高中数学竞赛专题讲座之函数的基本性质
- 格式:doc
- 大小:217.50 KB
- 文档页数:12
函数的基本性质——单调性教案教学目标:1. 理解单调性的概念,掌握单调增函数和单调减函数的定义。
2. 学会判断函数的单调性,并能运用单调性解决实际问题。
3. 理解单调性在数学分析中的重要性,培养学生的逻辑思维能力。
教学内容:第一章:单调性的概念1.1 单调增函数1.2 单调减函数1.3 单调性的判断方法第二章:单调性的性质2.1 单调增函数的性质2.2 单调减函数的性质2.3 单调性与其他函数性质的关系第三章:单调性与最值3.1 单调性与函数最值的关系3.2 利用单调性求函数最值3.3 单调性在优化问题中的应用第四章:单调性与方程的解4.1 单调性与方程解的关系4.2 利用单调性求方程解4.3 单调性在实际问题中的应用第五章:单调性的应用5.1 利用单调性证明不等式5.2 单调性在实际问题中的应用案例分析5.3 单调性在数学竞赛中的应用教学过程:一、导入(5分钟)1. 引入单调性的概念,引导学生思考为什么需要研究单调性。
2. 举例说明单调性在实际问题中的应用,激发学生的学习兴趣。
二、新课讲解(20分钟)1. 讲解单调增函数和单调减函数的定义,引导学生理解单调性的本质。
2. 通过示例,讲解单调性的判断方法,让学生学会如何判断函数的单调性。
三、案例分析(15分钟)1. 分析单调性与函数最值的关系,引导学生学会利用单调性求函数最值。
2. 分析单调性与方程解的关系,让学生学会利用单调性求方程解。
四、课堂练习(10分钟)1. 针对本节课的内容,设计一些练习题,让学生巩固所学知识。
2. 引导学生思考单调性在实际问题中的应用,培养学生的应用能力。
2. 鼓励学生思考单调性在其他领域的应用,激发学生的创新意识。
教学评价:1. 通过课堂讲解、案例分析和课堂练习,评价学生对单调性的理解和掌握程度。
2. 关注学生在实际问题中运用单调性的能力,评价学生的应用水平。
3. 鼓励学生反思单调性在其他领域的应用,评价学生的创新意识。
2008高考数学第一轮复习单元讲座 函数的基本性质一.课标要求1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义; 2.结合具体函数,了解奇偶性的含义;二.命题走向从近几年来看,函数性质是高考命题的主线索,不论是何种函数,必须与函数性质相关联,因此在复习中,针对不同的函数类别及综合情况,归纳出一定的复习线索。
预测2007年高考的出题思路是:通过研究函数的定义域、值域,进而研究函数的单调性、奇偶性以及最值。
预测明年的对本讲的考察是:(1)考察函数性质的选择题1个或1个填空题,还可能结合导数出研究函数性质的大题; (2)以中等难度、题型新颖的试题综合考察函数的性质,以组合形式、一题多角度考察函数性质预计成为新的热点。
三.要点精讲1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
第三讲 函数的概念和性质知识、方法、技能I .函数的定义设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射f :A →B 就叫做从A 到B 的函数.记做y=f(x),其中x ∈A ,y ∈B ,原象集合,A 叫做函数f(x)的定义域,象的集合C 叫做函数的值域,显然C ⊆B.II .函数的性质(1)奇偶性 设函数f(x)的定义域为D ,且D 是关于原点对称的数集.若对任意的x ∈D ,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x ∈D ,都有f(-x)=f(x),则称f(x)是偶函数.(2)函数的增减性 设函数f(x)在区间D ′上满足:对任意x 1, x 2∈D ′,并且x 1<x 2时,总有f(x 1)<f(x 2) (f(x 1)>f(x 2)),则称f(x)在区间D ′上的增函数(减函数),区间D ′称为f(x)的一个单调增(减)区间.III .函数的周期性对于函数 f(x),如果存在一个不为零的正数T ,使得当x 取定义域中的每个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T 称做这个周期函数的周期.如果函数f(x)的所有周期中存在最小值T 0,称T 0为周期函数f(x)的最小值正周期.IV .高斯函数对任意实数x,我们记不超过x 的最大整数为[x],通常称函数y=[x]为取整函数,又称高斯函数.进一步,记{x}=x -[x],则函数y={x}称为小数部分函数,它表示的是x 的小数部分. 根据高斯函数的定义,可得到其如下性质.性质1 对任意x ∈R ,均有x -1<[x]≤x<[x]+1.性质2 对任意x ∈R ,函数y={x}的值域为)1,0[.性质3 高斯函数是一个不减函数,即对任意x 1, x 2∈R ,若x 1≤x 2, 则[x 1] ≤[x 2]. 性质3 若n ∈Z , x ∈R ,则有 [x+n]=n+[x], {n+x}={x}后一个式子表明y={x}是一个以1为周期的函数.性质4 若x , y ∈R , 则 [x]+ [y]≤[x+y] ≤[x]+ [y]+1.性质5 若n ∈N*, x ∈R , 则[nx]≥n[x]性质6 若n ∈N*, x ∈R , 则]][[][nx n x=. 性质7 若n ∈N*, x ∈R +, 则在区间[1,x]内,恰有][n x个整数是n 的倍数.性质8 设p 为质数,n ∈N*,在p 在n!的质因数分解式中的幂次为++=][][)!(2pn p n n p 赛题精讲函数是高中数学,也是高等数学的基础.因此,也是高考和高中数学竞赛的重要内容.下面分类介绍此类题目.I 函数的定义域和值域例1 当x 为何值时,x lg lg lg lg lg lg 才有意义.【思路分析】应根据对数的意义,从最外层开始一层一层地逐步消去根号和对数符号求出x 的范围. 【略解】由x lg lg lg lg lg lg >0,得x lg lg lg lg lg ≥1……∴1021021021010⋅⋅⋅≥x【评述】这种多层对数及根式问题,一定要逐层由外向内求解,要有耐心。
高中数学竞赛常见题型解析数学竞赛是很多学生在高中阶段参与的一项活动,它不仅可以培养学生的逻辑思维能力,还能提高他们的数学水平。
在数学竞赛中,有一些常见的题型,这些题型需要学生熟练掌握相关的解题方法。
本文将对高中数学竞赛中的常见题型进行解析,帮助学生更好地应对这些题目。
一、函数与方程题型解析1. 函数的性质与变化函数的性质与变化是数学竞赛中经常出现的题型。
在这类题目中,常常需要分析函数的定义域、值域、单调性、奇偶性等。
解决这类题目的关键是要熟练掌握函数的基本性质,并能够通过图像或计算等方式确定函数的变化规律。
2. 方程与不等式的解集方程与不等式的解集也是数学竞赛中常见的题型。
在这类题目中,学生需要通过代入法、分析法等方式求解方程或不等式的解集。
解决这类题目的关键是要熟练掌握方程与不等式的基本解法,并能够灵活运用。
二、数列与数列极限题型解析1. 数列的性质与变化数列的性质与变化是数学竞赛中常见的题型之一。
在这类题目中,学生需要分析数列的通项公式、前n项和、极限等。
解决这类题目的关键是要熟练掌握数列的基本性质,并能够通过计算或推导等方式确定数列的变化规律。
2. 数列极限的计算数列极限的计算也是数学竞赛中常见的题型之一。
在这类题目中,学生需要通过递推关系式、数列性质等方式计算数列的极限。
解决这类题目的关键是要熟练掌握数列极限的计算方法,并能够灵活运用。
三、平面几何题型解析1. 三角形的性质与相关定理三角形的性质与相关定理是数学竞赛中常见的题型之一。
在这类题目中,学生需要通过角度关系、边长关系等方式分析三角形的性质。
解决这类题目的关键是要熟练掌握三角形的基本性质与相关定理,并能够灵活运用。
2. 平面图形的面积与体积计算平面图形的面积与体积计算也是数学竞赛中常见的题型之一。
在这类题目中,学生需要通过公式、分割法等方式计算平面图形的面积与体积。
解决这类题目的关键是要熟练掌握平面图形的面积与体积计算方法,并能够灵活运用。
函数的基本性质基础知识:函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题:1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2),那么g(x)( )A.在区间(-2,0)上单调递增B.在(0,2)上单调递增C.在(-1,0)上单调递增D.在(0,1)上单调递增提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤23时,f(x)=x ,则f(2003)=( ) A.-1B.0C.1D.2003解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303C.152D.2305提示:由已知,函数f(x)的图象有对称轴x =23 于是这101个根的分布也关于该对称轴对称.即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =23对称 利用中点坐标公式,这100个根的和等于23×100=150 所有101个根的和为23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5y =______________.解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=75. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________.解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x再平方得x 4-160x 2+6400=76x 2即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b +c =61646. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根,求证:a >4.f(0)=c >1 ③ 0<-a2b<1 ④ b 2≥4ac b >1-a -c c >1b <0(∵ a>0) 于是-b≥2ac所以a +c -1>-b≥2ac ∴ (c a -)2>1 ∴ c a ->1 于是c a >+1>2 ∴ a>4证法二:设f(x)的两个根为x 1,x 2, 则f(x)=a(x -x 1)(x -x 2) f⑴=a(1-x 1)(1-x 2)>1 f(0)=ax 1x 2>1 由基本不等式 x 1(1-x 1)x 2(1-x 2)≤[41(x 1+(1-x 1)+x 2+(1-x 2))]4=(41)2 ∴ 16a 2≥a 2x 1(1-x 1)x 2(1-x 2)>1∴ a 2>16 ∴ a>47. 已知f(x)=x 2+ax +b(-1≤x≤1),若|f(x)|的最大值为M ,求证:M≥21. 解:M =|f(x)|max =max{|f⑴|,|f(-1)|,|f(-2a)|}⑴若|-2a|≥1 (对称轴不在定义域内部) 则M =max{|f⑴|,|f(-1)|} 而f⑴=1+a +b f(-1)=1-a +b|f⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4 则|f⑴|和|f(-1)|中至少有一个不小于2 ∴ M≥2>21 ⑵|-2a|<1 M =max{|f⑴|,|f(-1)|,|f(-2a)|} =max{|1+a +b|,|1-a +b|,|-4a 2+b|}=max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|}≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|)≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)]=)2a 2(412≥21 综上所述,原命题正确. 8. ⑴解方程:(x +8)2001+x2001+2x +8=0⑵解方程:2)1x (222221)1x (1x 1x 4x 2-=++++++⑴解:原方程化为(x +8)2001+(x +8)+x2001+x =0即(x +8)2001+(x +8)=(-x)2001+(-x)构造函数f(x)=x 2001+x原方程等价于f(x +8)=f(-x)而由函数的单调性可知f(x)是R 上的单调递增函数 于是有x +8=-x x =-4为原方程的解 ⑵两边取以2为底的对数得x)1x x (log )x (f )1x ()1)1x (1x (log x 2)1x 4x 2(log 1x 2x )1)1x (1x (log )1x 4x 2(log )1x (1)1x (1x 1x 4x 2log 2222222222222222222222+++=++++++=++++-=++++-++-=++++++构造函数即即 于是f(2x)=f(x 2+1)易证:f(x)世纪函数,且是R 上的增函数, 所以:2x =x 2+1 解得:x =19. 设f(x)=x 4+ax 3+bx 2+cx +d ,f⑴=1,f⑵=2,f⑶=3,求41[f⑷+f(0)]的值. 解:由已知,方程f(x)=x 已知有三个解,设第四个解为m , 记 F(x)=f(x)-x =(x -1)(x -2)(x -3)(x -m) ∴ f(x)=(x -1)(x -2)(x -3)(x -m)+x f⑷=6(4-m)+4 f(0)=6m∴41[f⑷+f(0)]=7 10. 设f(x)=x 4-4x 3+213x 2-5x +2,当x∈R 时,求证:|f(x)|≥21 证明:配方得: f(x)=x 2(x -2)2+25(x -1)2-21 =x 2(x -2)2+25(x -1)2-1+21 =(x 2-2x)2+25(x -1)2-1+21 =[(x -1)2-1]2+25(x -1)2-1+21 =(x -1)4-2(x -1)2+1+25(x -1)2-1+21 =(x -1)4+21(x -1)2+21 ≥21练习:1. 已知f(x)=ax 5+bsin 5x +1,且f⑴=5,则f(-1)=( )A.3B.-3C.5D.-5解:∵ f⑴=a +bsin 51+1=5设f(-1)=-a +bsin 5(-1)+1=k 相加:f⑴+f(-1)=2=5+k ∴ f(-1)=k =2-5=-3 选B 2. 已知(3x +y)2001+x2001+4x +y =0,求4x +y 的值.解:构造函数f(x)=x2001+x ,则f(3x +y)+f(x)=0逐一到f(x)的奇函数且为R 上的增函数, 所以3x +y =-x 4x +y =03. 解方程:ln(1x 2++x)+ln(1x 42++2x)+3x =0解:构造函数f(x)=ln(1x 2++x)+x 则由已知得:f(x)+f(2x)=0不难知,f(x)为奇函数,且在R 上是增函数(证明略) 所以f(x)=-f(2x)=f(-2x) 由函数的单调性,得x =-2x 所以原方程的解为x =04. 若函数y =log 3(x 2+ax -a)的值域为R ,则实数a 的取值范围是______________.解:函数值域为R ,表示函数值能取遍所有实数,则其真数函数g(x)=x 2+ax -a 的函数值应该能够取遍所有正数 所以函数y =g(x)的图象应该与x 轴相交 即△≥0 ∴ a 2+4a≥0 a≤-4或a≥0解法二:将原函数变形为x 2+ax -a -3y=0 △=a 2+4a +4·3y≥0对一切y∈R 恒成立 则必须a 2+4a≥0成立 ∴ a≤-4或a≥05. 函数y =8x 4x 5x 4x 22+-+++的最小值是______________.提示:利用两点间距离公式处理y =2222)20()2x ()10()2x (-+-++++表示动点P(x ,0)到两定点A(-2,-1)和B(2,2)的距离之和 当且仅当P 、A 、B 三点共线时取的最小值,为|AB|=56. 已知f(x)=ax 2+bx +c ,f(x)=x 的两根为x 1,x 2,a >0,x 1-x 2>a1,若0<t <x 1,试比较f(t)与x 1的大小.解法一:设F(x)=f(x)-x =ax 2+(b -1)x +c , =a(x -x 1)(x -x 2) ∴ f(x)=a(x -x 1)(x -x 2)+x作差:f(t)-x 1=a(t -x 1)(t -x 2)+t -x 1 =(t -x 1)[a(t -x 2)+1] =a(t -x 1)(t -x 2+a1) 又t -x 2+a1<t -(x 2-x 1)-x 1=t -x 1<0 ∴ f(t)-x 1>0 ∴ f(t)>x 1解法二:同解法一得f(x)=a(x -x 1)(x -x 2)+x 令g(x)=a(x -x 2)∵ a>0,g(x)是增函数,且t <x 1 ⇒ g(t)<g(x 1)=a(x 1-x 2)<-1 另一方面:f(t)=g(t)(t -x 1)+t ∴1x t t)t (f --=a(t -x 2)=g(t)<-1 ∴ f(t)-t >x 1-t ∴ f(t)>x 17. f(x),g(x)都是定义在R 上的函数,当0≤x≤1,0≤y≤1时.求证:存在实数x ,y ,使得 |xy -f(x)-g(y)|≥41 证明:(正面下手不容易,可用反证法) 若对任意的实数x ,y ,都有|xy -f(x)-g(y)|<41记|S(x ,y)|=|xy -f(x)-g(y)| 则|S(0,0)|<41,|S(0,1)|<41,|S(1,0)|<41,|S(1,1)|<41 而S(0,0)=-f(0)-g(0) S(0,1)=-f(0)-g(1) S(1,0)=-f(1)-g(0) S(1,1)=1-f(1)-g(1)∴ |S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)| ≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)| =1 矛盾! 故原命题得证!8. 设a ,b ,c∈R,|x|≤1,f(x)=ax 2+bx +c ,如果|f(x)|≤1,求证:|2ax +b|≤4.解:(本题为1914年匈牙利竞赛试题) f⑴=a +b +c f(-1)=a -b +c f(0)=c ∴ a=21[f⑴+f(-1)-2f(0)] b =21[f⑴-f(-1)] c =f(0)|2ax +b|=|[f⑴+f(-1)-2f(0)]x +21[f⑴-f(-1)]| =|(x +21)f⑴+(x -21)f(-1)-2xf(0)| ≤|x+21||f⑴|+|x -21||f(-1)|+2|x||f(0)|≤|x+21|+|x -21|+2|x| 接下来按x 分别在区间[-1,-21],(-21,0),[0,21),[21,1]讨论即可 9. 已知函数f(x)=x 3-x +c 定义在[0,1]上,x 1,x 2∈[0,1]且x 1≠x 2.⑴求证:|f(x 1)-f(x 2)|<2|x 1-x 2|; ⑵求证:|f(x 1)-f(x 2)|<1.证明:⑴|f(x 1)-f(x 2)|=|x 13-x 1+x 23-x 2| =|x 1-x 2||x 12+x 1x 2+x 22-1|需证明|x 12+x 1x 2+x 22-1|<2 ………………① x 12+x 1x 2+x 22=(x 1+4x 32x 22222 )≥0∴ -1<x 12+x 1x 2+x 22-1<1+1+1-1=2 ∴ ①式成立 于是原不等式成立 ⑵不妨设x 2>x 1由⑴ |f(x 1)-f(x 2)|<2|x 1-x 2| ①若 x 2-x 1∈(0,21] 则立即有|f(x 1)-f(x 2)|<1成立. ②若1>x 2-x 1>21,则-1<-(x 2-x 1)<-21 ∴ 0<1-(x 2-x 1)<21(右边变为正数) 下面我们证明|f(x 1)-f(x 2)|<2(1-x 2+x 1) 注意到:f(0)=f⑴=f(-1)=c|f(x 1)-f(x 2)|=|f(x 1)-f⑴+f(0)-f(x 2)| ≤|f(x 1)-f⑴|+|f(0)-f(x 2)|<2(1-x 2)+2(x 2-0) (由⑴) =2(1-x 2+x 1)<1综合⑴⑵,原命题得证.10. 已知f(x)=ax 2+x -a(-1≤x≤1) ⑴若|a|≤1,求证:|f(x)|≤45 ⑵若f(x)max =817,求a 的值. 解:分析:首先设法去掉字母a ,于是将a 集中 ⑴若a =0,则f(x)=x ,当x∈[-1,1]时,|f(x)|≤1<45成立 若a≠0,f(x)=a(x 2-1)+x∴ |f(x)|=|a(x 2-1)+x|≤|a||x 2-1|+|x|≤|x 2-1|+|x| (∵ |a|≤1) ≤1-|x 2|+|x|=45-(|x|-21)2 ≤45 ⑵a=0时,f(x)=x≤1≠817 ∴ a≠0∵ f(x)max =max{f⑴,f(-1),f(-a 21)}又f(±1)=±1≠817 ∴ f(x)max =f(-a 21)=817 a(-a 21)2+(-a 21)-a =817 a =-2或a =-81 但此时要求顶点在区间[-1,1]内,应舍去-81 答案为-2。
函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常以符号表示,例如f(x)。
2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。
它是函数能够有效进行计算的自变量的范围。
通常用符号表示为D(f)。
3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。
它是因变量的取值范围。
通常用符号表示为R(f)。
4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。
可以通过将自变量的取值代入函数的表达式来确定函数的图像。
5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。
一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。
一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。
6.单调性:函数的单调性指函数在定义域上的增减趋势。
一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。
一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。
7.周期性:函数的周期性指函数在定义域上以一定的周期重复。
一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。
8.连续性:函数的连续性指函数在定义域上的无间断性。
一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。
一个函数在整个定义域上连续,如果它在每个点都连续。
9.可导性:函数的可导性指函数在一些点上的导数是否存在。
函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。
10.极值:函数的极值指函数在定义域上的最大值和最小值。
一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。
一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。
基础知识:函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题:1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增D.在(0,1)上单调递增提示:可用图像,但是用特殊值较好一些.选C2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤23时,f(x)=x ,则f(2003)=( ) A.-1B.0C.1D.2003解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( )A.150B.2303 C.152 D.2305提示:由已知,函数f(x)的图象有对称轴x =23于是这101个根的分布也关于该对称轴对称.即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =23对称利用中点坐标公式,这100个根的和等于23×100=150所有101个根的和为23×101=2303.选B4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=75. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c=__________.解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919=∴ x 2-219x +19=99即 x 2-80=219x再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400b +c =61646. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根,求证:a >4. 证法一:由已知条件可得△=b 2-4ac≥0 ① f⑴=a +b +c >1 ② f(0)=c >1 ③ 0<-a2b<1 ④b 2≥4ac b >1-a -c c >1b <0(∵ a>0) 于是-b≥2ac所以a +c -1>-b≥2ac∴ (c a -)2>1 ∴ ca ->1于是c a >+1>2∴ a>4证法二:设f(x)的两个根为x 1,x 2, 则f(x)=a(x -x 1)(x -x 2) f⑴=a(1-x 1)(1-x 2)>1 f(0)=ax 1x 2>1 由基本不等式x 1(1-x 1)x 2(1-x 2)≤[41(x 1+(1-x 1)+x 2+(1-x 2))]4=(41)2∴ 16a 2≥a 2x 1(1-x 1)x 2(1-x 2)>1∴ a 2>16 ∴ a>47. 已知f(x)=x 2+ax +b(-1≤x≤1),若|f(x)|的最大值为M ,求证:M≥21.解:M =|f(x)|max =max{|f⑴|,|f(-1)|,|f(-2a )|}⑴若|-2a |≥1 (对称轴不在定义域内部)则M =max{|f⑴|,|f(-1)|} 而f⑴=1+a +b f(-1)=1-a +b|f⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4 则|f⑴|和|f(-1)|中至少有一个不小于2 ∴ M≥2>21⑵|-2a |<1M =max{|f⑴|,|f(-1)|,|f(-2a )|}=max{|1+a +b|,|1-a +b|,|-4a 2+b|}=max{|1+a +b|,|1-a +b|,|-4a 2+b|,|-4a 2+b|}≥41(|1+a +b|+|1-a +b|+|-4a 2+b|+|-4a 2+b|) ≥41[(1+a +b)+(1-a +b)-(-4a 2+b)-(-4a 2+b)]=)2a 2(412+≥21综上所述,原命题正确.8. ⑴解方程:(x +8)2001+x 2001+2x +8=0 ⑵解方程:2)1x (222221)1x (1x 1x 4x 2-=++++++⑴解:原方程化为(x +8)2001+(x +8)+x 2001+x =0 即(x +8)2001+(x +8)=(-x)2001+(-x) 构造函数f(x)=x 2001+x 原方程等价于f(x +8)=f(-x)而由函数的单调性可知f(x)是R 上的单调递增函数 于是有x +8=-x x =-4为原方程的解 ⑵两边取以2为底的对数得x)1x x (log )x (f )1x ()1)1x (1x (log x 2)1x 4x 2(log 1x 2x )1)1x (1x (log )1x 4x 2(log )1x (1)1x (1x 1x 4x 2log 2222222222222222222222+++=++++++=++++-=++++-++-=++++++构造函数即即 于是f(2x)=f(x 2+1)易证:f(x)世纪函数,且是R 上的增函数, 所以:2x =x 2+1 解得:x =19. 设f(x)=x 4+ax 3+bx 2+cx +d ,f⑴=1,f⑵=2,f⑶=3,求41[f⑷+f(0)]的值.解:由已知,方程f(x)=x 已知有三个解,设第四个解为m , 记 F(x)=f(x)-x =(x -1)(x -2)(x -3)(x -m) ∴ f(x)=(x -1)(x -2)(x -3)(x -m)+x f⑷=6(4-m)+4 f(0)=6m∴ 41[f⑷+f(0)]=710.设f(x)=x 4-4x 3+213x 2-5x +2,当x∈R 时,求证:|f(x)|≥21证明:配方得:f(x)=x 2(x -2)2+25(x -1)2-21=x 2(x -2)2+25(x -1)2-1+21=(x 2-2x)2+25(x -1)2-1+21=[(x -1)2-1]2+25(x -1)2-1+21=(x -1)4-2(x -1)2+1+25(x -1)2-1+21=(x -1)4+21(x -1)2+21≥21练习:1. 已知f(x)=ax 5+bsin 5x +1,且f⑴=5,则f(-1)=( ) A.3B.-3C.5D.-5解:∵ f⑴=a+bsin51+1=5设f(-1)=-a+bsin5(-1)+1=k相加:f⑴+f(-1)=2=5+k∴ f(-1)=k=2-5=-3选B2.已知(3x+y)2001+x2001+4x+y=0,求4x+y的值.解:构造函数f(x)=x2001+x,则f(3x+y)+f(x)=0逐一到f(x)的奇函数且为R上的增函数,所以3x+y=-x4x+y=03.解方程:ln(1x42++2x)+3x=0x2++x)+ln(1解:构造函数f(x)=ln(1x2++x)+x则由已知得:f(x)+f(2x)=0不难知,f(x)为奇函数,且在R上是增函数(证明略)所以f(x)=-f(2x)=f(-2x)由函数的单调性,得x=-2x所以原方程的解为x=04.若函数y=log3(x2+ax-a)的值域为R,则实数a的取值范围是______________.解:函数值域为R,表示函数值能取遍所有实数,则其真数函数g(x)=x2+ax-a的函数值应该能够取遍所有正数所以函数y=g(x)的图象应该与x轴相交即△≥0 ∴ a2+4a≥0a≤-4或a≥0解法二:将原函数变形为x2+ax-a-3y=0△=a2+4a+4·3y≥0对一切y∈R恒成立则必须a2+4a≥0成立∴ a≤-4或a≥05. 函数y =8x 4x 5x 4x 22+-+++的最小值是______________.提示:利用两点间距离公式处理 y =2222)20()2x ()10()2x (-+-++++表示动点P(x ,0)到两定点A(-2,-1)和B(2,2)的距离之和 当且仅当P 、A 、B 三点共线时取的最小值,为|AB|=56. 已知f(x)=ax 2+bx +c ,f(x)=x 的两根为x 1,x 2,a >0,x 1-x 2>a1,若0<t <x 1,试比较f(t)与x 1的大小.解法一:设F(x)=f(x)-x =ax 2+(b -1)x +c , =a(x -x 1)(x -x 2) ∴ f(x)=a(x -x 1)(x -x 2)+x作差:f(t)-x 1=a(t -x 1)(t -x 2)+t -x 1 =(t -x 1)[a(t -x 2)+1] =a(t -x 1)(t -x 2+a1)又t -x 2+a1<t -(x 2-x 1)-x 1=t -x 1<0∴ f(t)-x 1>0 ∴ f(t)>x 1解法二:同解法一得f(x)=a(x -x 1)(x -x 2)+x 令g(x)=a(x -x 2)∵ a>0,g(x)是增函数,且t <x 1 ⇒ g(t)<g(x 1)=a(x 1-x 2)<-1 另一方面:f(t)=g(t)(t -x 1)+t ∴ 1x t t )t (f --=a(t -x 2)=g(t)<-1∴ f(t)-t >x 1-t ∴ f(t)>x 17. f(x),g(x)都是定义在R 上的函数,当0≤x≤1,0≤y≤1时. 求证:存在实数x ,y ,使得 |xy -f(x)-g(y)|≥41证明:(正面下手不容易,可用反证法)若对任意的实数x ,y ,都有|xy -f(x)-g(y)|<41记|S(x ,y)|=|xy -f(x)-g(y)|则|S(0,0)|<41,|S(0,1)|<41,|S(1,0)|<41,|S(1,1)|<41而S(0,0)=-f(0)-g(0) S(0,1)=-f(0)-g(1) S(1,0)=-f(1)-g(0) S(1,1)=1-f(1)-g(1)∴ |S(0,0)|+|S(0,1)|+|S(1,0)|+|S(1,1)| ≥|S(0,0)-S(0,1)-S(1,0)+S(1,1)| =1 矛盾! 故原命题得证!8. 设a ,b ,c∈R,|x|≤1,f(x)=ax 2+bx +c ,如果|f(x)|≤1,求证:|2ax +b|≤4.解:(本题为1914年匈牙利竞赛试题) f⑴=a +b +c f(-1)=a -b +c f(0)=c∴ a=21[f⑴+f(-1)-2f(0)]b =21[f⑴-f(-1)]c =f(0)|2ax +b|=|[f⑴+f(-1)-2f(0)]x +21[f⑴-f(-1)]|=|(x +21)f⑴+(x -21)f(-1)-2xf(0)|≤|x+21||f⑴|+|x -21||f(-1)|+2|x||f(0)|≤|x+21|+|x -21|+2|x|接下来按x 分别在区间[-1,-21],(-21,0),[0,21),[21,1]讨论即可9. 已知函数f(x)=x 3-x +c 定义在[0,1]上,x 1,x 2∈[0,1]且x 1≠x 2. ⑴求证:|f(x 1)-f(x 2)|<2|x 1-x 2|; ⑵求证:|f(x 1)-f(x 2)|<1.证明:⑴|f(x 1)-f(x 2)|=|x 13-x 1+x 23-x 2| =|x 1-x 2||x 12+x 1x 2+x 22-1|需证明|x 12+x 1x 2+x 22-1|<2 ………………① x 12+x 1x 2+x 22=(x 1+4x 32x 22222 )≥0∴ -1<x 12+x 1x 2+x 22-1<1+1+1-1=2 ∴ ①式成立 于是原不等式成立 ⑵不妨设x 2>x 1由⑴ |f(x 1)-f(x 2)|<2|x 1-x 2|①若 x 2-x 1∈(0,21] 则立即有|f(x 1)-f(x 2)|<1成立.②若1>x 2-x 1>21,则-1<-(x 2-x 1)<-21 ∴ 0<1-(x 2-x 1)<21 (右边变为正数) 下面我们证明|f(x 1)-f(x 2)|<2(1-x 2+x 1) 注意到:f(0)=f⑴=f(-1)=c|f(x 1)-f(x 2)|=|f(x 1)-f⑴+f(0)-f(x 2)| ≤|f(x 1)-f⑴|+|f(0)-f(x 2)| <2(1-x 2)+2(x 2-0) (由⑴)=2(1-x 2+x 1)<1综合⑴⑵,原命题得证.10.已知f(x)=ax 2+x -a(-1≤x≤1) ⑴若|a|≤1,求证:|f(x)|≤45 ⑵若f(x)max =817,求a 的值. 解:分析:首先设法去掉字母a ,于是将a 集中 ⑴若a =0,则f(x)=x ,当x∈[-1,1]时,|f(x)|≤1<45成立 若a≠0,f(x)=a(x 2-1)+x∴ |f(x)|=|a(x 2-1)+x|≤|a||x 2-1|+|x|≤|x 2-1|+|x| (∵ |a|≤1)≤1-|x 2|+|x|=45-(|x|-21)2 ≤45 ⑵a=0时,f(x)=x≤1≠817 ∴ a≠0∵ f(x)max =max{f⑴,f(-1),f(-a 21)}又f(±1)=±1≠817 ∴ f(x)max =f(-a 21)=817 a(-a 21)2+(-a 21)-a =817 a =-2或a =-81 但此时要求顶点在区间[-1,1]内,应舍去-81 答案为-2。