高考物理知识点之分子与气体
- 格式:doc
- 大小:170.42 KB
- 文档页数:11
2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考物理(深化复习+命题热点提分)专题14 分子动理论气体及热力学定律的全部内容。
专题14 分子动理论气体及热力学定律1。
关于分子动理论和热力学定律,下列说法中正确的是()A.空气相对湿度越大时,水蒸发越快B。
物体的温度越高,分子平均动能越大C.第二类永动机不可能制成是因为它违反了热力学第一定律D。
两个分子间的距离由大于10-9m处逐渐减小到很难再靠近的过程中,分子间作用力先增大后减小到零,再增大E。
若一定量气体膨胀对外做功50J,内能增加80J,则气体一定从外界吸收130J的热量答案BDE2。
下列说法中正确的是( )A。
气体压强的大小和单位体积内的分子数及气体分子的平均动能都有关B。
布朗运动是液体分子的运动,说明液体分子永不停息地做无规则热运动C.热力学第二定律的开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响D。
水黾可以停在水面上是因为液体具有表面张力E。
温度升高,物体所有分子的动能都增大答案ACD解析气体压强的大小与单位体积内的分子数及气体分子的平均动能都有关。
故A正确;布朗运动指悬浮在液体中的固体颗粒所做的无规则运动,布朗运动反映的是液体分子的无规则运动,故B错误;热力学第二定律的开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响,C正确;因为液体表面张力的存在,水黾才能停在水面上,故D正确;温度是分子的平均动能的标志,温度升高,并不是物体所有分子的动能都增大,故E错误。
高考物理知识点:气体的性质高考物理知识点:气体的性质
1.气体的状态参量
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志。
热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}。
体积V:气体分子所能占据的空间,单位换算:
1m3=103L=106mL。
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:
1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点
分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程
p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关。
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度
(K)。
2024年高考物理知识点总结归纳引言物理作为自然科学的重要分支,研究物质的性质、运动和相互作用规律。
在高考中,物理考试是考生通向理工类大学的重要一步。
为了帮助考生更好地复习和备考,下面将对____年高考物理知识点进行总结归纳,希望对考生有所帮助。
知识点一:力学1. 运动学- 匀速直线运动- 弹性碰撞- 非弹性碰撞- 自由落体运动- 斜抛运动- 圆周运动- 牛顿运动定律- 力的合成与分解- 力矩与力偶2. 动力学- 牛顿第二定律- 牛顿第三定律- 弹簧振子- 飞行器运动原理- 弧形轨道上质点的运动- 简谐振动- 阻力与运动方程- 万有引力3. 力学原理- 质点系的动量与冲量- 功与能量- 能量守恒定律- 动能定理- 动量定理- 功与功率- 功的补偿与节省- 简单机械原理知识点二:电学1. 电荷与电场- 原子结构与电荷- 静电场- 电场强度与电势- 电势差与电压2. 电路与电流- 电流与电路- 电阻与电阻率- 欧姆定律- 串联电路和并联电路- 简单电路的应用3. 磁场与电磁感应- 磁场的产生与磁感线- 安培定律- 磁场中的电荷运动- 电磁感应现象与电磁感应定律- 电动机和发电机的基本原理- 变压器的基本原理4. 电磁波- 电磁波的产生与传播- 光的反射与折射- 光的全反射和色散- 单色光的合成与分析- 光的干涉和衍射- 光的波粒二象性知识点三:热学与热能转化1. 理想气体- 理想气体的状态方程- 理想气体的等温过程、绝热过程和等熵过程- 理想气体的定容过程和定压过程- 理想气体中分子的平均运动速率- 理想气体中分子的分布规律2. 热力学基本定律- 热力学第一定律- 热力学第二定律和热力学第三定律- 单位物质的摩尔热容- 机械功与热功- 熵的概念与变化规律3. 热传导- 热传导的基本规律- 热传导的载流体- 热传导的应用知识点四:光学1. 光的传播和光的反射- 光的波动性和光的传播速度- 光的反射与反射定律- 光的反射实验- 镜面成像的基本规律- 镜面成像的应用2. 光的折射与全反射- 光的折射与折射定律- 光的全反射与全反射现象- 全反射的应用- 折射率与速度- 球面折射与球面成像3. 光的光程差与干涉- 光程差的概念与计算方法- 连续光源与单色光源的干涉- 干涉条纹的形成与干涉图样的分析- 条纹间隔与波长4. 光的衍射- 光的衍射现象与衍射定律- 衍射条纹的形成与衍射图样的分析- 衍射的条件和衍射级数- 衍射的应用知识点五:原子与原子核1. 原子结构与周期表- 原子的基本结构与组成- 原子的质量数与原子序数- 原子核的结构和组成- 周期表中的基本规律- 周期表中元素的分类2. 原子核的稳定性- 原子核的稳定性与放射性- α衰变、β衰变和γ射线- 放射性元素的半衰期- 核反应与核能3. 粒子物理学- 基本粒子的分类及其相互作用- 加速器与粒子探测技术- 强子与弱子- 粒子的衰变与转变- 反粒子与宇宙射线结语以上是对____年高考物理知识点的总结归纳。
理科弱的考生,把这些弄会可保你理综过200一、物理性质1、有色气体:F2(淡黄绿色)、Cl2(黄绿色)、Br2(g)(红棕色)、I2(g)(紫红色)、NO2(红棕色)、O3(淡蓝色),其余均为无色气体.其它物质的颜色见会考手册的颜色表.2、有刺激性气味的气体:HF、HCl、HBr、HI、NH3、SO2、NO2、F2、Cl2、Br2(g);有臭鸡蛋气味的气体:H2S.3、熔沸点、状态:①同族金属从上到下熔沸点减小,同族非金属从上到下熔沸点增大。
②同族非金属元素的氢化物熔沸点从上到下增大,含氢键的NH3、H2O、HF反常。
③常温下呈气态的有机物:碳原子数小于等于4的烃、一氯甲烷、甲醛。
④熔沸点比较规律:原子晶体>离子晶体>分子晶体,金属晶体不一定。
⑤原子晶体熔化只破坏共价键,离子晶体熔化只破坏离子键,分子晶体熔化只破坏分子间作用力。
⑥常温下呈液态的单质有Br2、Hg;呈气态的单质有H2、O2、O3、N2、F2、Cl2;常温呈液态的无机化合物主要有H2O、H2O2、硫酸、硝酸.⑦同类有机物一般碳原子数越大,熔沸点越高,支链越多,熔沸点越低.同分异构体之间:正>异〉新,邻>间>对。
⑧比较熔沸点注意常温下状态,固态>液态>气态。
如:白磷〉二硫化碳>干冰。
⑨易升华的物质:碘的单质、干冰,还有红磷也能升华(隔绝空气情况下),但冷却后变成白磷,氯化铝也可;三氯化铁在100度左右即可升华。
⑩易液化的气体:NH3、Cl2 ,NH3可用作致冷剂。
4、溶解性①常见气体溶解性由大到小:NH3、HCl、SO2、H2S、Cl2、CO2。
极易溶于水在空气中易形成白雾的气体,能做喷泉实验的气体:NH3、HF、HCl、HBr、HI;能溶于水的气体:CO2、SO2、Cl2、Br2(g)、H2S、NO2。
极易溶于水的气体尾气吸收时要用防倒吸装置。
②溶于水的有机物:低级醇、醛、酸、葡萄糖、果糖、蔗糖、淀粉、氨基酸。
物理高考气体变化知识点气体变化是物理学中一个重要的研究领域,也是高考物理中的重点内容之一。
在高考中,掌握气体变化的知识点对于理解和解答相关题目非常重要。
本文将从气体的三态、气体压强和气体状态方程三个方面介绍一些常见的气体变化知识点。
一、气体的三态气体可以存在于三种不同的状态,即固态、液态和气态。
在固态下,气体的分子紧密排列,保持着固定的位置,只能做微小的振动;在液态下,气体的分子之间的距离比较近,可以自由运动并且具有一定的相互吸引力;在气态下,气体的分子之间的距离比较远,具有较大的自由度和运动速度。
在不同的温度和压力条件下,气体可以相互转换,这种转换过程被称为气体的相变。
二、气体压强气体的压强是指气体分子对单位面积的撞击力,通常用帕斯卡(Pa)或大气压(atm)等单位来表示。
气体的压强与气体分子的速度、密度、温度和体积等因素密切相关。
根据理想气体状态方程,当温度和体积不变时,气体的压强与气体分子的数量呈正比。
而当温度不变时,气体的压强与气体分子的速度和密度呈正比。
此外,根据达尔顿分压定律和亨利气体溶解定律,气体的总压强等于各个气体分子的分压之和,气体溶解在溶液中的溶解度与该气体的分压成正比。
三、气体状态方程气体状态方程是描述气体性质的重要方程之一,也是高考中经常涉及的知识点。
根据气体的状态方程,可以揭示气体的性质与物理参数之间的内在关系。
根据理想气体状态方程,气体的压强与温度、体积和气体分子数量呈正比。
而据实际气体状态方程,气体的压强与温度、体积和气体分子的性质和数目相关。
此外,根据卡诺循环理论和理想气体状态方程,可以推导出热力学循环中的效率与温度之间的关系。
总结起来,气体变化是物理学中一个重要的研究领域,也是高考物理中的重点内容之一。
通过掌握气体的三态、气体压强和气体状态方程等知识点,可以更好地理解和解答与气体变化相关的问题。
尽管气体变化是复杂而丰富的,但只要理解了其中的基本原理和关键知识点,并掌握了一定的解题思路和方法,相信大家在高考中也能够应对自如,并取得满意的成绩。
高考物理新力学知识点之理想气体图文解析(5)高考物理新力学知识点之理想气体图文解析(5)一、挑选题1.以下讲法中正确的是A.分子力做正功,分子势能一定增大B.气体的压强是由气体分子间的吸引和排斥产生的C.分子间距离增大时,分子间的引力和斥力都减小D.绝对零度算是当一定质量的气体体积为零时,用实验办法测出的温度 2.关于一定质量的理想气体,下列讲法正确的是 ( )A.当气体温度升高,气体的压强一定增大B.当气体温度升高,气体的内能也许增大也也许减小C.当外界对气体做功,气体的内能一定增大D.当气体在绝热条件下膨胀,气体的温度一定落低3.一定质量的理想气体从状态a变化到状态b的P-V图像如图所示,在这一过程中,下列表述正确的是A.气体在a状态的内能比b状态的内能大B.气体向外释放热量C.外界对气体做正功D.气体分子撞击器壁的平均作用力增大4.图中气缸内盛有定量的理想气体,气缸壁是导热的,缸外环境保持恒温,活塞与气缸壁的接触是光滑的,但别漏气。
现将活塞杆与外界连接使其缓慢的向右挪移,如此气体将等温膨胀并经过杆对外做功。
若已知理想气体的内能只与温度有关,则下列讲法正确的是()A.气体是从单一热源吸热,全用来对外做功,所以此过程违反热力学第二定律B.气体是从单一热源吸热,但并未全用来对外做功,因此此过程别违反热力学第二定律C.气体是从单一热源吸热,全用来对外做功,但此过程别违反热力学第二定律D.ABC三种讲法都别对5.如图所示,1、2是一定质量的某气体在温度分不是1t,2t时状态变化的等温线,A、B 为线上的两点,表示它们的状态参量分不为1p、1V和2p、2V,则由图像可知()A .12t t >B .12t t =C .12t t6.下列讲法正确的是A .外界对气体做功,气体的内能一定增大B .气体从外界汲取热量,气体的内能一定增大C .气体的温度越低,气体分子无规则运动的平均动能越大D .温度一定,分子密集程度越大,气体的压强越大7.一定质量的理想气体从状态A 变化到状态B 再变化到状态C ,其p V -图象如图所示,已知该气体在状态A 时的温度为27℃,则()A .该气体在状态B 时的温度300KB .该气体在状态C 时的温度600KC .该气体在状态A 和状态C 内能相等D .该气体从状态A 经B 再到C 的全过程中从外界吸热8.一定质量的理想气体,经图所示方向发生状态变化,在此过程中,下列叙述正确的是()A .1→2气体体积增大B .3→1气体体积增大C .2→3气体体积别变D .3→1→2气体体积别断减小9.如图所示,粗细均匀的玻璃管竖直放置且开口向上,管内由两段长度相同的水银柱封闭了两部分体积相同的空气柱.向管内缓慢加入少许水银后,上下两部分气体的压强变化分不为Δp1和Δp 2,体积减少分不为ΔV 1和ΔV 2.则()A .Δp 1Δp 2C .ΔV 1ΔV 210.如图所示,将盛有温度为T 的同种气体的两容器用水平细管相连,管中有一小段水银将A 、B 两部分气体隔开,现使A 、B 并且升高温度,若A 升高到A T T +,B 升高到B T T +,已知2A B V V =,要使水银保持别动,则( )A .2AB T T = B .A B T T =C .12A B T T =D .14A B T T = 11.如图所示,两根粗细相同、两端开口的直玻璃管 A 和 B ,竖直插入同一水银槽中,各用一段水银柱封闭着一定质量同温度的空气,空气柱长度 H 1>H 2,水银柱长度 h 1>h 2,今使封闭气柱落低相同的温度(大气压保持别变),则两管中气柱上方水银柱的挪移事情是:()A .均向下挪移,A 管挪移较多B .均向上挪移,A 管挪移较多C .A 管向上挪移,B 管向下挪移D .无法推断12.如图所示,在一端开口且脚够长的玻璃管内,有一小段水银柱封住了一段空气柱。
物理高考气体知识点归纳在物理高考中,气体是一个非常重要的知识点。
掌握了气体的基本概念、性质以及气体状态方程等知识,对于理解各类物理问题是至关重要的。
下面将对物理高考中与气体有关的知识点进行归纳总结。
一、气体的基本概念和性质气体是物质的一种状态,具有以下特点:1. 无定形:气体没有固定的形状和容积,它会充满整个容器。
2. 可压缩性:由于气体分子之间的间隙较大,因此气体具有很高的可压缩性。
3. 高速运动:气体分子具有较高的平均动能,它们以高速无规则地运动着。
4. 无固定形状体积:气体的体积可以随着外界条件的变化而改变。
二、理想气体状态方程理想气体状态方程描述了气体的状态随温度、压强和体积的关系,表达式为:PV = nRT其中,P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R表示气体常数,T表示气体的温度(单位为开尔文)。
三、气体的压强1. 大气压:大气压是指地球表面上空气对单位面积的压强,通常用帕斯卡(Pa)来表示,常用单位还有千帕(kPa)和标准大气压。
2. 海拔高度对气压的影响:随着海拔高度的增加,大气压逐渐降低,这是因为在海拔较高的地方,大气的分子数量变少,分子间的相互碰撞减少,从而导致气压降低。
四、理想气体的性质和实验规律1. 法尔查聊天法则:规定了在恒温下,单位质量的气体在同等条件下相等体积内占据的体积与绝对温度的比值是常数。
2. 查理定律:规定了在恒压下,单位质量的气体在等升温度下升高的温度与其初温的比值是常数。
3. 道尔顿分压定律:规定了混合气体中各个组分的分压之和等于该气体在其中所占比例的总压力。
5. 隔膜法则:气体在容器内只能通过可被视为隔膜的孔进出,这些孔的直径要求较小,以保证气体分子间的平均自由程较大。
六、麦克斯韦速率分布定律麦克斯韦速率分布定律描述了气体分子的速度分布关系。
该定律表明,气体分子的速度服从一个正态分布,并且分子速度的平均值与温度有关。
七、气体的热力学过程1. 绝热过程:绝热过程是指在没有热量交换的情况下,气体的温度、压力和体积发生变化的过程。
热学(分子热运动、能量、气体)1、分子的大小(1)分子:物理中所说的分子指的是做热运动时遵从相同规律的微粒。
在研究热现象时,组成物质的原子、离子或分子,统称为分子。
(2)分子的大小①单分子油膜法粗测分子的大小原理:把一滴油酸滴到水面上,油酸在水面上散开形成单分子油膜,如果把分子看成球形,单分子油膜的厚度就可认为等于油膜分子的直径,如右图所示。
把滴在水面上的油酸层当作单分子油膜层和把分子看成球形等是理想化处理。
具体做法是:a .测出1滴油酸的体积V ;b .让这滴油酸在水面上尽可能散开,形成单分子油膜,用方格坐标纸测出水面上漂浮的油膜的面积S ,如右图所示;c .单分子油膜的厚度d 等于油滴体积V 与油膜面积S 的比值。
d =V S②利用离子显微镜测定分子的直径一般分子直径的数量级为10-10m 。
例如水分子直径是4×10-10m ,氢分子直径是2.3×10-10m 。
(3)分子模型的意义把分子看作小球,是对分子模型的简化。
实际上,分子结构很复杂,并不都是小球。
因此说分子直径有多大,一般知道数量级就已经可以了。
2、阿伏加德罗常数(1)阿伏加德罗常数:1mol 的任何物质都含有相同的粒子数,这个数就叫阿伏加德罗常数。
用符号N A 表示此常数,N A =6.02×1023 mol -1,粗略计算时:NA =6.0×1023 mol-1。
(2)宏观量与微观量及其联系 ①宏观量体积V 质量m密度ρ=m V =M mol V mol 摩尔体积V mol =M mol ρ 摩尔质量M mol =ρV mol 摩尔数n =m M mol =V V mol物体中所含的分子数N =n N A ②微观量分子体积V 0=16πD 3(球体模型)分子质量m 0③宏观量与微观量的联系──桥梁是阿伏伽德罗常数N A对固体和液体:分子体积V 0=V molN A 对气体:每个分子占有的空间体积V =V mol N A对固体、液体和气体:分子质量m 0=M molN A(3)阿伏伽德罗常数的计算N A =M molm 0 (对固体、液体和气体都适用)N A =Vmol V0 (只对固体、液体适用)阿伏加德罗常数是联系微观世界和宏观世界的桥梁。
新高考物理知识点总结大全(2024.5.27)力学一、*机械运动及其描述1.机械运动及其描述2.描述运动的物理量二、直线运动1.直线运动2.匀变速直线运动3.匀变速直线运动规律的应用4.运动图像、V-T图像三、相互作用---力1.力2.重力3.弹力4.摩擦力5.力的合成与分解6.共点力平衡7.受力分析的方法8.平衡问题中常见的临界与极值四、运动和力的关系1.牛顿第一定律2.牛顿第二定律3.牛顿第三定律4.牛顿运动定律的应用5.斜面、连接体、传送带、板块等模型五、曲线运动1.曲线运动的理解2.运动的合成与分解3.抛体运动4.圆周运动六、万有引力与宇宙航行1.开普勒行星运动定律2.万有引力定律3.万有引力定律的应用(1)三大宇宙速度(2)引力势能及其应用(3)同步卫星、近地卫星、一般卫星(4)双星、多星系统问题(5)潮汐问题(6)中子星与黑洞问题(7)拉格朗日点问题七、功和能1.功2.功率3.动能与动能定理4.重力势能和弹性势能5.机械能守恒定律6.能量守恒定律八、动量守恒定律1.动量2.冲量3.动量定理4.动量守恒定律5.动量守恒定律的应用(1)碰撞问题(2)爆炸问题(3)反冲问题(4)多过程问题九、机械振动与机械波1.机械振动2.机械波电磁学十、静电场1.电荷间的相互作用2.电场力的性质3.电场能的性质4.静电现象5.电容器6.带电粒子在电场中的运动十一、恒定电流1.电流2.导体的电阻3.部分电路欧姆定律4.电功和电功率5.焦耳定律6.非纯电阻电路7.电动势8.闭合电路的欧姆定律9.动态电路分析10.故障电路分析11.含容电路分析12.简单逻辑电路十二、磁场1.磁现象和磁场2.安培力3.洛伦兹力4.带电粒子在磁场中的运动5.带电粒子在复合场中的运动6.质谱仪、回旋加速器、霍尔效应、电磁流量计、磁流体发电机十三、电磁感应1.电磁感应现象2.感应电流方向的判断3.法拉第电磁感应定律4.电磁感应中的能量转化5.自感和涡流十四、交变电流1.交变电流的产生2.描述交变电流的物理量3.电感和电容对交变电流的影响4.变压器5.远距离输电十五、电磁波1.电磁波的产生与应用2.电磁波谱十六、传感器1.传感器及其元件2.传感器的应用热学十七、分子动理论1.阿伏伽德罗常数2.分子的大小3.扩散现象4.布朗运动5.分子热运动6.分子间的相互作用力7.分子势能8.温度和温标9.物体的内能十八、气体、固体、液体1.气体2.固体3.液体4.饱和汽和饱和汽压5.物态变化十九、热力学定律1.热力学第一定律2.能量守恒定律3.热力学第二定律4.热力学第三定律5.能源与可持续发展二十、*热机、制冷机1.热机原理与热机效率2.内燃机原理3.*汽轮机与发电机4.*制冷剂原理5.*电冰箱与空调光学二十一、光的传播与反射1.光沿直线传播2.光的反射二十二、光的折射1.光的折射定律二十三、全反射1.全反射现象2.全反射的条件3.全反射的应用二十四、光的干涉1.双缝干涉2.薄膜干涉二十五、光的衍射1.衍射图样2.衍射条件二十六、*光的颜色与色散1.光的颜色2.三棱镜色散二十七、光的偏振1.偏振现象及其解释2.偏振的应用二十八、激光1.激光的原理和产生条件2.激光的特点及其应用近代物理二十九、波粒二象性1.能量的量子化2.光电效应3.康普顿效应4.物质的波粒二象性三十、原子结构1.电子的发现2.核式结构模型3.波尔的原子模型三十一、原子核1.原子核的组成2.放射性元素衰变3.核力和结合能4.核能5.粒子和宇宙三十二、*相对论简介1.狭义相对论2.时间和空间的相对性3.广义相对论物理实验(共16个)一、物理实验基础1.常用仪器的使用与读数2.误差和有效数字二、力学实验1.研究匀变速直线运动(1)测量做直线运动物体的瞬时速度(2)测定匀变速直线运动的加速度2.*利用单摆测定重力加速度3.探究弹力和弹簧伸长的关系*测量动摩擦因数4.验证力的平行四边形定则5.验证牛顿运动定律6.曲线运动(1)探究平抛运动的特点(2)用频闪相机研究平抛运动(3)探究向心力大小与半径、角速度、质量的关系(4)探究功与物体速度变化的关系7.探究动能定理(1)探究动能定理(2)用现代方法验证动能定理8.验证机械能守恒定律9.验证动量守恒定律(1)验证动量守恒定律(2)用现代方法验证动量守恒定律三、电学实验10.描绘小电珠的伏安特性曲线11.测定金属的电阻率(1)伏安法测量未知电阻(2)半偏法测量电表内阻(3)测量电阻丝的电阻率(4)特殊方法测电阻12.测定电源的电动势和内阻13.练习使用多用电表14.传感器的简单使用*观察电容器充、放电现象*探究影响感应电流方向的因素*探究变压器原、副线圈电压与匝数的关系四、热学实验(1)用油膜法估测分子的大小(2)气体实验定律五、光学实验(1)测量玻璃的折射率(2)测量折射率的创新方法(3)双缝干涉实验六、创新实验(1)力学创新实验(2)电学创新实验物理学史、方法、单位制一、物理学史二、方法三、单位制1.力学单位制2.单位制和量纲【专题01】直线运动一、匀变速直线运动1.概念:沿着一条直线且加速度不变的运动。
高考物理知识点之分子与气体考试要点基本概念一、物质是由大量分子构成的分子是具有各种物质的化学性质的最小微粒,在热学中,原子、离子、分子这些微粒做热运动时,遵从相同的规律,所以,统称为“分子” 二、分子的大小:直径的数量级 10 -10m粗测:svd(1)单层(2)球形(3)空隙 1+1≠2 2、离子显微镜 (200万倍)3、扫描隧道显微镜(几亿倍) 三、几个常用的等式 1、水油酸分子油膜mMv V N A ==即:分子质量摩尔质量=分子占有体积摩尔体积阿佛加德罗常数=阿佛加德罗常数——1摩尔的任何物质所含的微粒数相同N A = 6.02×10 23 mol -1分子的个数 = 摩尔数 ×阿伏加德罗常数VM =ρ 一 、扩散:不同物质相互接触时彼此进入对方的现象意义:分子永不停息的做无规则的运动,而且温度越高,扩散越快。
固体、液体也有扩散现象二、布朗运动1827年(英)布朗首先用显微镜观察水中的花粉时发现的,称为布朗运动。
1、运动是无规则的 2、颗粒体积越小越明显,质量越小越明显 3、温度越高越明显 4、气体中没有布朗运动原因 ——颗粒足够小时,来自各方向受到液体分子的撞击作用是不平衡的,颗粒越小,分子数越少,不平衡性越显著 三、布朗运动与扩散的异同 是颗粒还是分子是直接还是间接反映分子的运动成因是相同的,都是分子的无规则运动引起的 哪些现象说明分子间有空隙?扩散、布朗运动、教材彩图(石墨原子)酒精和水相混合1+1≠2 为什么分子不能紧贴在一起?——分子间有斥力 为什么有空隙还能形成固体和液体?——分子间有引力 分子间的引力和斥力如何变化?引力和斥力同时存在,半径r 增加,引力和斥力同时减小,斥力减小的快,半径r 减小,引力和斥力同时增加,斥力增加的快 5、 分子力何时表现出引力、斥力? 分子间作用力(指引力和斥力的合力)随分子间距离而变的规律是:①r <r 0时表现为斥力;②r=r 0时分子力为零;③r >r 0时表现为引力;④斥力引力合力r 0如果取斥力的方向为正r >10r 0以后,分子力变得十分微弱,可以忽略不计。
对比弹簧振子的振动(类似)6、从本质上来说,分子力是电场力的表现。
因为分子是由原子组成的,原子内有带正电的原子核和带负电的电子,分子间复杂的作用力就是由这些带电粒子间的相互作用而引起的。
(也就是说分子力的本质是四种基本基本相互作用中的电磁相互作用)。
一、温度的宏观和微观意义是什么?如何理解?分子的无规则运动特点是多、快、乱、变,中间多,两头少,在热现象中,关心的是多个分子,而不是单个分子。
(1)、分子的平均动能――所有分子的动能的平均值 m ~10-26kg v =10 5 m / s(2)、温度:宏观――表示物体的冷热程度, 微观――是物体平均动能的标志 (3)、温度相同,平均动能就相同,不论物体组成、结构、种类和物态 (无论如何) 二、什么是分子势能?分子势能与什么有关?(1)、由于分子间存在着相互作用的引力和斥力而具有的与其相对位置有关的能量,叫做分子势能。
(2)、微观――与相对位置有关, 宏观――与体积有关(3)分子势能与距离的变化关系和图象(类似于重力势能和弹性势能)。
三、什么是物体的内能,它与什么有关?所有分子做热运动的动能和分子势能的总和叫做物体的内能,也叫热力学能与温度T 、体积V 和分子个数N 有关 一切物体都具有内能四、内能和机械能又什么区别?r 0=10-10mr <r 0引力<斥力 表现斥力r =r 0引力=斥力 合力=0r >r 0引力>斥力 表现引力r =10 r 0r =10 r 0引力=斥力=0 合力=0r =r 0 E p 最小r >r 0 引力 做负功 E p 增加r <r 0 斥力 做负功 E p 增加斥力引力r 0E P宏观物体的机械运动对应机械能。
机械能可以为零。
微观物体对应内能。
内能不可以为零。
内能和机械能之间可以相互转化。
五、做功改变物体的内能 物体做功,物体内能增加 对外做功,物体内能减小 做多少功,改变多少内能六、热传递改变物体的内能外界向物体传递热量(吸热),物体的内能增加 物体向外界传递热量(放热),物体的内能减小 传递多少热量,内能就改变多少。
能量的转移七、做功和热传递的实质做功改变内能,是能量的转化,用功的数值来度量热传递改变内能,是能量的转移,用热量来度量。
能量的转化。
八、做功和热传递的等效性——做功和热传递在改变内能上是等效的。
例如:使物体升高温度,可以用热传递的方法,也可以用做功的方法,得到的结果是相同的,如果事先不知道,我们无法知道它是通过哪种途径改变的内能。
1 cal =4.2 J 1 J =0.24 cal 九、区分内能、热量和温度热量是在热传递的过程中转移的内能,它只有在转移的过程中才有意义,热传递使物体的温度改变。
温度不同是热传递的条件(类比:云――雨――水)例如:两物体温度不同相接触,热量从高温物体相低温物体传递,高温物体内能减少,温度降低,低温物体内能增加,温度升高。
十、理想气体:(1)分子间无相互作用力,分子势能为零; (2)一定质量的理想气体的内能只与温度有关。
(3)在温度不太低、压强不太大(常温常压)的条件下,实际气体可以近似为理想气体。
温度接打气筒胶塞十一、热力学第一定律——△U = Q + W 1、表示内能的改变、做功、热传递之间的关系2、第一类永动机——不消耗能量,持续对外做功(违反能量守恒定律,不能制成) 十二、热 力 学 第 二 定 律第一种表述:如果没有其他变化,不可能使热量由低温物体传到高温物体。
(克劳修斯表述) (其他变化――是指从单一热源吸热并把它用来做功以外的任何变化。
) 实质:热传递具有方向性,不可逆第二种表述:如果没有其他变化,不可能从单一热源吸收热量全部用来做功。
即第二类永动机不可能制成。
(开尔文表述) 实质:机械能向内能转化有方向性 两种表述是等价的第二类永动机――没有冷凝器,只有单一热源。
它从单一热源吸收热量,全部做功,而不引起其他变化。
这种永动机不可能制成,虽然不违反机械能守恒定律,但违反了机械能和内能转化的方向性。
(注:单一热源指温度均匀且恒定的热源 ) 一切与热现象有关的宏观过程都具有方向性,是不可逆的。
十三、热力学第三定律和第零定律高温外界帮助低温单一热源对外做功冷凝器(一)气体 一 气体的状态参量 (1)温度(T )1、意义:微观――是分子平均动能的标志 宏观――物体的冷热程度2、单位:摄氏温度(t ) 摄氏度 ℃开氏温度(热力学温度T ) 开尔文 K (补: 摄氏――摄尔修斯 华氏温度――华伦海特勒氏――勒奥默) T = t + 273.15 3、 就每一度来说,它们是相同的 (2)体积(V )与液体和固体的体积不同,气体的体积是指气体分子所能达到的空间,也就是气体所充满容器的容积,无论气体的分子个数多少,无论气体的种类。
理解:r 大 力小 容易扩展 填充整个容器 单位:m 3 dm 3 或Lcm 3 mm 3(3)、压强(p )单位面积上受到的正压力 液体和大气压强的产生原因――重力gh sgVs mg p ρρ===h 是某点距液面的距离 压强与深度有关,向各个方向都有压强 容器内气体压强的产生原因――碰撞大量的气体对器壁的频繁撞击,产生一个均匀的,持续的压力 (举例:雨伞),这个压力就产生了压强。
压强与深度无关,在各处都相等,向各个方向都有压强 单位0℃ 273K-273℃ 0K水h1 P a =1 N/m2 1 atm =101325 P a =10 5 P a 1 atm =760 mmHg 1 mmHg =133.322 P a(4)、状态的改变对应一定质量的气体,如果三个参量有 两个或三个都发生了变化就说气体的状态改变了(只有一个发生变化是不可能的),如果都不改变,就 说它处于某一个状态。
二、玻意尔定律1、内容: ——一定质量气体,在等温变化过程中,压强和体积成反比 即3322111221v p v p v p v v p p ===或2、p ~V 图 等温线状体M 经过等温 变化到状态N 。
3、矩形的面积相等 4、同质量的某种气体 T 1>T 2三、查理定律1、内容:一定质量的气体,等容变化过程中,压强和热力学温度成正比 即常数=∆∆===Tp T p T p T p 332211 2、图象m T恒定p V反比pVT 1TpVp 1 p 2V 1 V 2 MN等温线 m V 恒定p T 正比M pT等容线N pTV 1 V 2读图: 1、等容线 2、有M 到N 经历了等容变化 3、V 1<V 23、查理定律的另一种表述内容:一定质量的气体,在等容变化过程中,温度升高(或降低)1℃,增加(或减小)的压强等于0℃时压强的1 / 273。
)2731(273000t p p t p p p t t +=⇒=-零上,t 取正,零下,t 取负。
读图: 1、p t -p 0 表示压强增量2、p 0表示0℃时的压强。
3、k =tan θ=p 0 / 2734、理解虚线的意义 盖·吕萨克定律1、内容:一定质量的气体,在等压过程中,气体的体积与热力学温度成正比即 TVT V T V ∆∆==22112、图象读图:1、等压线2、由M 到N 经历了等压过程3、p 1<p 24、理解虚线的意义 盖·吕萨克定律的另一种表述内容:一定质量的气体,在等压变化过程中,温度升高(或降低)1℃,增加(或减小)的体积为0℃时体积的1 / 273。
)2731(273000t V V t V V V t t +=⇒=- 零上,t 取正,零下,t 取负。
θp t (℃)-273p 0m p 恒定V T正比 VT等压线MNp 1p 2V T图象:读图:1、V t -V 0 表示体积增量2、V 0表示0℃时的体积。
3、k =tan θ=V 0 / 273 五、理想气体状态方程一定质量的某种气体,压强p 与体积V 成反比,与热力学温度T 成正比,即333222111T V p T V p T V p == 适用条件:一定质量的理想气体注:p 和V 的单位要统一,T 的单位用热力学单位。
(二) 固体 一.晶体和非晶体固体可分为晶体和非晶体两大类例如各种金属、食盐、明矾、云母、硫酸铜、雪花、方解石、石英等都是晶体;玻璃、松香、沥青、蜂蜡、橡胶、塑料等都是非晶体。
晶体与非晶体的区别主要表现在: (1)晶体具有天然的规则的几何形状,而非晶体无此特点。
例如:食盐粒都是正方体,硫酸铜也是正方体,雪花都是六角形的、明矾外形的八面体,水晶石为六面棱柱。
(2)晶体在不同方向上物理性质不同,而非体各方向上物理性质相同。