)某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.【分析】根据矩形的面积和为56平方米列出一元二次方程求解即可.【解答】解:设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56,解得:x1=2,x2=(不合题意,舍去).答:人行道的宽为2米.【点评】本题考查了一元二次方程的应用,利用两块矩形的面积之和为56m2得出等式是解题关键.24.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.25.(12分)如图,点E在菱形ABCD的对角线BD上,连接AE,且AE=BE,⊙O是△ABE的外接圆,连接OB.(1)求证:OB⊥BC;(2)若BD=,tan∠OBD=2,求⊙O的半径.【分析】(1)根据圆周角定理求出∠AOE=∠BOE,求出OE平分AB且垂直于AB,即可得出结论;(2)解直角三角形求出CG和EF,根据勾股定理得出方程,求出r即可.【解答】(1)证明:连接OA、OE,设OE交AB于F,∵AE=BE,∴∠AOE=∠BOE,∵OA=OB,∴AF=BF,OE⊥AB,∴∠OFB=∠BFE=90°,∴∠BEF+∠EBF=90°,∵四边形ABCD是菱形,∴∠CBD=∠ABD,∵OB=OE,∴∠OBE=CEB,∴∠OBE+∠CBD=90°,∴∠OBC=90°,∴OB⊥BC;(2)解:连接AC交BD于G,∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,BG=BD=,∴∠BGC=90°,∴∠GCB+∠GBC=90°,∵∠OBD+∠CBG=90°,∴∠GCB=∠OBD,在Rt△BCG中,tan∠GCB=tan∠OBD=2,∴=2,∴CG=,∴BC===8,∴AB=8,∴BF=4,在Rt△BEF中,tan∠BEF=tan∠OBD=2,∴=2,∴EF=2,设⊙O的半径为r,在Rt△BOF中,OF2+BF2=OB2,(r﹣2)2+42=r2,解得:r=5,即⊙O的半径为5.【点评】本题考查了菱形性质、解直角三角形、勾股定理、圆周角定理等知识点,能综合运用定理进行推理是解此题的关键.。
2019学年湖北省武汉市校九年级9月联考数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________、选择题1. 在实数q「二m中,最小的实数是()A - B、I C、- D、2. 若代数式、:在实数范围内有意义,则•的取值范围是()A、.二丨B、需沁C、—D、-3. 光速约为匚「千米/秒,将数字<-J:用科学记数法表示为()A、-…B、「丄C、-:」.D、一 .4. 在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:5. 成绩(米)1.501.601.651.701.751.80 人数124332td6. 下列代数式运算正确的是()A r 也B、一I:- - C D7. 将一元二次方程化成一般形式后,一次项系数和常数项分别为()A、-沁1 B 、门1 C 、1 I D 、8. 方程.一;.-一的两根之和为()A、| B 、—■;C 、:D、9. 为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为;,则下面所列方程正确的是()A - . .B、-.■D <1 / ? .710. 已知整数「,•:, :, 「-,……满足下列条件:- .=1,也汎",£=■••丨宀-1,……依次类推,则. 的值为()A.—1005 B 1006 C 1007 D—2013、填空题12. 分解因式:x3 — 4x = 13. 方程' : 丁 :的解为14.关于x 的方程有两个不相等的实数根,贝【Jk 的取值范围是15. 某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时 6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度 .(米)与注水时间•(时)之间的函数图象如图所示, 注水时间为 小时甲、乙两个蓄水池的水的深度相同 .4 乙尹3M111. 如图所示:CE,BF 是厶ABC 勺两条高,/ EMF 的大小是()M 是BC 的中点,连 ME,MF / BAC=50。
武汉2023级高一4月月考数学试卷(答案在最后)出题人:一、单选题1.与垂直的单位向量是()A.(,55±B.(55±C.,55±D.,55±【答案】D 【解析】【分析】根据给定条件,求出与垂直的一个向量,再求出其单位向量即可.【详解】设与垂直的向量(,)a x y =,0=,令x =y =,即a =,与a共线的单位向量为5)||,55a a ±===±±,所以与垂直的单位向量是,55±.故选:D2.在ABC 中,D 为AB 的中点,E 为CD 的中点,设AB a =,AC b =,则AE = ()A.1124a b + B.1124a b -C.1142a b +D.1142a b -【答案】C 【解析】【分析】根据图形特征进行向量运算即可.【详解】因为D 为AB 的中点,E 为CD 的中点,所以1111122242A C E C B ⎛⎫=+=+=+-=+ ⎪⎝⎭,又因为AB a =,AC b =,所以1142AE a b =+ .故选:C3.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A.12B.33C.23D.22【答案】B 【解析】【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.【详解】由题意可得:1sin sin cos 122θθθ++=,则:3sin 122θθ+=,1sin cos 223θθ+=,从而有:sin coscos sin 663ππθθ+=,即3sin 63πθ⎛⎫+= ⎪⎝⎭.故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.4.已知0a >,()sin sin3f x x a x π⎛⎫=+- ⎪⎝⎭x =m 是()f x 的一条对称轴,则m 的最小值为()A.6π B.3πC.23π D.56π【答案】B 【解析】【分析】利用三角函数的性质可得221322a ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,进而可得,Z 3m k k ππ+=∈,即得.【详解】∵()1sin sin sin cos 322f x x a x a x x π⎛⎫⎛⎫=+-=-+ ⎪ ⎪⎝⎭⎝⎭∴2213322a ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,又0a >,∴2a =,∴()12sin cos 223f x x x x π⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,又x =m 是()f x 的一条对称轴,∴,Z 3m k k ππ+=∈,即,Z 3m k k ππ=-∈,∴m 的最小值为3π.故选:B.5.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,5a b ==,8c =,I 是ABC 内切圆的圆心,若AI xAB y AC =+,则x y +的值为()A.203B.103 C.32D.1318【答案】D 【解析】【分析】计算出ABC 的内切圆半径,以AB 直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系,利用平面向量的坐标运算可求得x 、y 的值,即可得解.【详解】5a b == ,8c =,所以,ABC 内切圆的圆心I 在AB 边高线OC 上(也是AB 边上的中线),4OA OB ∴==,3OC ===,以AB 直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系,则()4,0A -、()4,0B 、()0,3C,设ABC 的内切圆的半径为r ,根据等面积法可得:()1122a OC abc r ⋅=++,解得3848553r ⨯==++,即点40,3I ⎛⎫⎪⎝⎭,则()8,0AB = ,()4,3AC = ,44,3AI ⎛⎫= ⎪⎝⎭,因为AI xAB y AC =+ ,则844433x y y +=⎧⎪⎨=⎪⎩,解得51849x y ⎧=⎪⎪⎨⎪=⎪⎩,则1318x y +=.故选:D.6.在ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,若1cos 2cos cos C A B -=,那么ABC 一定是()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】B 【解析】【分析】利用三角形内角和定理及三角恒等变换求得三角形角的关系,再判断三角形的形状作答.【详解】在ABC 中,()C A B π=-+,则cos cos()cos cos sin sin C A B A B A B =-+=-+,而1cos 2cos cos C A B -=,则有cos cos sin sin 1A B A B +=,即cos()1A B -=,因0,0A B ππ<<<<,即A B ππ-<-<,因此,0A B -=,即A B =,所以ABC 是等腰三角形.故选:B7.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若3sin cos()62A A π++=,4b c +=,则ABC ∆周长的取值范围是A.[6,8) B.[6,8]C.[4,6)D.(4,6]【答案】A 【解析】【分析】利用三角函数恒等变换的应用化简已知可得32sin A π+=(,结合A 的范围可求A ,再由余弦定理求得2163a bc =-,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围.【详解】∵ sin 62A cos A π⎛⎫++= ⎪⎝⎭,1222sinA cosA sinA ∴+-=,可得:32sin A π+=(),40333A A ππππ∈+∈ (,),(,),2 33A ππ∴+=,解得3A π=,∵4b c +=,∴由余弦定理可得222222163a b c bccosA b c bc bc bc =+-=+--=-(),∵由4b c +=,b c +≥,得04bc ≤<,∴2416a ≤<,即24a ≤<.∴ABC 周长4[68L a b c a =++=+∈,).故选A.【点睛】本题主要考查了三角函数恒等变换的应用,余弦定理及运用,同时考查基本不等式的运用,考查运算能力,属于中档题.8.向量的广义坐标是用于描述向量或系统状态的一组数值,其选择取决于问题的特定背景和需求.在物理学、工程学、计算机图形学等领域,广义坐标被广泛应用.比如,物理学中的振动系统可能采用角度作为广义坐标,而工程学中的结构分析可能使用特定坐标系来简化问题.通过选择适当的广义坐标,可以更自然地描述问题,简化数学表达,提高问题的可解性,并使模型更符合实际场景.已知向量1e ,2e是平面α内的一组基向量,O 为α内的定点.对于α内任意一点P ,若()12,OP xe ye x y =+∈R,则称有序实数对(),x y 为点P 的广义坐标.若点A ,B 的广义坐标分别为()11,x y ,()22,x y ,关于下列命题正确的()A.点()1,2M 关于点O 的对称点不一定为()1,2M '--B.A ,BC.若向量OA平行于向量OB,则1221x y x y -的值不一定为0D.若线段AB 的中点为C ,则点C 的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭【答案】D 【解析】【分析】根据广义坐标的定义,结合平面向量数量积的运算性质、平面向量共线性质逐一判断即可.【详解】对于A ,122OM e e =+,设()1,2M 关于点O 的对称点为(),M x y ',则12122OM OM e e xe ye '=-=--=+,因为1e ,2e 不共线,所以12x y =-⎧⎨=-⎩,A 错误;对于B ,因为()()21221112211212AB OB OA x e y e x e y e x x e y y e =-=+--=-+-,所以AB =,当向量1e ,2e 是相互垂直的单位向量时,A ,BB 错误;对于C ,当OA 与OB 中至少一个是0时,结论成立;当OA 与OB 都不为0 时,设OA OB λ=(0λ≠),有11122122x e y e x e y e λλ+=+ ,即1212x x y y λλ=⎧⎨=⎩,所以1221x y x y =,C 错误;对于D ,()()12121112212212112222x x y y OC OA OB x e y e x e y e e e ++=+=+++=+,所以线段AB 中点C 的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,D 正确故选:D二、多选题9.函数2()cos 2cos 1f x x x x ωωω=+-(01ω<<)的图象如图所示,则()A.()f x 的最小正周期为2πB.)3π(2y f x =+是奇函数C.π(cos 6y f x x =+的图象关于直线π12x =对称D.若()y f tx =(0t >)在[]0,π上有且仅有两个零点,则1117[,66t ∈【答案】ACD 【解析】【分析】利用二倍角公式、辅助角公式化简函数()f x ,结合给定图象求出ω,再逐项判断即可.【详解】依题意,π()2cos 22sin(26f x x x x ωωω=+=+,由(2π)3f =,得πππ22π,Z 362k k ω⋅+=+∈,解得13,Z 2k k ω=+∈,而01ω<<,解得12ω=,π()2sin()6f x x =+,()f x 的最小正周期为2π,A 正确;π(22sin(2)2co πs 236π3y f x x x =+=++=是偶函数,B 错误;ππ()cos 2sin()cos 63y f x x x x =+=+,令π()2sin(cos 3g x x x =+,则ππππππ()2sin()cos()2cos cos[(2sin(cos ()626233g x x x x x x x g x -=--=-+=+=,π()cos 6y f x x =+的图象关于直线π12x =对称,C 正确;π()2sin()6f tx tx =+,0t >,当[]0,πx ∈时,πππ[,π666tx t +∈+,依题意,π2ππ3π6t ≤+<,解得1117[,66t ∈,D 正确.故选:ACD10.设点M 是ABC 所在平面内一点,下列说法正确的是()A.若AB BC BC CA CA AB ⋅=⋅=⋅,则ABC 的形状为等边三角形B.若1122AM AB AC =+,则点M 是边BC 的中点C.过M 任作一条直线,再分别过顶点A ,B ,C 作l 的垂线,垂足分别为D ,E ,F ,若0AD BE CF ++=恒成立,则点M 是ABC 的垂心D.若2AM AB AC =-,则点M 在边BC 的延长线上【答案】AB 【解析】【分析】根据题意,结合平面向量的线性运算,以及数量积运算,一一判断即可.【详解】对于选线A ,如图作BC 的中点D ,连接AD ,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v,得()()20BC AB CA BC AB AC BC AD ⋅-=⋅+=⋅= ,即BC AD ⊥,结合三角形性质易知,AB AC =,同理AB BC =,BC AC =,故ABC 的形状为等边三角形,故A 正确;对于选项B ,由1122AM AB AC =+ ,得11112222-=-AM AB AC AM ,即BM MC = ,因此点M 是边BC 的中点,故B 正确;对于选项C ,如图当l 过点A 时,0AD =,由0AD BE CF ++= ,得0BE CF +=,则直线AM 经过BC 的中点,同理直线BM 经过AC 的中点,直线CM 经过AB 的中点,因此点M 是ABC 的重心,故C 错误;对于选项D ,由2AN AB AC =- ,得AN AB AB AC -=- ,即BN CB =,因此点M 在边CB 的延长线上,故D 错.故选:AB.11.ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且2a =,AB AC ⋅=,下列选项正确的是()A.3A π=B.若3b =,则ABC 有两解C.若ABC 为锐角三角形,则b 取值范围是D.若D 为BC 边上的中点,则AD 的最大值为2【答案】BCD 【解析】【分析】由数量积的定义及面积公式求得A 角,然后根据三角形的条件求解判断各ABC 选项,利用1()2AD AB AC =+,平方后应用基本不等式求得最大值,判断D .【详解】因为AB AC ⋅= ,所以1cos sin 2bc A bc A ==,tan 3A =,又(0,)A π∈,所以6A π=,A 错;若3b =,则sin b A a b <<,三角形有两解,B 正确;若ABC 为锐角三角形,则02B π<<,62A B B ππ+=+>,所以32B ππ<<,sin 12B <<,sin sin b aB A =,sin 4sin 4)sin a B b B A==∈,C 正确;若D 为BC 边上的中点,则1()2AD AB AC =+,222222111()(2cos )()444AD AB AC c bc A b b c =+=++=++ ,又222222cos 4a b c bc A b c =+-=+-=,224b c +=+,由基本不等式得2242(2b c bc bc =+-≥-=-,4(2bc ≤=+,当且仅当b c =时等号成立,所以21(4)1742AD bc ⎡⎤=+=+≤+⎣⎦ 所以2AD ≤+ ,当且仅当b c =时等号成立,D 正确.故选:BCD .【点睛】关键点点睛:本题考查解三角形的应用,掌握正弦定理、余弦定理、三角形面积公式是解题关键.在用正弦定理解三角形时可能会出现两解的情形,实际上不一定要死记结论,可以按正常情况求得sin B ,然后根据,a b 的大小关系判断B 角是否有两种情况即可.三、填空题12.如图,ABC 是等边三角形,边长为2,P 是平面上任意一点.则()PA PB PC ⋅+的最小值为__________.【答案】32-【解析】【分析】取BC 的中点D ,AD 的中点O ,利用向量数量积的运算律计算即得.【详解】在边长为2的在ABC 中,取BC 的中点D ,连接AD 并取其中点O ,连接PO ,则1322OD AD ==,于是)22()()(PA PB PC PA PD PO OA PO OD ⋅+=⋅=+⋅+ 222332()()222()22PO OD PO OD PO OD =-⋅+=-≥-⨯=- ,当且仅当点P 与点O 重合时取等号,所以()PA PB PC ⋅+ 的最小值为32-.故答案为:32-13.已知向量31,22a ⎛⎫= ⎪ ⎪⎝⎭,2b = ,26a b -= ,a b ⋅=__________;b 在a 上的投影向量的坐标为__________.【答案】①.12##0.5;②.31,44⎛⎫⎪⎝⎭.【解析】【分析】由条件结合向量的模的坐标表示求a r ,根据向量的模与数量积的关系由条件26a b -= a b ⋅ ,再由投影向量的定义求b 在a上的投影向量的坐标.【详解】因为31,22a ⎛⎫= ⎪ ⎪⎝⎭,所以1a =,由26a b -= 226a b -= ,所以()()22446aa b b-⋅+=,即4446a b -⋅+=所以12a b ⋅= ,所以b 在a上的投影向量为131,244a a b a aa ⎛⎫⋅== ⎪ ⎪⎭⋅⎝.故b 在a上的投影向量的坐标为31,44⎛⎫ ⎪⎝⎭.故答案为:12;31,44⎛⎫⎪⎝⎭.14.已知正ABC 的边长为1,中心为O ,过O 的动直线l 与边AB ,AC 分别相交于点M 、N ,AM AB λ=,AN AC μ= ,BD DC =.(1)若2AN NC = ,则AD BN ⋅=________.(2)AMN 与ABC 的面积之比的最小值为__________.【答案】①.14-##0.25-②.49【解析】【分析】根据12()()23AB AC A C A D BN A B ⋅=+⋅-,利用数量积的定义及运算律即可计算;由题意可得1133AO AM AN λμ=+ ,根据三点共线可得113λμ+=,利用三角形的面积公式可得AMN ABCS S λμ= ,再结合基本不等式即可求解.【详解】(1)112()()()()223AB AC AN AB AB A AC AC AB D BN ⋅=+⋅-=+⋅-2211211121()(1)23323234AB AC AC AB =-⋅+-=⨯-⨯+-=- ;(2)因为2111()3233AO AB AC AB AC =⨯+=+ ,所以1133AO AM AN λμ=+,因为M ,O ,N 三点共线,故11133λμ+=,即113λμ+=,又因为1||||sin 21||||sin 2AMN ABC AM AN AS S AB AC A λμ⋅⋅==⋅⋅ ,而(],0,1λμ∈,113λμ+=,则113λμ+=≥,即49λμ≥,当且仅当23λμ==时取等号,所以AMN 与ABC 的面积之比的最小值为49.故答案为:14-;49.四、解答题15.已知向量()cos ,2sin a x x =,()2cos b x x = ,函数()f x a b =⋅.(1)若()0115f x =,且0ππ,63x ⎛⎫∈ ⎪⎝⎭,求0cos2x 的值;(2)将()f x 图象上所有的点向右平移π6个单位,然后再向下平移1个单位,最后使所有点的纵坐标变为原来的12,得到函数()g x 的图象,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,解不等式()12g x ≥.【答案】(1)310-(2)ππ,63⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据平面向量数量积的坐标表示及三角恒等变换公式化简()f x ,依题意可得0π3sin 265x ⎛⎫+= ⎪⎝⎭,即可求出0πcos 26x ⎛⎫+ ⎪⎝⎭,最后由00ππcos2cos 266x x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦利用两角差的余弦公式计算可得;(2)根据三角函数的变换规则求出()g x 解析式,再根据正弦函数的性质计算可得.【小问1详解】因为()cos ,2sin a x x =,()2cos b x x = ,函数()f x a b =⋅,所以()22cos cos cos 212f x x x x x x=+=++12cos 2sin 2122x x ⎛⎫=++ ⎪ ⎪⎝⎭π2sin 216x ⎛⎫=++ ⎪⎝⎭,因为()0115f x =,所以0π112sin 2165x ⎛⎫++= ⎪⎝⎭,所以0π3sin 265x ⎛⎫+= ⎪⎝⎭,又0ππ,63x ⎛⎫∈⎪⎝⎭,所以0ππ5π2,626x ⎛⎫+∈ ⎪⎝⎭,所以0π4cos 265x ⎛⎫+==- ⎪⎝⎭,所以0000ππππππcos2cos 2cos 2cos sin 2sin 666666x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎣⎦4313525210-=-⨯+⨯=.【小问2详解】将()f x 图象上所有的点向右平移π6个单位得到πππ2sin 212sin 21666y x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将π2sin 216y x ⎛⎫=-+ ⎪⎝⎭向下平移1个单位得到π2sin 26y x ⎛⎫=- ⎪⎝⎭,最后将π2sin 26y x ⎛⎫=-⎪⎝⎭的所有点的纵坐标变为原来的12得到πsin 26y x ⎛⎫=- ⎪⎝⎭,即()πsin 26g x x ⎛⎫=-⎪⎝⎭,由()12g x ≥,即π1sin 262x ⎛⎫-≥ ⎪⎝⎭,所以ππ5π2π22π666k x k +≤-≤+,Z k ∈,解得ππππ62k x k +≤≤+,Z k ∈,令0k =可得ππ,62x ⎡⎤∈⎢⎥⎣⎦,令1k =-可得5ππ,62x ⎡⎤∈--⎢⎥⎣⎦,又ππ,63x ⎡⎤∈-⎢⎥⎣⎦,所以ππ,63x ⎡⎤∈⎢⎥⎣⎦,即在ππ,63x ⎡⎤∈-⎢⎥⎣⎦时不等式()1g 2x ≥的解集为ππ,63⎡⎤⎢⎥⎣⎦.16.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若()2253a b bc -=,5sin 8sin C B =,∠BAC 的平分线交BC 于D .(1)求∠BAC ;(2)若5AC =,求AD .【答案】(1)π3(2)13【解析】【分析】(1)利用所给等式及正弦定理用b 表示a 、c ,再利用余弦定理求出cos BAC ∠即可得解;(2)求出各边长度进而利用余弦定理求出cos C ,再由πsin sin π6ADC C ⎛⎫∠=--⎪⎝⎭求出sin ADC ∠,在ADC △中利用正弦定理即可求得AD .【小问1详解】∵5sin 8sin C B =,由正弦定理得58c b =,即85c b =,代入已知()2253a bbc -=,整理可得75a b =,∴22222287155cos 82225b b b bc a BAC bc b b ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭∠===⨯,结合0πBAC <∠<,可得π3BAC ∠=.【小问2详解】因为5AC b ==,于是由(1)得7a =,8c =.根据余弦定理得2225781cos 2577C +-==⨯⨯,进而可得sin 7C ==,又∴ππ1113sin sin πsin 66272714ADC C C ⎛⎫⎛⎫∠=--=+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭,在ADC △中,由正弦定理得sin sin AC AD ADC C =∠,即513147=,解得13AD =.17.如图,在平行四边形ABCD中,13AM AD=,令AB a=,AC b=.(1)用,a b表示AM,BM,CM;(2)若2AB AM==,且10AC BM⋅=,求cos,a b.【答案】(1)()13AM b a=-,1433B b aM=-,1233CM a b=--(2)68【解析】【分析】(1)利用平面向量的四则运算法则求解即可;(2)利用平面向量数量积的公式和运算律求解即可.【小问1详解】因为AB a=,AC b=,且ABCD是平行四边形,所以BC AC AB b a=-=-,所以()1133AM BC b a==-,所以()114333BM AM AB b a a b a=-=--=-,所以()14123333CM BM BC b a b a a b=-=---=--.【小问2详解】方法一:由(1)知()114,333A BM b a M b a=-=-,又,10,2AC b AC BM AB AM=⋅===,所以()14110,2,2333b b a b aa⎛⎫⋅-=-==⎪⎝⎭,即222430,236b a b b a a b-⋅=+-⋅=,解得1,a b b ⋅==,所以cos ,68a b a b a b⋅==.方法二:因为1,23AM AD AM ==,所以6AD BC ==,因为()22121333AC BM BC BA BA BC BA BA BC BC ⎛⎫⋅=-⋅+=-+⋅+ ⎪⎝⎭,且10AC BM ⋅= ,所以2221262cos 61033ABC ∠-+⨯⨯⨯+⨯=,解得1cos 4ABC ∠=,所以()()22126214a b BA BC BA BA BC BA ⋅=-⋅-=-⋅+=-⨯⨯+= ,又2,a b ====,所以34cos ,68a b a b a b⋅== .18.如图,扇形ABC 是一块半径2r =(单位:千米),圆心角π3BAC ∠=的风景区,点P 在弧BC 上(不与B ,C 重合).现欲在风景区规划三条商业街道,要求街道PQ 与AB 垂直于点Q ,街道PR 与AC 垂直于点R ,线段RQ 表示第三条街道.记PAB θ∠=.(1)若点P 是弧BC 的中点,求三条街道的总长度;(2)通过计算说明街道RQ 的长度是否会随θ的变化而变化;(3)由于环境的原因,三条街道PQ PR RQ ,,每年能产生的经济效益分别为每千米300,200,400(单位:万元),求这三条街道每年能产生的经济总效益的最大值.【答案】(1)2+(2)RQ =θ的变化而变化.(3)最大值为2W =(万元)【解析】【分析】(1)易知PA 平分BAC ∠,可得30θ= ,即可得求得各街道长;(2)写出PQ ,PR 的表达式,利用余弦定理可得RQ =(3)结合各街道单位效益可得经济总效益为00sin 2044W θθ=++出最大值.【小问1详解】根据题意可得若点P 是弧BC 的中点,可得30PAB θ∠== ,此时sin sin 301PQ r r θ=== ,πsin sin 3013PR r r θ⎛⎫=-== ⎪⎝⎭,而π2ππ33RPQ ∠=-=,由余弦定理可得2222π2cos 3RQ PR PQ PR PQ =+-⋅,即可得RQ =;所以三条街道的总长度为2PQ PR RQ ++=;【小问2详解】在Rt PAQ 中可得2sin PQ θ=,同理π2sin 3PR θ⎛⎫=-⎪⎝⎭,利用余弦定理可得2222π2cos3RQ PR PQ PR PQ =+-⋅22ππ2π4sin 4sin 22sin 2sin cos333θθθθ⎛⎫⎛⎫=-+-⨯⨯- ⎪ ⎪⎝⎭⎝⎭22ππ1ππ4sin cos cos sin 4sin 22sin 2sin cos cos sin 33233θθθθθθ⎛⎫⎛⎫=-++⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭2222cos sin cos 4sin cos 2sin 3θθθθθθθθ+-++-=22cos 3sin 33θθ+==;可得RQ =因此街道RQ 的长度为定值θ的变化而变化.【小问3详解】依题意可得这三条街道每年能产生的经济总效益为:π300200400600sin 400sin 4003W PQ PR RQ θθ⎛⎫=++=+-+ ⎪⎝⎭ππ600sin 400sin cos cos sin33θθθ⎛⎫=+-+ ⎪⎝⎭200sin 4600sin 00sin 200θθθθθ=+=++-+θθ⎫=+⎪⎪⎭()θϕ=++,其中cosϕϕ==当()sin 1θϕ+=时,W 的取值最大,最大值为2W =(万元).19.“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当ABC 的三个内角均小于120︒时,使得120AOB BOC COA ∠=∠=∠=︒的点O 即为费马点;当ABC 有一个内角大于或等于120︒时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知ABC 的内角,,A B C 所对的边分别为,,a b c ,且cos2cos2cos21B C A +-=(1)求A ;(2)若2bc =,设点P 为ABC 的费马点,求PA PB PB PC PC PA ⋅+⋅+⋅ ;(3)设点P 为ABC 的费马点,PB PC t PA +=,求实数t 的最小值.【答案】(1)π2A =(2)233-(3)2+【解析】【分析】(1)根据二倍角公式结合正弦定理角化边化简cos2cos2cos21B C A +-=可得222a b c =+,即可求得答案;(2)利用等面积法列方程,结合向量数量积运算求得正确答案.(3)由(1)结论可得2π3APB BPC CPA ∠=∠=∠=,设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,利用余弦定理以及勾股定理即可推出2m n mn ++=,再结合基本不等式即可求得答案.【小问1详解】由已知ABC 中cos2cos2cos21B C A +-=,即22212sin 12sin 12sin 1B C A -+--+=,故222sin sin sin A B C =+,由正弦定理可得222a b c =+,故ABC 直角三角形,即π2A =.【小问2详解】由(1)π2A =,所以三角形ABC 的三个角都小于120︒,则由费马点定义可知:120APB BPC APC ∠=∠=∠=︒,设,,PA x PB y PC z ===,由APB BPC APC ABC S S S S ++= 得:111122222222xy yz xz ⋅+⋅+=⨯,整理得3xy yz xz ++=,则PA PB PB PC PA PC⋅+⋅+⋅1111222233xy yz xz ⎛⎫⎛⎫⎛⎫=⋅-+⋅-+⋅-=--⎪ ⎪ ⎝⎭⎝⎭⎝⎭.【小问3详解】点P 为ABC 的费马点,则2π3APB BPC CPA ∠=∠=∠=,设||||||||,||,00,,0,PB m PA PC n PA PA x m n x ===>>>,则由PB PC t PA +=得m n t +=;由余弦定理得()22222222π||2cos13AB x m x mx m m x =+-=++,()22222222π||2cos13AC x n x nx n n x =+-=++,()2222222222π||2cos 3BC m x n x mnx m n mn x =+-=++,故由222||||||AC AB BC +=得()()()222222211n n x m m x m n mn x +++++=++,即2m n mn ++=,而0,0m n >>,故22()2m n m n mn +++=≤,当且仅当m n =,结合2m n mn ++=,解得1m n ==+时,等号成立,又m n t +=,即有2480t t --≥,解得2t ≥+2t ≤-,故实数t 的最小值为2+【点睛】关键点睛:解答本题首先要理解费马点的含义,从而结合(1)的结论可解答第二问,解答第二问的关键在于设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,结合费马点含义,利用余弦定理推出2m n mn ++=,然后利用基本不等式即可求解.。
2019届黑龙江省哈尔滨市九年级下2月月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三总分得分一、选择题1. 下列的平面几何图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 把抛物线y=﹣x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x+3)2+1 B.y=﹣(x+1)2+3C.y=﹣(x﹣1)2+4 D.y=﹣(x+1)2+43. 若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>04. 如图是由6个相同的小立方块搭成的几何体,则下列说法正确的是()A.主视图的面积最大 B.俯视图的面积最大C.左视图的面积最大 D.三个视图面积一样大5. 在Rt△ABC中,∠C=90°,若AB=2,AC=1,则tanA的值为()A. B. C. D.中若DE∥BC,EF∥AB,则下列比例式正确的是()6. 如图所示,△ABCA. B. C. D.的内切圆⊙O的半径是2,则△ABC的面积是()7. 如图,若等边△ABCA.4 B.6 C.8 D.128. 如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于()A.a?sinα B.a?tanα C.a?cosα D.9. 已知二次函数y=ax2﹣bx图象的开口向上且对称轴在y轴的右侧,则直线y=ax﹣b经过的象限是()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限10. 在一条笔直的公路上,依次有A、C、B三地.小明从A地途经C地前往距A地20千米的B地,到B地休息一段时间后立即按原路返回到A地.小明出发4小时的时候距离A 地12千米.小明去时从C地到B地,返回时再由B地到C地(包括在B地休息的时间)共用2小时.他与A地的距离s(单位:千米)和所用的时间t(单位:小时)之间的函数关系如图所示.下列说法:①小明去时的速度为10千米/时;②小明在B地休息了小时;③小明回来时的速度为6千米/时;④C地与A地的距离为15千米,其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题11. 如图,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,若CD=6cm,则⊙O的半径长为 cm.12. 一个扇形的面积为32πcm2,弧长为8πcm,则该扇形的半径为 cm.13. 如图:铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.4m时,长臂端点升高 m.14. 在△ABC中,∠C=90°,AC=3,BC=4,若将△ABC绕点B逆时针旋转90°后,点A的对应点为D,则AD的长为.15. 经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为.16. 如图,⊙O中,AD、BC是圆O的弦,OA⊥BC,∠AOB=52°,CE⊥AD,则∠DCE的度数是.17. 如图,在?ABCD中,边BC的垂直平分线EF分别交AD、BC于点M、E,交BA的延长线于点F,若点A是BF的中点,AB=5,?ABCD的周长为34,则FM的长为.18. 如图,直线y=2x﹣4的图象与x、y轴交于B、A两点,与y=的图象交于点C,CD⊥x轴于点D,如果△CDB的面积:△AOB的面积=1:4,则k的值为.19. 在矩形ABCD中,AD=5,AB=3,点E,F在直线AD上,且四边形BCFE为菱形,若线段EF的中点为点M,则线段AM的长为.20. 如图,Rt△ABC中,∠C=90°,BD=4,CD=2,∠ADB=3∠ABD,则AD= .三、解答题21. 先化简,再求代数式的值÷(﹣),其中a=2cos30°﹣tan45°,b=2sin30°.22. 如图是10×8的网格,网格中每个小正方形的边长均为1,A、B、C三点在小正方形的顶点上,请在图①、②中各画一个凸四边形,使其满足以下要求:(1)请在图①中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是中心对称图形,但不是轴对称图形;(2)请在图形②中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是轴对称图形,但不是中心对称图形.23. 如图,在某建筑物AC上挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行40米到达点E处,看到条幅顶端B,测得仰角为60°.(1)求宣传条幅BC的长(小明的身高不计,结果保留根号);(2)若小明从点F到点E用了80秒钟,按照这个速度,小明从点F到点C所用的时间为多少秒?24. 已知,在△ABC中,E,M,N分别是AB,AC,BC的中点,CF∥AB,连接MN,连接并延长EM,与直线CF交于F,连接FN交直线AB于点D,交AC于O点.(1)如图(1),BA=BC,求证:四边形FMNC为菱形;(2)如图(2),连接MB,NE,在不添加任何辅助线的情况下,请直接写出图(2)中的所有平行四边形(BE为边的除外).25. 某工厂对零件进行检测,引进了检测机器.已知一台检测机的工作效率相当于一名检测员的20倍.若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.(1)求一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过7小时检测完成3450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?26. ⊙O为△ABC的外接圆,过圆外一点P作⊙O的切线PA,且PA∥BC.(1)如图1,求证:△ABC为等腰三角形:(2)如图2,在AB边上取一点E,AC边上取一点F,直线EF交PA于点M,交BC的延长线于点N,若ME=FN,求证:AE=CF;(3)如图3,在(2)的条件下,连接OE、OF,∠EOF=120°,,EF=,求⊙O的半径长.27. 如图,直线y=﹣x+3交y轴于点A,交x轴与点B,抛物线y=﹣x2+bx+c经过点A和点B,点P为抛物线上直线AB上方部分上的一点,且点P的横坐标为t,过P作PE∥x轴交直线AB于,作PH⊥x轴于H,PH交直线AB于点F.(1)求抛物线解析式;(2)若PE的长为m,求m关于t的函数关系式;(3)是否存在这样的t值,使得∠FOH﹣∠BEH=45°?若存在,求出t值,并求tan∠BEH 的值,若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。
2019-2020学年黑龙江省齐齐哈尔市龙沙十中九年级(下)月考数学试卷(3月份)一、选择题(共15小题,每小题2分,满分30分)1.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×1092.下列各式:①x2+x3=x5 ;②a3•a2=a6 ;③;④;⑤(π﹣1)0=1,其中正确的是()A.④⑤B.③④C.②③D.①④3.数字,,π,sin60°,中是无理数的个数是()A.1个B.2个C.3个D.4个4.不等式组的解集在数轴上表示为()A.B.C.D.5.已知点P(a+1,2a﹣1)关于x轴的对称点在第一象限,则a的取值范围是()A.a>﹣1 B.a<C.﹣1 D.﹣16.已知,则的值为()A.B.±2 C.±D.7.如图,矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路PQMN及一条平行四边形道路EFGH,其余部分都进行了绿化,若PQ=EF=c,则花园中绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣ac C.b2﹣bc+a2﹣ab D.ab﹣bc﹣ac+c28.关于x的函数y=k(x+1)和y=kx﹣1(k≠0)在同一坐标系中的图象大致是()A .B .C .D .9.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5);②它的图象经过第一、二、三象限;③当x >1时,y <0;④y 的值随x 值的增大而增大. 其中正确的个数是( ) A .0B .1C .2D .310.若关于x 的分式方程无解,则m 的值为( )A .﹣1.5B .1C .﹣1.5或2D .﹣0.5或﹣1.511.抛物线y=ax 2+bx+c 与x 轴的公共点是(﹣1,0),(3,0),则这条抛物线的对称轴是直线( )A .直线x=﹣1B .直线x=0C .直线x=1D .直线x=312.在平面直角坐标系中,正方形OABC 的面积为16,反比例函数图象的一个分支经过该正方形的对角线交点,则反比例函数的解析式为( )A .y=B .y=﹣C .y=D .y=﹣13.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①abc >0;②b 2﹣4ac <0;③4a ﹣2b+c <0;④b=﹣2a .则其中结论正确的是( )A .①③B .③④C .②③D .①④14.定义新运算:a ⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x (x ≠0)的图象大致是()A. B. C. D.15.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣3二、填空题(本大题共有10小题)16.科学家测得肥皂泡的厚度约为0.000 000 73米,用科学记数法表示为米.17.函数y=+中,自变量x的取值范围是.18.如果要使关于x的方程+1﹣3m=有唯一解,那么m的取值范围是.19.若关于x的方程+=2的解不大于8,则m的取值范围是.20.小明参加学校组织的素描社团,需要购买甲、乙两种铅笔,甲种铅笔7角1支,乙种铅笔3角1支,恰好用去6元钱.可以买两种铅笔共支.21.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若干小分支、支干和主干的总数是73,则每个支干长出个小分支.22.若直线y=3x+k与两坐标轴围成的三角形的面积是24,则k= .=3,23.如图,二次函数y=﹣x2﹣2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S△AOP则点P的坐标是.24.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.25.如图,在平面直角坐标系中有一被称为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的坐标为.三、解答题26.计算:.27.先化简、再求值:﹣a﹣2),其中a=﹣3.28.解方程:3x2=6x﹣2.29.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A 的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.30.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP 的周长最小?若存在,请求出点P的坐标,若不存在,请说明理由.31.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?32.甲、乙两车先后从M地驶向N地,甲车出发一小时后,乙车出发,用了两个小时追上甲车,乙车此时马上改变速度又用了1小时到达N地.图中折线表示两车距离y(千米)与甲车行驶时间x(小时)之间的函数关系(0≤x≤4).甲、乙两车匀速行驶.请根据图象信息解答下列问题:(1)求图象中线段AB所在直线的解析式.(2)M、N两地相距多少千米?(3)若乙车到达N地后,以100千米/时的速度马上掉头去接甲车,几小时后与甲车相遇?请直接写出结果.33.如图,在平面直角坐标系中,点A,B,C在坐标轴上,∠ACB=90°,OC,OB的长分别是方程x2﹣7x+12=0的两个根,且OC<OB.(1)求点A,B的坐标;(2)过点C的直线交x轴于点E,把△ABC分成面积相等的两部分,求直线CE的解析式;(3)在平面内是否存在点M,使以点B、C、E、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019-2020学年黑龙江省齐齐哈尔市龙沙十中九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题(共15小题,每小题2分,满分30分)1.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1.62亿用科学记数法表示为1.62×108.故选C.2.下列各式:①x2+x3=x5 ;②a3•a2=a6 ;③;④;⑤(π﹣1)0=1,其中正确的是()A.④⑤B.③④C.②③D.①④【考点】二次根式的性质与化简;合并同类项;同底数幂的乘法;零指数幂;负整数指数幂.【分析】利用合并同类项、同底数幂的乘法、二次根式的化简、负指数幂与零指数幂的性质求解即可求得答案.【解答】解:①x2+x3≠x5 ,故错误;②a3•a2=a5,故错误;③=|﹣2|=2,故错误;④=3,故正确;⑤(π﹣1)0=1,故正确.故正确的是:④⑤.故选A.3.数字,,π,sin60°,中是无理数的个数是()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式解答即可.【解答】解:sin60°=, =2,∴无理数有,π,sin60°,共三个,故选C4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,在数轴上表示出来,找出符合条件的选项即可.【解答】解:,由①得,x<1,由②得,x≤2,故此不等式组的解集为:x<1,在数轴上表示为:故选B.5.已知点P(a+1,2a﹣1)关于x轴的对称点在第一象限,则a的取值范围是()A.a>﹣1 B.a<C.﹣1 D.﹣1【考点】关于x轴、y轴对称的点的坐标;解一元一次不等式组.【分析】首先得出点P(a+1,2a﹣1)关于x轴的对称点(a+1,1﹣2a),进而求出a的取值范围.【解答】解:∵点P(a+1,2a﹣1)关于x轴的对称点为(a+1,1﹣2a),∴,∴解得:﹣1<a<.故选:C.6.已知,则的值为()A.B.±2 C.±D.【考点】二次根式的化简求值.【分析】把的两边平方,得出x2+的数值,再把两边平方,代入x2+的数值,进一步开方得出结果即可.【解答】解:∵,∴(x+)2=7∴x2+=5(x﹣)2=x2+﹣2=5﹣2=3,x﹣=±.故选:C.7.如图,矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路PQMN及一条平行四边形道路EFGH,其余部分都进行了绿化,若PQ=EF=c,则花园中绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣ac C.b2﹣bc+a2﹣ab D.ab﹣bc﹣ac+c2【考点】整式的混合运算.【分析】由长方形的面积减去PQMN与EFGH的面积,再加上重叠部分面积即可得到结果.【解答】解:根据题意得:ab﹣bc﹣ac+c2,则花园中绿化部分的面积为ab﹣bc﹣ac+c2.故选D.8.关于x的函数y=k(x+1)和y=kx﹣1(k≠0)在同一坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据反比例函数的图象和一次函数的图象判断k的符号,确定两个式子中的k是否能取相同的值即可.【解答】解:A、根据反比例函数的图象可得,y=kx﹣1中,k>0;根据一次函数的图象,y随x的增大而减小,则k<0,故选项错误;B、根据反比例函数的图象可得,y=kx﹣1中,k<0;根据一次函数的图象,y随x的增大而增大,则k>0,故选项错误;C、根据反比例函数的图象可得,y=kx﹣1中,k>0;根据一次函数的图象与y轴交于负半轴,则常数项k<0,故选项错误;D、根据反比例函数的图象可得,y=kx﹣1中,k<0;根据一次函数的图象,y随x的增大而增大,则k<0,据一次函数的图象与y轴交于负半轴,则常数项k<0,故选项正确.故选D.9.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5);②它的图象经过第一、二、三象限;③当x>1时,y<0;④y的值随x值的增大而增大.其中正确的个数是()A.0 B.1 C.2 D.3【考点】一次函数的性质.【分析】根据一次函数的性质对各小题进行逐一判断即可.【解答】解:∵当x=﹣1时,y=﹣5×(﹣1)+1=﹣6≠5,∴此点不在一次函数的图象上,故①错误;∵k=﹣5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=﹣5×1+1=﹣4,又k=﹣5<0,∴y随x的增大而减小,∴当x>1时,y<﹣4,故③错误,④错误.故选:A.10.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【考点】分式方程的解.【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.11.抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则这条抛物线的对称轴是直线()A.直线x=﹣1 B.直线x=0 C.直线x=1 D.直线x=3【考点】抛物线与x轴的交点;二次函数的性质.【分析】因为点A和B的纵坐标都为0,所以可判定A,B是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣1,0),(3,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==1.故选C.12.在平面直角坐标系中,正方形OABC的面积为16,反比例函数图象的一个分支经过该正方形的对角线交点,则反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义;正方形的性质.【分析】根据正方形的面积确定正方形的边长,从而确定点B的坐标,然后确定对角线的交点坐标,利用待定系数法确定反比例函数的解析式即可.【解答】解:∵正方形OABC的面积为16,∴正方形的边长为4,∴点B的坐标为(﹣4,4),∴对角线的交点坐标为(﹣2,2),设反比例函数的解析式为y=,∴k=﹣2×2=﹣4,∴反比例函数的解析式为y=﹣,故选B.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0;②b2﹣4ac <0;③4a﹣2b+c<0;④b=﹣2a.则其中结论正确的是()A.①③B.③④C.②③D.①④【考点】二次函数图象与系数的关系.【分析】由抛物线开口向下,得到a小于0,再由对称轴在y轴右侧,得到a与b异号,可得出b大于0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项①错误;由抛物线与x轴有2个交点,得到根的判别式b2﹣4ac大于0,选项②错误;由x=﹣2时对应的函数值小于0,将x=﹣2代入抛物线解析式可得出4a﹣2b+c小于0,最后由对称轴为直线x=1,利用对称轴公式得到b=﹣2a,得到选项④正确,即可得到正确结论的序号.【解答】解:由抛物线的开口向下,得到a<0,∵﹣>0,∴b>0,由抛物线与y轴交于正半轴,得到c>0,∴abc<0,选项①错误;又抛物线与x轴有2个交点,∴b2﹣4ac>0,选项②错误;∵x=﹣2时对应的函数值为负数,∴4a﹣2b+c<0,选项③正确;∵对称轴为直线x=1,∴﹣=1,即b=﹣2a,选项④正确,则其中正确的选项有③④.故选B14.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A. B. C. D.【考点】反比例函数的图象.【分析】根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.15.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣3【考点】待定系数法求反比例函数解析式;矩形的性质.【分析】设C(x,y).根据矩形的性质、点A的坐标分别求出B(﹣2,y)、D(x,﹣2);根据“矩形ABCD的对角线BD经过坐标原点”及直线AB的几何意义求得xy=4①,又点C在反比例函数的图象上,所以将点C的坐标代入其中求得xy=k2+2k+1②;联立①②解关于k的一元二次方程即可.【解答】解:设C(x,y).∵四边形ABCD是矩形,点A的坐标为(﹣2,﹣2),∴B(﹣2,y)、D(x,﹣2);∵矩形ABCD的对角线BD经过坐标原点,∴设直线BD的函数关系式为:y=kx,∵B(﹣2,y)、D(x,﹣2),∴k=,k=,∴=,即xy=4;①又∵点C在反比例函数的图象上,∴xy=k2+2k+1,②由①②,得k2+2k﹣3=0,即(k﹣1)(k+3)=0,∴k=1或k=﹣3,故选D.二、填空题(本大题共有10小题)16.科学家测得肥皂泡的厚度约为0.000 000 73米,用科学记数法表示为7.3×10﹣7米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 73用科学记数法可表示为7.3×10﹣7.故答案为:7.3×10﹣7.17.函数y=+中,自变量x的取值范围是x<1且x≠0 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x<1且x≠0,故答案是:x<1且x≠0.18.如果要使关于x的方程+1﹣3m=有唯一解,那么m的取值范围是m≠且m≠3 .【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,根据分式方程有唯一解得到2﹣2m≠0,分式有意义的条件可得3(2﹣2m)≠3﹣5m,解不等式即可得到m的取值范围.【解答】解:分式方程去分母得:x﹣3m(x﹣3)+(x﹣3)=m,整理得(2﹣3m)x=3﹣8m,由分式方程有唯一解得到2﹣3m≠0,即m≠,由分式有意义的条件可得3(2﹣3m)≠3﹣8m,解得m≠3.故答案为:m≠且m≠3.19.若关于x的方程+=2的解不大于8,则m的取值范围是m≥﹣18且m≠0 .【考点】分式方程的解;解一元一次不等式.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解不大于8求出m的范围即可.【解答】解:去分母得:2﹣x﹣m=2x﹣4,解得:x=,由分式方程的解不大于8,得到,解得:m≥﹣18且m≠0,则m的取值范围是m≥﹣18且m≠0,故答案为:m≥﹣18且m≠020.小明参加学校组织的素描社团,需要购买甲、乙两种铅笔,甲种铅笔7角1支,乙种铅笔3角1支,恰好用去6元钱.可以买两种铅笔共16或12 支.【考点】二元一次方程的应用.【分析】设购买甲种铅笔x支,乙种铅笔y支根据题意可知:0.7x+0.3y=6,然后利用试值法求解即可.【解答】解:设购买甲种铅笔x支,乙种铅笔y支.0.7x+0.3y=6当x=1时,y=舍去;当x=2时,y=舍去;当x=3时,y=13,当x=4时,y=舍去;当x=5时,y=舍去;当x=6时,y=6;当x=7时,y=舍去;当x=8时,y=舍去;当x=9时,y=﹣舍去;所以可购买两种铅笔共16支和12支.故答案为:16或12.21.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若干小分支、支干和主干的总数是73,则每个支干长出8 个小分支.【考点】一元二次方程的应用.【分析】设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:1+x+x•x=73,即x2+x﹣72=0,(x+9)(x﹣8)=0,解得x1=8,x2=﹣9(舍去).答:每个支干长出8个小分支.故答案为8.22.若直线y=3x+k与两坐标轴围成的三角形的面积是24,则k= ±12 .【考点】一次函数图象上点的坐标特征.【分析】根据题意画出图形,求出图形与x轴、y轴的交点坐标,然后根据三角形面积公式求出k的值即可.【解答】解:如图,当x=0时,y=k;当y=0时,x=﹣,则当y=3x+k为图中m时,k>0,=××k=,则S△AOB又∵三角形的面积是24,∴=24,解得,k=12或k=﹣12(负值舍去).同理可求得,k<0时,k=﹣12.故答案为k=±12.23.如图,二次函数y=﹣x2﹣2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S=3,△AOP则点P的坐标是(1,﹣3)或(﹣3,﹣3).【考点】抛物线与x 轴的交点.【分析】根据抛物线的解析式,即可确定点A 的坐标,由于OA 是定长,根据△AOP 的面积即可确定P 点纵坐标的绝对值,将其代入抛物线的解析式中,即可求得P 点的坐标. 【解答】解:抛物线的解析式中,令y=0,得:﹣x 2﹣2x=0, 解得:x=0,x=﹣2; ∴A (﹣2,0),OA=2; ∵S △AOP =OA•|y P |=3, ∴|y P |=3;当P 点纵坐标为3时,﹣x 2﹣2x=3,x 2+2x+3=0,△=4﹣12<0,方程无解,此种情况不成立; 当P 点纵坐标为﹣3时,﹣x 2﹣2x=﹣3,x 2+2x ﹣3=0, 解得:x=1,x=﹣3;∴P (1,﹣3)或(﹣3,﹣3); 故答案为:(1,﹣3)或(﹣3,﹣3).24.二次函数y=x 2的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=x 2的图象上,四边形OBAC 为菱形,且∠OBA=120°,则菱形OBAC 的面积为 2.【考点】菱形的性质;二次函数图象上点的坐标特征.【分析】连结BC 交OA 于D ,如图,根据菱形的性质得BC ⊥OA ,∠OBD=60°,利用含30度的直角三角形三边的关系得OD=BD ,设BD=t ,则OD=t ,B (t ,t ),利用二次函数图象上点的坐标特征得t 2=t ,解得t 1=0(舍去),t 2=1,则BD=1,OD=,然后根据菱形性质得BC=2BD=2,OA=2OD=2,再利用菱形面积公式计算即可.【解答】解:连结BC 交OA 于D ,如图, ∵四边形OBAC 为菱形, ∴BC ⊥OA , ∵∠OBA=120°, ∴∠OBD=60°, ∴OD=BD ,设BD=t ,则OD=t ,∴B (t , t ),把B (t ,t )代入y=x 2得t 2=t ,解得t 1=0(舍去),t 2=1,∴BD=1,OD=,∴BC=2BD=2,OA=2OD=2,∴菱形OBAC 的面积=×2×2=2.故答案为2.25.如图,在平面直角坐标系中有一被称为1的正方形OABC ,边OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB 1为边作第三个正方形OB 1B 2C 2,照此规律作下去,则点B 2020的坐标为 (﹣21010,﹣21010) .【考点】规律型:点的坐标.【分析】根据正方形的性质找出部分点B n 的坐标,由坐标的变化找出变化规律“B 8n+1(0,24n+1),B 8n+2(﹣24n+1,24n+1),B 8n+3(﹣24n+2,0),B 8n+4(﹣24n+2,﹣24n+2),B 8n+5(0,﹣24n+3),B 8n+6(24n+3,﹣24n+3),B 8n+7(24n+4,0),B 8n+8(24n+4,24n+4)”,依此规律即可得出结论.【解答】解:观察,发现规律:B 1(0,2),B 2(﹣2,2),B 3(﹣4,0),B 4(﹣4,﹣4),B 5(0,﹣8),B 6(8,﹣8),B 7(16,0),B 8(16,16),B 9(0,32),∴B 8n+1(0,24n+1),B 8n+2(﹣24n+1,24n+1),B 8n+3(﹣24n+2,0),B 8n+4(﹣24n+2,﹣24n+2),B 8n+5(0,﹣24n+3),B 8n+6(24n+3,﹣24n+3),B 8n+7(24n+4,0),B 8n+8(24n+4,24n+4). ∵2020=8×252+4, ∴B 2020(﹣21010,﹣21010). 故答案为:(﹣21010,﹣21010).三、解答题 26.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用绝对值代数意义化简,第三项利用零指数幂法则计算,第四项利用乘方的意义化简,最后一项利用立方根及特殊角的三角函数值计算即可得到结果.【解答】解:原式=9﹣+1﹣1+4×=9+.27.先化简、再求值:﹣a ﹣2),其中a=﹣3.【考点】分式的化简求值.【分析】这道求代数式值的题目,通常做法是先把代数式化简,然后再代入求值. 【解答】解:原式=,=,=,=; 当a=﹣3时,原式=﹣.28.解方程:3x 2=6x ﹣2.【考点】解一元二次方程﹣公式法.【分析】移项后求出b2﹣4ac的值,再代入公式求出即可.【解答】解:3x2=6x﹣2,3x2﹣6x+2=0,b2﹣4ac=(﹣6)2﹣4×3×2=12,x=,x 1=,x2=.29.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A 的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入直线解析式求出m的值,再将点A的坐标代入反比例函数解析式可求出k的值,继而得出反比例函数关系式;(2)将点P的纵坐标代入反比例函数解析式可求出点P的横坐标,将点P的横坐标和点F的横坐标相等,将点F的横坐标代入直线解析式可求出点F的纵坐标,将点的坐标转换为线段的长度后,即可计算△CEF的面积.【解答】解:(1)将点A的坐标代入y=x﹣1,可得:m=﹣1﹣1=﹣2,将点A(﹣1,﹣2)代入反比例函数y=,可得:k=﹣1×(﹣2)=2,故反比例函数解析式为:y=.(2)将点P的纵坐标y=﹣1,代入反比例函数关系式可得:x=﹣2,将点F的横坐标x=﹣2代入直线解析式可得:y=﹣3,故可得EF=3,CE=OE+OC=2+1=3,=CE×EF=.故可得S△CEF30.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP 的周长最小?若存在,请求出点P的坐标,若不存在,请说明理由.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式;轴对称﹣最短路线问题.【分析】(1)由OA与OC的长确定出A与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)连接AD,与抛物线对称轴于点P,P为所求的点,设直线AD解析式为y=mx+n,把A与D 坐标代入求出m与n的值,确定出直线AD解析式,求出抛物线对称轴确定出P横坐标,将P 横坐标代入求出y的值,即可确定出P坐标.【解答】解:(1)∵OA=2,OC=3,∴A(﹣2,0),C(0,3),代入抛物线解析式得:,解得:b=,c=3,则抛物线解析式为y=﹣x2+x+3;(2)连接AD,交对称轴于点P,则P为所求的点,设直线AD解析式为y=mx+n(m≠0),把A(﹣2,0),D(2,2)代入得:,解得:m=,n=1,∴直线AD解析式为y=x+1,对称轴为直线x=,当x=时,y=,则P坐标为(,).31.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.32.甲、乙两车先后从M地驶向N地,甲车出发一小时后,乙车出发,用了两个小时追上甲车,乙车此时马上改变速度又用了1小时到达N地.图中折线表示两车距离y(千米)与甲车行驶时间x(小时)之间的函数关系(0≤x≤4).甲、乙两车匀速行驶.请根据图象信息解答下列问题:(1)求图象中线段AB所在直线的解析式.(2)M、N两地相距多少千米?(3)若乙车到达N地后,以100千米/时的速度马上掉头去接甲车,几小时后与甲车相遇?请直接写出结果.【考点】一次函数的应用.【分析】(1)设线段AB所在直线的解析式为y=kx+b,将A(1,60),B(3,0)代入,利用待定系数法即可求解;(2)根据图象,求出甲车的速度为60千米/时,再根据甲车3小时行驶的路程=乙车2小时行驶的路程,求出乙车的速度为90千米/时.再根据甲车行驶4小时时,乙车到达N地,两车相距40千米,即可得出M、N两地相距的千米数;(3)设x小时后与甲车相遇,根据相遇时,两车行驶的路程和为40千米路程方程,求解即可.【解答】解:(1)设线段AB所在直线的解析式为y=kx+b,∵A(1,60),B(3,0),∴,解得,∴线段AB所在直线的解析式为y=﹣30x+90;(2)∵甲车一小时行驶60千米,∴甲车的速度为60÷1=60(千米/时).∵甲、乙两车先后从M地驶向N地,甲车出发一小时后,乙车出发,用了两个小时追上甲车,∴乙车的速度为(60×3)÷2=90(千米/时).由图象可知,甲车行驶4小时时,乙车到达N地,两车相距40千米,∴M、N两地相距60×4+40=280(千米);(3)设x小时后与甲车相遇,根据题意得(60+100)x=40,解得x=.答:小时后与甲车相遇.33.如图,在平面直角坐标系中,点A,B,C在坐标轴上,∠ACB=90°,OC,OB的长分别是方程x2﹣7x+12=0的两个根,且OC<OB.(1)求点A,B的坐标;(2)过点C的直线交x轴于点E,把△ABC分成面积相等的两部分,求直线CE的解析式;(3)在平面内是否存在点M,使以点B、C、E、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)通过解方程x2﹣7x+12=0可求出线段OC、OB的长度,再根据角的计算找出∠OAC=∠OCB,从而得出△AOC∽△COB,根据相似三角形的性质即可求出线段OA的长度,由此即可得出点A、B的坐标;(2)由直线CE把△ABC分成面积相等的两部分,可知点E为线段AB的中点,根据点A、B的坐标即可得出点E的坐标,再由(1)中OC的长可得出点C的坐标,根据点C的坐标设直线CE的解析式为y=kx+3,结合点E的坐标利用待定系数法即可得出结论;(3)假设存在,分别以△CBE的三边为平行四边形的对角线作平行四边形,根据平行四边形对角线互相平分的性质,结合点C、B、E的坐标即可得出点M的坐标,从而得出结论.【解答】解:(1)∵OC,OB的长分别是方程x2﹣7x+12=(x﹣3)(x﹣4)=0的两个根,且OC <OB,∴OC=3,OB=4.∵∠OAC+∠OCA=90°,∠OCA+OCB=∠ACB=90°,∴∠OAC=∠OCB,又∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴,∴OA=,∴点A的坐标为(﹣,0),点B的坐标为(4,0),点C的坐标为(0,3).(2)根据题意画出图形,如图1所示.∵直线CE把△ABC分成面积相等的两部分,∴点E为线段AB的中点.∵点A(﹣,0)、点B(4,0),∴点E的坐标为(,0).设直线CE的解析式为y=kx+3,将点E(,0)代入y=kx+3中,得:0=k+3,解得:k=﹣,∴直线CE的解析式为y=﹣x+3.(3)假设存在,以点B、C、E、M为顶点的四边形是平行四边形分三种情况,如图2、3、4所示.①如图2,以线段BE为对角线,∵点C(0,3),点B(4,0),点E(,0),∴点M(4+﹣0,0+0﹣3),即(,﹣3);②如图3,以线段CE为对角线,∵点C(0,3),点B(4,0),点E(,0),∴点M(+0﹣4,0+3﹣0),即(﹣,3);③如图4,以线段BC为对角线,∵点C(0,3),点B(4,0),点E(,0),∴点M(4+0﹣,3+0﹣0),即(,3).综上可知:在平面内存在点M,使以点B、C、E、M为顶点的四边形是平行四边形,点M的坐标为(,﹣3)、(﹣,3)或(,3).。
2019届湖北省九年级下学期第二次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 的倒数是()A. B. 8 C. ﹣8 D. ﹣12. 下列运算正确的是( )A. =-1B. (﹣a3b)2=a6b2C. a+a=a2D. a2•4a4=4a83. 过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A. 312×104 B. 0.312×107 C. 3.12×106 D. 3.12×107二、选择题4. 如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3D. 三种视图的面积都是4三、单选题5. 对于一组统计数据:2,3,6,9,3,7,下列说法错误的是( )A. 众数是3B. 中位数是4.5C. 方差是7.5D. 极差是76. 如图,在△ABC中,∠B=44°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC 于E,则∠ADE的大小是( )A. 36°B. 41°C. 40°D. 49°7. 如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,到B点停止,点N从点A同时出发,以2cm/s的速度经过点D向点C运动,到C点停止。
则△AMN的面积y(cm2)与点M运动的时间x(s)的函数的图象大致是( )A. B. C. D.四、选择题8. (2015•达州)如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O 于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个 B.3个 C.4个 D.5个9. 已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4五、单选题10. 如图,正方形ABCD的边长为5,点E在边BC上且CE=2,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是( )A. B. C. D. 1六、填空题11. 方程(x-5)2﹣9=0的根是______.12. 不等式组的解集是______.13. 如图所示,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D 分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为2,那么阴影部分的面积是______________.14. 如图,点A、B在反比例函数 (k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若B为AC中点,且MN=NC,△AOC的面积为12,则k的值为__________.15. 已知在Rt△ABC中,斜边AB=5,BC=3,以点A为旋转中心,旋转这个三角形至△AB’C’的位置,那么当点C’落在直线AB上时,sin∠BB’C’=________.16. 如图,△ABC是一个边长为2的等边三角形,AD0⊥BC,垂足为点D0.过点D0作D0D1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD0,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;……;这样一直作下去,得到一组线段:D0D1,D1D2,D2D3,……,则线段Dn-1Dn的长为_ _(n为正整数).七、解答题17. 计算:.18. 已知:如图,四边形ABCD中,AD∥BC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD,DB=DE。
厦门双十中学2025届高二(下)第二次月考数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆22:10C x y mx +++=的面积为π,则m =()A .2±B .±C .±D .8±2.若随机变量()2~3,2X N ,随机变量1(3)2Y X =-,则()1()1E Y D Y +=+()A .0B .12C .45D .23.甲、乙两人要在一排6个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A .6种B .3种C .20种D .12种4.已知,m n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A .若m α⊥、//n α,则m n ⊥B .若m α⊥,//m n ,则n α⊥C .若//m n ,n β⊥,m α⊥,则//αβD .若m α⊥,m n ⊥,则//n α5.设A ,B 是一个随机试验中的两个事件,且()()()111,,432P A P B P A B ==⋃=,则()|P B A =()A .14B .13C .16D .1126.已知n S 等差数列{}n a 的前n 项和,则“n n S na ≥”是“{}n a 是递减数列”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.若0.91ln1.1,,e a b c ===)A .a b c<<B .c b a<<C .a c b<<D .c a b<<8.如图,在ABC 中,120BAC ∠= ,其内切圆与AC 边相切于点D ,且1AD =.延长BA 至点E .使得BC BE =,连接CE .设以,C E 两点为焦点且经过点A 的椭圆的离心率为1e ,以,C E两点为焦点且经过点A 的双曲线的离心率为2e ,则12e e 的取值范围是()A.∞⎫+⎪⎪⎣⎭B.∞⎫+⎪⎪⎝⎭C .[)1,+∞D .()1,∞+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.椭圆()2222:101x y C m m m +=>+的焦点为1F ,2F ,上顶点为A ,直线1AF 与C 的另一个交点为B ,若12π3F AF ∠=,则()A .C 的焦距为2B .C的短轴长为C .C 的离心率为32D .2ABF △的周长为810.已知321()2313f x x x x =-++,则下列结论正确的是()A .()f x 有三个零点B .()f x 有两个极值点C .若方程()f x a =有三个实数根,则71,3a ⎛⎫∈ ⎪⎝⎭D .曲线()y f x =关于点71,3⎛⎫⎪⎝⎭对称11.已知数列{}n a 的通项公式为143n na =-,其前n 项和为n S ,数列1n a ⎧⎫⎨⎬⎩⎭与数列{}14nn n a a +的前n 项和分别为n R ,n T ,则()A .114n n a a +<B .存在n ,使得13n T >C .4339n S <D .265n R n n≥-三、填空题:本题共3小题,每小题5分,共15分.12.251(21)x x x ⎛⎫-+ ⎪⎝⎭的展开式中,含3x 的项的系数为.13.记n S 为等比数列{}n a 的前n 项的和,若341a a +=,6247S S =,则12S =.14.如今中国在基建方面世界领先,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 体积为,则模型中最大球的体积为,模型中九个球的表面积之和为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.正四棱锥P ABCD -的底面ABCD 是边长为6的正方形,高为4,点M ,N 分别在线段PC ,AB 上,且2AN NB =,4PC PM =,E 为PC 的中点.(1)求证:BE ∥平面DMN ;(2)求直线AC 与平面DMN 所成角的正弦值.16.全球新能源汽车产量呈上升趋势.以下为20202318-年全球新能源汽车的销售量情况统计.年份201820192020202120222023年份编号x 123456销售量y /百万辆2.022.213.136.7010.8014.14若y 与x 的相关关系拟用线性回归模型表示,回答如下问题:(1)求变量y 与x 的样本相关系数r (结果精确到0.01);(2)求y 关于x 的线性回归方程,并据此预测2024年全球新能源汽车的销售量.附:线性回归方程ˆˆˆybx a =+,其中()()()112211ˆˆˆ,n niii ii i nniii i x x y y x y nx yb ay bx x x xnx ====--- ===---∑∑∑∑,样本相关系数()()nnii ii xx y y x ynx yr--- =∑∑参考数据:66211181.30,11.2i i i i i x y y ====≈≈∑∑.17.设函数()()24ln 42f x x ax a x =-+-,a ∈R(1)讨论()f x 的单调性.(2)若函数()f x 存在极值,对任意的120x x <<,存在正实数0x ,使得()()()()21021f x f x f x x x '-=-(ⅰ)证明不等式212121ln ln 2x x x x x x ->-+.(ⅱ)判断并证明122x x +与0x 的大小.18.已知抛物线2:2E y x =的焦点为F ,A ,B ,C 为E 上不重合的三点.(1)若0FA FB FC ++=,求FA FB FC ++ 的值;(2)过A ,B 两点分别作E 的切线1l ,2l ,1l 与2l 相交于点D ,过A ,B 两点分别作1l ,2l 的垂线3l ,4l ,3l 与4l 相交于点M .(i )若AB 4=,求ABD △面积的最大值;(ii )若直线AB 过点()1,0,求点M 的轨迹方程.19.设点集(){}{}23*1,,,,|0,1,1,n niM a a a a a i n i =∈≤≤∈N L ,从集合nM中任取两个不同的点()123,,,,n A a a a a ,()123,,,,n B b b b b ,定义A ,B 两点间的距离()1,ni i i d A B a b ==-∑.(1)求3M 中(),2d A B =的点对的个数;(2)从集合n M 中任取两个不同的点A ,B ,用随机变量X 表示他们之间的距离(),d A B ,①求X 的分布列与期望;②证明:当n 足够大时,()24D X n <.(注:当n 足够大时,20n -≈)1.B【分析】由题意确定圆的半径,结合圆的面积公式建立方程,解之即可求解.【详解】因为圆22:10C x y mx +++=,即222124m m x y ⎛⎫++=- ⎪⎝⎭,所以22π(1)ππ4m S r ==-=,解得m =±故选:B.2.B【分析】利用正态分布的两个参数就是随机变量的期望和方差,再利用两个线性随机变量之间的期望和方差公式,即()()(),E Y E kX b kE X b =+=+()2()()D Y D kX b k D X =+=,就可以求出结果.【详解】由()2~3,2X N 可知:()3,()4E X D X ==,又因为1(3)2Y X =-,所以()131333()()0222222E Y E X E X =-=-=-=,()131()(1224D Y D X D X =-==,则()1011()1112E Y D Y ++==++,故选:B.3.A【分析】采用插空法,在4个空座中间的3个空中插入甲、乙两人的座位即可得答案.【详解】一排共有6个座位,现有两人就坐,故有4个空座.要求每人左右均有空座,即在4个空座的中间3个空中插入2个座位让两人就坐,即有23A 326=⨯=种坐法.故选:A.4.D【分析】对于A ,可过n 作平面β,使l βα⋂=,则//n l ,即可判断;对于B ,由线面垂直的性质即可判断;对于C ,由条件,可得m β⊥,又m α⊥,则//αβ,即可判断;对于D ,要考虑n 可能在平面α内,即可判断.【详解】对于A ,当//n α时,过n 作平面β,使l βα⋂=,则//n l ,因为m α⊥,l ⊂α,所以m l ⊥,所以m n ⊥,故A 正确;对于B ,当m α⊥,//m n ,由线面垂直的性质可得n α⊥,故B 正确;对于C ,因为//m n ,n β⊥,所以m β⊥,又m α⊥,所以//αβ,故C 正确;对于D ,当m α⊥,m n ⊥时,n 可能在平面α内,故D 错误.故选:D .5.B【分析】根据概率的性质解得()112P AB =,结合()()()P B P AB P AB =+可得()14P AB =,代入条件概率公式分析求解.【详解】因为()()()()P A B P A P B P AB ⋃=+-,即()111243P AB =+-,解得()112P AB =,又因为()()()P B P AB P AB =+,即()11312P AB =+,解得()14P AB =,且()14P A =,可得()()314P A P A =-=,所以()()()114|334P AB P B A P A ===.故选:B.6.B【分析】正向举常数列反驳,反向利用等差数列求和公式和递减数列性质判断即可.【详解】当等差数列{}n a 为常数列时,此时n n S na =,满足前者,但是此时“{}n a 不是递减数列”,故充分性不成立;当{}n a 是递减数列,则对n *∀∈N ,1n n a a +<,()()1122n n n n n n a a n a a S na na +--=-=,当1n =时,0n n S na -=,当2n ≥时,1n a a >,0n n S na ->,所以对n *∀∈N ,n n S na ≥,则反推成立,故必要性成立,则“n n S na ≥”是“{}n a 是递减数列”的必要而不充分条件.故选:B.7.C【分析】初步判断三个数值都在0到1之间,常规方法不好处理,可考虑结合导数放缩来比较,a b 大小,设()()ln 1f x x x =--,()()e 1xg x x =-+,求出()f x '在()1,2的单调性,()g x '在()1,0-的单调性,可判断,a b 与0.1的大小;0.91,b c e ==断0.9e 大小,判断,b c ,进而得解.【详解】设()()ln 1f x x x =--,()11f x x'=-,当()1,2x ∈时,()0f x '<,()f x 单减,故()()()1.1ln1.1 1.1110f f =--<=,即ln1.10.1<;设()()e 1x g x x =-+,()e 1xg x '=-,当()1,0x ∈-时,()0g x '<,所以()()0.90g g ->,即()()0.900e0.9101e ---+>-+=,即0.90.1e ->;1120.10.10.1c =>=,故a最小,0.91,b c e ==()100.99319683e <=,10510100000==,因为19683100000<,所以()10100.993e <<,所以0.9e<,0.91e >,所以b c a >>故选:C【点睛】本题考查由指对幂比大小,常规比大小步骤为:①结合指对幂函数单调性初步判断每个数值所在区间;②当两数值所在区间相同时,一般考虑引入中间量进一步比大小;③若常规方法不好处理时,常考虑构造函数法,结合导数放缩来进一步求解,此法难度较大,对学生基础能力要求较高,平常可积累一部分常见放缩公式,如1e 1ln x x x x x ≥+≥≥-≥等.8.D【分析】设内切圆与边,BC BE 分别相切于点,F G ,设CF CD EG x ===,可得223CE x =+,结合椭圆和双曲线的定义可得12134e e x x ⎛⎫=+ ⎪⎝⎭,利用余弦定理求得3x >,结合对勾函数的单调性分析求解.【详解】如图,设内切圆与边,BC BE 分别相切于点,F G ,由切线长定理和BCE 的对称性,可设CF CD EG x ===.由1AD =,可得1,1AC x AE EG AG x =+=-=-.在ACE △中,由余弦定理,()()2222(1)(1)211cos603CE x x x x x =++--+-=+ .于是根据椭圆和双曲线的定义,221222313224CE CE CE x e e x AC AE AC AE AC AE x x +⎛⎫=⋅===+ ⎪+--⋅⎝⎭.接下来确定x 的取值范围.设BF BG y ==,在ABC 中, 1.1,AC x AB y BC x y --=+=+,于是由余弦定理,()()222()(1)(1)211cos120x y x y x y +=+++-++,整理得()330xy x y -+-=,于是()3103x y x +=>-,故3x >,又因为3y x x =+在()3,∞+内单调递增,可知33341y x x =+>+=,可得121314e e x x ⎛⎫=+> ⎪⎝⎭,所以12e e 的取值范围是()1,∞+.故选:D.【点睛】方法点睛:1.椭圆、双曲线离心率(离心率范围)的求法:求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a,c代换,求e的值;2.焦点三角形的作用:在焦点三角形中,可以将圆锥曲线的定义,三角形中边角关系,如正余弦定理、勾股定理结合起来.9.ABD【分析】根据12π3F AF ∠=以及椭圆的对称性可得222221b ma m==+⎝⎭,进而可求解2,1a b c===,即可根据选项逐一求解.【详解】由于12π3F AF∠=,所以12π6F AO OAF∠=∠=,故11πcos cos62AO bF AOAF a∠=====,因此222221b ma m==+⎝⎭,故23m=,所以椭圆22:143x yC+=,2,1a b c===对于A,焦距为22c=,故A正确,对于B,短轴长为2b=B正确,对于C,离心率为12cea==,C错误,对于D,2ABF△的周长为48a=,D正确,故选:ABD10.BC【分析】利用导函数讨论单调性和极值即可判断AB,再根函数的最值、单调性判断C,再根据特例,利用点的对称性判断D.【详解】2()43f x x x'=-+,令()0f x'<解得13x<<,令()0f x'>解得1x<或3x>,所以()f x 在(),1∞-单调递增,()1,3单调递减,()3,∞+单调递增,因为13(1)03f -=-<,极大值7(1)03f =>,且极小值1(3)0f =>,所以()f x 在(1,1)-有一个零点,共1个零点,A 错误;由A 知,函数有1,3两个极值点,故B 正确;由A 知,函数()f x 在(),1∞-单调递增,()1,3单调递减,()3,∞+单调递增,且x →-∞时,()f x →-∞,x →+∞时,()f x →+∞,所以方程()f x a =有三个实数根,需(3)(1)f a f <<,即71,3a ⎛⎫∈ ⎪⎝⎭,故C 正确;因为(3)1f =,所以点(3,1)在函数图象上,又点(3,1)关于点71,3⎛⎫⎪⎝⎭的对称点为111,3⎛⎫- ⎪⎝⎭,而13(1)3f -=-,即111,3⎛⎫- ⎪⎝⎭不是函数()f x 图象上的点,故函数()f x 不关于点71,3⎛⎫⎪⎝⎭对称,故D 错误.故选:BC.11.ACD【分析】根据1191144434n n n a a ++-<-=即可求解A ,根据裂项求和即可求解B ,根据放缩法即可求解C ,根据作差求解数列单调性即可求解D.【详解】对A ,由143n n a =-可得11143n n a ++=-,所以()11111111994343114344414343443443n nn n n n n nn a a ++++++----====-<----,故A 正确,对B ,()()414441143,33143n n nn n R n n a --=-∴=-=--,()()11141114343434343n nn n n n n n a a +++⎛⎫==- ⎪----⎝⎭,所以12231111111111111113434334343343433433n n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭ ,故B 错误,对C ,由于3n ≥时,1111449433n n n -->>⇒-,故111131114311443n n n n a --=<=-,所以221221111314111414214344111131113444134439393914n n n n S a a a --⎛⎫-⎪⎛⎫⎝⎭=+++<++⨯=+-<+<+= ⎪⎝⎭-()()()222441441653656233n n n R n n n nn nn ----=--+=-+,对D ,记()()()()()1222144144144162,61216233n n n n n n P nn P P n n n n ++----=-+-=-++++-,故114124n n n P P n ++-=--,根据指数幂的性质可知14124n n +≥+,当且仅当1n =取等号,故11141240n n n n n P P n P P +++-=--≥⇒≥,只有1n =取等号,故143210n n P P P P P P ->>>>≥=,故D 正确,故选:ACD 12.118-【分析】由()2552211(21)212x x x x x x ⎛⎫⎛⎫-+=+-+ ⎪ ⎪⎝⎭⎝⎭,写出()512x +展开式的通项,利用通项计算可得.【详解】因为()2552211(21)212x x x x x x ⎛⎫⎛⎫-+=+-+ ⎪ ⎪⎝⎭⎝⎭()()()5525221121212x x x x x +⋅-++=+,其中()512x +展开式的通项为()155C 22C rrr r r r T x x +==⋅({}0,1,2,3,4,5r Î),所以251(21)x x x ⎛⎫-+ ⎪⎝⎭展开式中,含3x 的项为()215533355521C 2C (2)2C (2)118x x x x x x ⋅⋅+⋅⋅-⋅=-,所以含3x 的项的系数为118-.故答案为:118-13.6316【分析】由等比数列的求和公式和等比数列的性质进行计算即可求解.【详解】设等比数列{}n a 的公比为q ,由题意可得1q ≠,由6247S S =,可得()()6211417111a q a q qq--=--,解得212q =,又341a a +=,即22121a q a q +=,所以122a a +=,同理5612a a +=,7814a a +=,91018a a +=,1112116a a +=,因为12123456789101112S a a a a a a a a a a a a =+++++++++++,所以12111163212481616S =+++++=.故答案为:631614.43π##43π9π【分析】根据三棱锥的体积公式计算可得正四面体的棱长为出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】设正四面体的棱长为x ,高为h ,底面圆半径为r ,则2sin 60xr ︒=,得r =,又h x ,所以正四面体的体积为2111···sin 60332A BCD BCD V S h x ︒-=== ,解得x =如图,取BC 的中点E ,连接DE ,AE ,则CE BE =,AE DE ===过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==,解得1R =,所以最大球的体积为344ππ33R =,且1OM OF ==,则413AO =-=,1sin 3OM EAF AO ∠==,设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故答案为:4π3;9π【点睛】思路点睛:解决与球有关的内切或外接的问题时,解题的思路是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径.15.(1)证明见解析【分析】(1)构造面面平行,再证线面平行.(2)建立空间直角坐标系,利用空间向量的方法求线面角的正弦.【详解】(1)在线段CD 上取点F ,使得2CF DF =,连接EF 、BF ,如图:因为4PC PM =,E 为PC 的中点,所以2CE ME =,所以//EF DM ,又EF ⊄平面DMN ,DM ⊂平面DMN ,所以//EF 平面DMN ,在平行四边形ABCD 中,因为2AN NB =,2CF DF =,所以DF NB =,且//DF NB ,所以四边形DFBN 是平行四边形,所以//DN FB ,又BF ⊄平面DMN ,DN ⊂平面DMN ,所以//BF 平面DMN ,又BF ,EF ⊂平面EFB ,且BF EF F ⋂=,所以平面//EFB 平面DMN ,又BF ⊂平面EFB ,所以//BE 平面DMN .(2)连接BD 交AC 于点O ,连接PO ,因为正四棱锥P ABCD -的底面ABCD 是正方形,所以PO ⊥平面ABCD ,且OA OB ⊥,故以O 为坐标原点,OA ,OB ,OP 所在直线依次为x ,y ,z 轴,建立空间直角坐标系如图所示:由已知可得:()A,()B,()C -,()0,D -,324M ⎛⎫- ⎪ ⎪⎝⎭,)N所以()AC =-,)DN =,324DM ⎛⎫=- ⎪ ⎪⎝⎭.设平面DMN 的一个法向量为(),,n x y z = ,则·0·0DN n DM n ⎧=⎪⎨=⎪⎩⇒323040x z ⎧-++=⎪+=,取5,1,4n ⎛=- ⎝⎭设直线AC 与平面DMN 的夹角为θ,则:·102cos ,17·AC n sin AC n AC nθ===16.(1)0.95.r ≈(2)ˆ 2.56 2.46yx =-,15.46百万辆【分析】(1)利用相关系数r 公式即可求解;(2)根据已知数据,利用公式先求出ˆb,进而求出ˆa ,得到线性回归方程,再利用线性回归方程进行预测即可.【详解】(1)因为1234563.56x +++++==,2.02 2.213.13 6.710.814.146.56y +++++==,所以6221496149162536617.54i i x x =-=+++++-⨯=∑,622216380.2316 6.5126.731ii yy =-=-⨯=∑,所以6644.80.95.4.211.2iix yxyr -==≈≈⨯∑(2)由题意得61621644.8ˆ 2.5617.56iii ii x yxybxx ==-===-∑∑,所以ˆˆ 6.5 3.5 2.56 2.46ay bx =-=-⨯=-,得y 关于x 的线性回归方程为ˆ 2.56 2.46yx =-,所以可以预测2024年全球新能源汽车的销售量为2.567 2.4615.46⨯-=百万辆.17.(1)()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭单调递减(2)(ⅰ)证明见解析;(ⅱ)1202x xx +>,证明见解析【分析】(1)求导得()()()1241f x ax x x'-=-+,分a 是否大于0进行讨论即可得解;(2)(ⅰ)要证明212121ln ln 2x x x x x x ->-+即只需证明()()21ln 11t t t t ->>+,从而构造函数即可得证;(ⅱ)同构作差法并结合(ⅰ)中结论即可得解.【详解】(1)()()()41242241f x ax a ax x x x'-=-+-=-+,0x >,若0a ≤,则()0f x ¢>,()f x 在()0,∞+上单调递增,若0a >,由()0f x '=得2x a=,当20,x a ⎛⎫∈ ⎪⎝⎭时()0f x ¢>;当2,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,∴()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭单调递减.(2)∵()f x 存在极值,由(1)知0a >,()()()()()()22212121214ln ln 42f x f x x x a x x a x x -=---+--()()()()()212121214ln ln 42x x a x x x x a x x =--+-+--,由题设得()()()()()212102121214ln ln 42f x f x x x f x a x x a x x x x --==-+'+---,∵120x x <<,设21(1)x t t x =>,(ⅰ)要证明212121ln ln 2x x x x x x ->-+即证明()()21ln 11t t t t ->>+,设()()21ln 1t g t t t -=-+,(1t >),则()()()22221211(1)0(1)(1)t t t g t t t t t +---=-=+'>+,∴()g t 在()1,+∞上单调递增,()()10g t g >=,∴()21ln 1t t t ->+,即212121ln ln 2x x x x x x ->-+得证,(ⅱ)()1221128422x x f a x x a x x '+⎛⎫=-++- ⎪+⎝⎭,()()2112210211221124ln ln ln ln 82402x x x x x x f x f x x x x x x x x '-⎛⎫+-⎛⎫-=-=-> ⎪ ⎪-+⎝'+-⎝⎭⎭,∴()1202x x f x f +⎛⎫> ⎪⎝'⎭',∵()()424f x ax a x=-+-'在()0,∞+上是减函数,∴1202x x x +>.【点睛】难点点睛:本题综合考查了导数的应用问题,涉及到函数的单调性以及不等式证明问题,难点在于不等式的证明,解答时要注意根据所要证明的不等式的结构特征,构造恰当的函数,利用导数的单调性进行证明.18.(1)3(2)(i )8;(ii )224y x =-【分析】(1)设()11,A x y ,()22,B x y ,()33,C x y ,根据向量的坐标运算即可得12332x x x ++=,再根据抛物线的定义即可得结论;(2)(i )设直线AB 的方程为x my n =+,()11,A x y ,()22,B x y ,联立直线与抛物线得交点坐标关系,再求导,根据导数的几何意义求解切线斜率,即可得切线方程,从而可得切线的交点坐标,根据三角形面积公式列关系求解即可;(ii )利用直线相交、直线过定点即可得点M 的轨迹方程.【详解】(1)依题意,1,02F ⎛⎫ ⎪⎝⎭,设()11,A x y ,()22,B x y ,()33,C x y ,由0FA FB FC ++= 得,1231110222x x x ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即12332x x x ++=,由抛物线定义得,1231113222FA FB FC x x x ⎛⎫⎛⎫⎛⎫++=+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .(2)(i )显然,直线AB 的斜率不为0,可设直线AB 的方程为x my n =+,()11,A x y ,()22,B x y,由22,y x x my n⎧=⎨=+⎩得:2220y my n --=,2480m n ∆=+>,122y y m ∴+=,122y y n =-.22y x =Q,则y =1y y=='∴,∴切线1l 的方程为()11111112y y x x y x y y =-+=+,同理,切线2l 的方程为2212y y x y =+,联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121222y y x n y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即(),D n m -,则点D 到直线AB的距离为d =由4AB ===,化简得:22421m n m +=+,114822ABDS AB d ∴==⨯=≤ ,当且仅当0m =时取等号,ABD ∴ 面积的最大值为8.(ii )若直线AB 过点()1,0,由(i ),可以设直线AB 的方程为1x my =+,122y y m ∴+=,122y y =-.∴直线3l 的方程为311111112y y y x x y y y x y =-++=-++,同理,直线4l 的方程为32222y y y x y =-++.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得222,2,x m y m ⎧=+⎨=⎩消去m 得:224y x =-,∴点M 的轨迹方程为224y x =-.【点睛】关键点点睛:本题考查了抛物线的定义、直线与抛物线的位置关系、三角形面积问题最值问题.解决问题的关键是确定直线与抛物线交点坐标关系,并将题中几何性质转化为交点坐标关系,另外在求抛物线的切线可以考虑利用导数来求解切线斜率.19.(1)12对(2)①分布列见解析,()()212n nE X -=-;②证明见解析【分析】(1)根据题意分析可知:A ,B 有两个位置的坐标不相等,另一个相等,进而可得结果;(2)①分析可知X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,进而可求分布列,结合组合数性质可求期望;②根据方差公式()()21nk k k D X P X E X =⎡⎤=⋅-⎣⎦∑整理可得()()2121C C C 214n n n n n n D X ⎡⎤<+++⎢⎥-⎣⎦L ,结合组合数性质分析证明.【详解】(1)当3n =时,若(),2d A B =,可知A ,B 有两个位置的坐标不相等,另一个位置的坐标相等,所以共有122322C A A 12=对.(2)①由题意可知,n M 中元素的个数为2n 个,对于X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,此时所对应情况数为12C 2C 22k k n k k n nn --⋅=⋅种.所以()122C 2C C 21n k n k n n n P X k -⋅===-,故X 的分布列为:X12⋅⋅⋅nP1C 21n n-2C 21n n-⋅⋅⋅C 21n nn-数学期望()1212C C C C C C 12120212121212121n n n n n n nn n n n n n n E X n n =⨯+⨯++⨯=⨯+⨯++⨯+------L L ,当2k n ≤≤时,则()()()()()2!!C 2C 2!!2!2!k n k n nn n k n k k n k k n k n k k -++-+=⨯+-+⨯--+-()()()()()()()!!!111!!1!2!1!1!n n n n k k k n k n k k n k k =+=-++----+--+-()()1!C 1!1!k n n n n n k k -⋅==-+-,且10C 0C C nn n n n n n +==⋅=⋅,则()()11C C C 011212121n n n nn n n n E X n n -=+⨯+-⨯++⨯---L ,两式相加得()()01222C C C C 2121n nn n n n n n n n E X ⋅=++++=--L ,所以()()212n nE X -=-;②当n 足够大时,()2n E X ≈,由方差定义()()21nk k k D X P X E X =⎡⎤=⋅-⎣⎦∑22212C C C 12212212212n n n n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L 222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++⋅-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L ()()()21212221C C C C 1C 22214n n n n n n n n n n ⎧=+++-+-+⎨-⎩ ()()()()}23212C 33C 11C n n n nn n n n n n n n -⎡⎤-++---⋅+-⋅⎣⎦因为k n ≤,则()()()20n k n k n k k n ---⋅=-≤,当且仅当0k =或k n =时,等号成立,则()()()2221211C C C 212142144n n n n n n n n n n D X ⎡⎤⎡⎤<+++=-=⎢⎥⎢⎥--⎣⎦⎣⎦L ,所以()24D X n <.【点睛】关键点点睛:(2)①利用倒序相加法结合()21C 2C C kn k k n nn k n k n -+-+-+=分析求解;②根据方差公式结合()()20n k n k n ---⋅≤分析证明.。
2019届湖北省九年级下学期2月月考数学试卷【含答
案及解析】
姓名___________ 班级____________ 分数__________
一、单选题
1. -2的绝对值是()
A. 2
B. -2
C.
D.
2. 中国人口众多、地大物博,仅领水面积就约为370 000 km2,将370 000这个数用科学记数法表示为()
A. 3.7×106
B. 3.7×105
C. 37×104
D. 3.7×104
3. 如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()
A. 凌晨4时气温最低为-3℃
B. 14时气温最高为8℃
C. 从0时至14时,气温随时间增长而上升
D. 从14时至24时,气温随时间增长而下降
4. 下列运算中正确的是()
A. a3-a2=a
B. a3·a4=a12
C. a6÷a2=a3
D. (-a2)3=-a6
5. 如图,四边形ABCD为⊙O的内接四边形.已知∠BOD=100°,则∠BAD的度数为()
A. 50°
B. 80°
C. 100°
D. 130°
6. 如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点为位似中心,相似比为
1∶3,在第一象限内把线段AB缩小得到线段CD,则C的坐标为()
A. (2,1)
B. (2,0)
C. (3,3)
D. (3,1)
7. 下列说法中正确的是()
A. “任意画出一个等边三角形,它是轴对称图形”是随机事件
B. “任意画出一个平行四边形,它是中心对称图形”是必然事件
C. “概率为0.0001的事件”是不可能事件
D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次
8. 三角形ABC的三边长分别为6 cm、7.5 cm、9 cm,三角形DEF的一边长为4 cm.当三
角形DEF的另两边长是下列哪一组时,这两个三角形相似()
A. 2 cm、3 cm
B. 4 cm、5 cm
C. 5 cm、6 cm
D. 6 cm、7 cm
9. 点O是△ABC的外心,若∠BOC=80,则∠BAC的度数为()
A. 40°
B. 100°
C. 40°或140°
D. 40°或100°
10. 如图,以点A(1,)为圆心的⊙A交y轴正半轴于B、C两点,且,点D是⊙A上第一象限内的一点,连接OD、CD.若OD与⊙A相切,则CD的长为()
A. B. C. D.
二、填空题
11. 分解因式:a2-1=______________
12. 关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为
_________
13. 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.
14. 王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_________袋
15. 为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设计了如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E同一直线上,此同学眼睛距地面1.6m标杆长为3.3 m且BC=1 m,CD=4 m,则ED=__________
16. 如图,正方形ABCD的边长为,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为___________
三、判断题
17. 解方程:(x-3)2=2x(x-3)
18. 如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,求证:AD·AB=AE·AC
19. 如图,CD是⊙O的弦,AB是直径,CD⊥AB,垂足为P,求证:PC2=PA·PB
四、解答题
20. “端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A、B、C、D四个组,各组每人制作的粽子个数分别为4、5、6、7.根据下面不完整的统计图解答下列问题:
(1) 请补全上面两统计图
(2) 该班学生制作粽子个数的平均数是____________
(3) 若全校2000名同学一起制作粽子,这次端午节全校同学共送给敬老院的老人
__________个粽子
五、判断题
21. 如图,AB为⊙O的直径,ED切⊙O于点C,过点A作AF⊥ED于点F,交⊙O于点G,连接AC
(1) 猜想线段AC、AB与AF之间的数量关系,并证明你的结论
(2) 若CF=4,GF=2,求⊙O的半径
22. 在“六城”同创活动中,为努力把我市建成“国家园林城市”,绿化公司计划购买A、
B、C三种绿化树共800株,用20辆货车一次运回,对我市城区新建道路进行绿化.按计划,20辆货车都要装运,每辆货车只能装运同一种绿化树,且必须装满.根据下表提供的信息,解答以下问题:
23. 绿化树品种ABC每辆货车运载量(株)404832每株树苗的价格(元)205030td
24. 已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°
(1) 如图1,当四边形ABCD和EFCG均为正方形时,连接BF
① 求证:△CAE∽△CBF
② 若BE=1,AE=2,求CE的长
(2) 如图2,当四边形ABCD和EFCG均为矩形,且时.若BE=1,AE=2,
CE=3,则k=__________
25. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx的对称轴为,且经过点A(2,
1).点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD、AD,过点A作AE⊥x轴,垂足
为E
(1) 求抛物线的解析式
(2) 填空:
① 用含m的式子表示点C、D的坐标
② 当m=____________时,△ACD的周长最小
(3) 若△ACD为等腰三角形,求出所有符合条件的点P的坐标
参考答案及解析第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】。