计算机算法概率算法
- 格式:ppt
- 大小:172.00 KB
- 文档页数:22
详解各种随机算法之前将的算法都是确定的,即对于相同的输⼊总对应着相同的输出。
但实际中也常常⽤到不确定的算法,⽐如随机数⽣成算法,算法的结果是不确定的,我们称这种算法为(随机)概率算法,分为如下四类:1、数值概率算法⽤于数值问题的求解,通常是近似解2、蒙特卡洛算法Monte Carlo能得到问题的⼀个解,但不⼀定是正确解,正确的概率依赖于算法运⾏的时间,算法所⽤的时间越多,正确的概率也越⾼。
求问题的准确解;3、拉斯维加斯算法 Las Vegas不断调⽤随机算法求解,直到求得正确解或调⽤次数达到某个阈值。
所以,如果能得到解,⼀定是正确解。
4、舍伍德算法 Sherwood利⽤随机算法改造已有算法,使得算法的性能尽量与输⼊数据⽆关,即平滑算法的性能。
它总能求得问题的⼀个解,且求得的解总是正确的。
随机数概述计算机产⽣的随机数都是伪随机数,通过线性同余法得到。
⽅法:产⽣随机序列d称为种⼦;m取值越⼤越好;m,b互质,常取b为质数;案例伪随机数在实际编程中,我们使⽤rand()函数来产⽣随机数,rand()函数返回0到⼀个最⼤值之间的⼀个随机数。
#include#include#include//产⽣[0,100)的随机数void GenerateRandomNumber(){for(int i=0;i10;i++){printf('%-4d',rand()%100);//产⽣[0,m)的随机数}printf('\n');}int main(){GenerateRandomNumber();return 0;}运⾏代码,输出:41 67 34 0 69 24 78 58 62 64如果我们重复运⾏代码就会发现,每次的输出结果都是这个序列。
这就是因为rand产⽣的随机序列是伪随机序列。
解决⽅法是:使⽤当前的时间作为随机种⼦。
时间作为随机种⼦在GenerateRandomNumber()函数开头加⼊下⾯⼀条语句。
概率公式算法
概率公式是用来计算概率的数学公式。
常用的概率公式有:
贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B)
高斯公式:P(x|u,s) = 1 / (sqrt(2 * pi) * s) * e^(-1/2 * ((x - u) / s)^2)
条件概率公式:P(A|B) = P(A,B) / P(B)
独立性公式:P(A,B) = P(A) * P(B)
这些公式可以用来计算不同情况下的概率,在机器学习、数据分析等领域有广泛应用。
除了上面提到的几个常用的概率公式,还有其他一些常用的概率公式,如:
概率密度函数(PDF):用来描述连续型随机变量的概率密度。
概率质量函数(PMF):用来描述离散型随机变量的概率密度。
狄利克雷公式:用来计算组合概率。
随机变量转移矩阵:用来描述随机变量之间的转移关系。
多项式公式:用来计算多项式的概率分布。
期望值公式:用来计算随机变量的期望值。
这些公式都有着独特的应用领域,在统计学、概率论、数学建模等领域有着重要的作用。
十大数学算法数学算法是应用数学的重要组成部分,它们是解决数学问题的有效工具。
在计算机科学中,数学算法被广泛应用于图像处理、数据分析、机器学习等领域。
下面将介绍十大经典数学算法,它们涵盖了数值计算、图论、概率统计等多个数学领域的核心算法。
一、牛顿法牛顿法是一种用于求解方程的迭代数值方法。
它通过不断逼近函数的根,实现方程的求解。
牛顿法的核心思想是利用函数的局部线性近似来逼近根的位置,通过迭代求解函数的根。
牛顿法在优化问题中有广泛应用,如求解最优化问题和非线性方程组。
二、高斯消元法高斯消元法是一种用于求解线性方程组的经典方法。
通过不断进行行变换,将线性方程组转化为上三角矩阵,进而直接求解出线性方程组的解。
高斯消元法在线性代数和计算机图形学中有广泛的应用。
三、快速傅里叶变换快速傅里叶变换(FFT)是一种高效的离散傅里叶变换计算方法。
它通过分治法将离散傅里叶变换的计算复杂度降低到O(n log n)的时间复杂度。
FFT在信号处理、图像处理等领域有广泛应用。
四、Prim算法Prim算法是一种用于求解最小生成树的贪心算法。
通过不断选取与当前最小生成树连接的最小权重边,逐步构建最小生成树。
Prim算法在图论和网络优化中有重要应用。
五、Dijkstra算法Dijkstra算法是一种用于求解单源最短路径问题的贪心算法。
通过使用优先队列来存储节点,不断选择当前最短路径长度的节点,逐步求解最短路径。
Dijkstra算法在路由器和网络优化中有广泛应用。
六、最小二乘法最小二乘法是一种用于求解参数估计问题的优化方法。
通过最小化观测值与估计值之间的差异平方和,得到参数的最优估计。
最小二乘法在回归分析和数据拟合中广泛应用。
七、蒙特卡洛方法蒙特卡洛方法是一种通过随机抽样和统计模拟,来解决复杂问题的数值方法。
它通过随机抽样来估计问题的概率或者数值解,适用于各种复杂的概率和统计计算问题。
八、梯度下降法梯度下降法是一种常用的优化算法,主要用于求解无约束最优化问题。
md5算法碰撞概率MD5算法碰撞概率MD5算法是一种常用的密码学哈希函数,广泛应用于数据完整性校验和数据加密等领域。
然而,随着计算机计算能力的提升,人们开始关注MD5算法的碰撞概率。
碰撞概率指的是在给定的哈希算法中,两个不同的输入值产生相同的哈希值的概率。
本文将探讨MD5算法碰撞概率的原理和影响因素。
MD5算法的碰撞概率由多种因素决定,包括输入数据的长度、输入数据的特征、哈希算法的设计等。
首先,输入数据的长度对碰撞概率有一定影响。
较短的输入数据产生的哈希值空间较小,因此碰撞的可能性较高。
相反,较长的输入数据产生的哈希值空间较大,碰撞的可能性较低。
因此,在使用MD5算法时,尽量使用较长的输入数据可以降低碰撞的概率。
输入数据的特征也会影响碰撞概率。
如果输入数据具有相似的特征,例如只有字母或数字,那么碰撞的概率会增加。
因为MD5算法对于相似的输入数据可能会产生相同的哈希值。
因此,在设计输入数据时,应尽量考虑到输入数据的多样性,避免相似性较高的情况。
MD5算法本身的设计也会影响碰撞概率。
MD5算法的设计目标是将任意长度的输入数据映射为一个128位的哈希值。
然而,由于MD5算法的设计存在一定的缺陷,使得碰撞的概率不容忽视。
具体而言,MD5算法存在碰撞攻击的风险,即有人可以通过构造特定的输入数据,使得两个不同的输入数据产生相同的哈希值。
因此,在安全性要求较高的场景中,不建议使用MD5算法。
为了降低碰撞的概率,人们提出了一种改进的哈希算法,如SHA-256算法。
SHA-256算法是一种更安全的哈希算法,具有更大的哈希值空间和更低的碰撞概率。
相比之下,MD5算法已经逐渐被SHA-256算法取代。
然而,在一些特定的场景中,MD5算法仍然被广泛使用,例如文件校验和密码存储等。
总结来说,MD5算法的碰撞概率受到多种因素的影响,包括输入数据的长度、输入数据的特征和哈希算法的设计等。
为了降低碰撞的概率,可以采用较长的输入数据、多样性的输入数据和更安全的哈希算法。
随机游走算法,转移概率-概述说明以及解释1.引言1.1 概述:随机游走算法是一种基于概率的算法,用于模拟随机的行为和变化过程。
它可以描述在一个有限的状态空间中,通过按照一定的规则进行状态转移,从而模拟随机选择下的状态变化。
这一算法在许多领域中有着广泛的应用,包括计算机科学、物理学、生物学、金融等。
随机游走算法的核心思想是通过定义转移概率来描述状态之间的转移规则。
在一个随机游走过程中,每个状态都有一定的概率转移到其他状态,而这些概率可以根据实际情况进行确定。
通过迭代计算,随机游走算法可以模拟出状态的分布情况,进而提供对系统行为的理解和预测。
随机游走算法具有很多重要的特性和优点。
首先,它是一种非常灵活的模型,可以适用于各种不同的问题和场景。
其次,随机游走算法能够捕捉到系统中的随机变动和不确定性,从而可以更好地解释和预测实际情况。
此外,随机游走算法具有较快的收敛速度和较低的计算复杂度,使得它成为许多算法和模型的重要基础。
然而,随机游走算法也存在一些限制和缺点。
首先,它需要事先确定好状态空间和转移概率,这对于复杂系统可能是一个挑战。
其次,随机游走算法对初始状态的选择非常敏感,不同的初始状态可能会导致完全不同的结果。
此外,随机游走算法在处理长时间序列或具有周期性特征的问题时可能存在某些局限性。
综上所述,随机游走算法是一种重要且广泛应用的算法,能够在各个领域中提供对系统行为的建模和预测。
虽然它具有一些限制和缺点,但通过进一步研究和改进,随机游走算法有望在未来的发展中发挥更大的作用。
在接下来的章节中,我们将详细介绍随机游走算法的基本概念、应用领域以及优缺点,并对其重要性和未来发展进行总结和展望。
1.2 文章结构文章结构部分的内容可以包含以下内容:文章结构部分主要介绍了整篇文章的组织结构和各个部分的主要内容,将读者引导到整个文章的框架。
2. 文章结构本文分为引言、正文和结论三个主要部分。
2.1 引言部分引言部分主要对随机游走算法进行了概述,介绍了其基本概念以及本文的目的。
1、概率算法:允许算法在执行的过程中随机的选择下一个计算步骤。
2、在多数情况下,当算法在执行过程中面临一个选择是:随机性选择常比最优选择省时,因此概率算法可在很大程度上降低算法复杂性。
3、概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果(所需时间或计算结果)。
4、概率算法包括:▪数值概率算法:求解数值问题的近似解,精度随计算时间增加而不断提高▪舍伍德算法:消除算法最坏情形行为与特定势力之间的关联性,并不提高平均性能,也不是刻意避免算法的最坏情况行为▪拉斯维加斯算法:求解问题的正确解,但可能找不到解▪蒙特卡罗算法:求解问题的准确解,但这个解未必正确,且一般情况下无法有效判定正确性5、随机数:随机数在概率算法设计中扮演着十分重要的角色。
在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。
6、线性同余法是产生伪随机数的最常用的方法。
7、数值概率算法:通常用于数值问题的求解中,求解数值问题的近似解,精度随计算时间增加而不断提高例如:设有一半径为r的圆及其外切四边形。
向该正方形随机地投掷n个点。
设落入圆内的点数为k。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为224rr∏。
所以当n足够大,4kn∏=程序一:double Darts(int n){ // 用随机投点法计算π值static RandomNumber dart; int k=0;for (int i=1;i <=n;i++) {double x=dart.fRandom(); double y=dart.fRandom(); if ((x*x+y*y)<=1) k++;}return 4*k/double(n);}计算定积分,同样的道理可以阐述到10()I f x dx=⎰表示曲线以下面积,那么落入曲线下面积的概率为()11000{()}()f xrP y f x dydx f x dx≤==⎰⎰⎰,即可知I mn≈8、舍伍德算法:设A 是一个确定性算法,当它的输入实例为x 时所需的计算时间记为tA(x)。
概率算法概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。
这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。
一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗算法,拉斯维加斯算法和舍伍德算法。
一、数值概率算法常用于数值问题的求解。
这类算法所得到的往往是近似解。
而且近似解的精度随计算时间的增加不断提高。
在许多情况下,要计算出问题的精确解是不可能或没有必要的,因此用数值概率算法可得到相当满意的解。
1、用随机投点法计算π值设有一半径为r 的圆及其外切四边形。
向该正方形随机地投掷n 个点。
设落入圆内的点数为k 。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为4422ππ=r r 。
所以当n 足够大n k 4≈π(n k≈4π)2、计算定积分设f(x)是[0,1]上的连续函数,且0≤f(x) ≤ 1。
需要计算的积分为⎰=1)(dx x f I , 积分I 等于图中的面积G在图所示单位正方形内均匀地作投点试验,则随机点落在曲线下面的概率为⎰⎰⎰==≤10)(01)()}({x f r dx x f dydx x f y P 假设向单位正方形内随机地投入 n 个点(xi,yi)。
如果有m 个点落入G 内,则随机点落入G 内的概率nm ≈I 3、解非线性方程组求解下面的非线性方程组⎪⎪⎩⎪⎪⎨⎧===0),,,(0),,,(0),,,(21212211n n n n x x x f x x x f x x x f 其中,x 1, x 2, …, x n 是实变量,fi 是未知量x1,x2,…,xn 的非线性实函数。
要求确定上述方程组在指定求根范围内的一组解x 1*, x 2*, …, x n * 。
在指定求根区域D 内,选定一个随机点x0作为随机搜索的出发点。
在算法的搜索过程中,假设第j 步随机搜索得到的随机搜索点为xj 。
在第j+1步,计算出下一步的随机搜索增量∆xj 。