杆塔接地电阻的改善及仿真分析
- 格式:pdf
- 大小:228.33 KB
- 文档页数:4
架空输电线路杆塔接地电阻整治技术摘要:输电系统作为整个电网系统的重要组成部分,为了保证电力的正常供应,必须要确保输电线路的稳定运行。
在架空输电线路中,为了减少雷电对线路的破坏,使雷击导致的跳闸发生率降低,需要采取有效措施降低杆塔的接地电阻。
本文首先对输电线路杆塔接地电阻超标的原因进行了分析,同时提出了降低杆塔接地电阻的整治技术,希望为提高架空输电线路耐雷水平,保证输电系统的正常运行提供一定的参考。
关键词:架空输电线路;杆塔;接地电阻引言:随着近些年的发展,我国输电线路建设水平不断提升,架空输电线路也得到了广泛的应用。
输电线路杆塔主要对架空地线和架空线路起到支撑作用,让导线和大地,导线与杆塔、导线与架空地线,导线与导线之间保持足够的安全距离。
线路杆塔接地装置主要包括接地体和接地引下线组成,能够向大地中引入雷电流,让线路具备一定的耐雷能力,杆塔接地电阻值越大,线路的耐雷能力就越低。
过去通常采用方环和射线埋于地下的接地方式,虽然此方法能够满足降低工频接地电阻的基本要求,但是在实际施工和运行中依然有很多问题存在,比如占地面积过大,而相关运维人员要对接地网进行检查,所以工作量比较大,接地网还存在被盗的风险,不仅增加了防雷隐患,同时使得运行成本大大增加[1]。
在线路设计中,针对雷击地段或雷电流活动频繁的杆塔,为了较少输电线路雷击事故的发生,需要降低杆塔接地电阻,使电网得到安全、稳定的运行。
1 架空输电线路杆塔接地电阻超标的原因1.1 客观原因(1)地形、地质复杂、条件差。
复杂地形和地质条件差的地段通常土层覆盖较少,有的地段甚至没有土层,比如部分输电线路杆塔地段,为了保证岩石的整体性,杆塔地段基础都是岩锚基础,且大部分都是岩石。
(2)土壤电阻率较高。
(3)土壤水分含量过低或无水。
我国地域辽阔,含水量丰富,但是水域分布不均匀,在我国北方地区大都是缺水重灾区,土壤水含量较低,导电性比较差。
1.2 勘测设计原因为了确保设计的合理性和准确性,设计人员通常需要以地形和地质情况作为基础进行实测,因此,设计人员工作量和劳动强度都比较大,容易发生以下问题:(1)以自身经验为准取平均值,导致土壤电阻率取值与实际存在较大差异。
探讨输电线路杆塔接地电阻降低方法通常来讲,在电力系统的维护方面,输电线路杆塔接地是非常关键的措施。
当对塔顶以及避雷线进行雷击时,雷电流会经过杆塔接地装置流入到大地中,在有着比较高的杆塔接地电阻时,会出现相对比较高的反击电压,导致电压方面的事故。
在线路故障中,杆塔接地的不良所导致的事故有着非常大的比例。
降低杆塔接地的电阻能够有效提升线路的实际耐雷水平。
1 降低杆塔接地电阻方法的现状以及发展趋势目前,对雷击事故进行有效减轻以及避免的有效方法是对接地电阻进行有效的降低以及改善。
通常来讲,有着比较高的土壤电阻率的地区所具有的电力设施的接地体以及接地网的电阻降低是热点研究问题。
为了有效保证相关设备运用的正常性以及相关工作人员的安全,应该安装有着较低接地电阻的装置。
在实际的工程中,通常会运用有效降低接地电阻的方法,具体包括对接地体的实际尺寸进行有效增大,对接地体的实际埋深进行有效增加,通过自然接地体等。
以上所提到的措施,有着特定的运用条件,对于不同的土壤条件以及地区,应该运用相应的方法对接地电阻进行有效的降低。
除此之外,还可以根据实际情况综合使用以上方法,进而实现最佳的降阻效果。
然而,土壤电阻率相对比较高的地区,应该适当地设计一个经济以及技术方面合理的接地装置,这是非常难的。
2 降低杆塔接地电阻的相关措施2.1 杆塔接地的相关标准以及要求一般情况下,线路杆塔接地电阻主要取决于防雷接地的相关要求。
在高压的输电线路中,所有的杆塔下都应该进行接地装置的设置,利用引线与杆塔进行连接。
按照一定的经验,不同土壤电阻率的地区已经提出了相应的要求,可以为线路杆塔接地的设计以及安装奠定基础。
2.2 降低110kV输电线路杆塔接地电阻的相关措施通常来讲,在土壤电阻率相对比较高的山区,因为受到地势以及地质的限制,线路杆塔接地装置所具有的接地电阻根本就不能实现相关的要求,同时降低杆塔接地电阻能够有效提升线路的实际耐雷水平,还能够对雷击跳闸率进行有效的降低。
架空输电线路杆塔降低接地电阻的措施探讨摘要:输电线路的杆塔接地是输电线路里最重要的一环,是防止雷电危害不可或缺的措施之一。
为保证输电系统安全稳定运行,降低杆塔接地电阻是提高线路耐雷水平、减少线路雷击跳闸率的主要措施。
本文通过分析杆塔接地装置的一般要求、杆塔接地电阻超标的原因,从而探讨有效降低杆塔接地电阻的措施。
关键词:架空输电线路;杆塔;接地装置;接地电阻输电线路的杆塔接地是线路防雷的主要措施之一,其可靠性对保证电力系统的安全稳定运行具有重大的意义。
其中接地电阻指的是接地引下线、接地散流电阻和接触电阻,它是用来确保外来雷电流入地面,绝缘线路的设备,以便减少线路被雷击的跳闸率,避免跨步电压对人体产生伤害和提高运行可靠性。
降低杆塔接地电阻是提高线路耐雷水平、降低线路雷击跳闸率的主要措施。
1 雷电对输电线路的危害架空输电线路在运行中,由于杆塔接地不良而引发的雷害事故占线路故障率的比例较高,这主要是由于雷击杆顶或地线(避雷线)时,当雷电流通过杆塔接地装置泄流人地,由于接地电阻偏高,从而产生了较高的反击过电压所致。
这种由于线路遭受雷击时产生的过电压称为大气过电压,会使线路设备及其绝缘受到破坏而产生事故,若变电站防雷措施不良,甚至会造成变电站设备的损坏。
2 杆塔接地装置的一般要求根据《110—500kV架空送电线路设计技术规程》(DL/T5092—1999)中9.0.11节的要求:有地线的杆塔应接地。
在雷季干燥时,每基杆塔不连地线的工频接地电阻,不宜大于表l的要求。
表1 有地线(避雷线)的线路杆塔工频接地电阻范围在常规的输电线路工程中,高压架空线路杆塔的接地装置一般要求采用下列几种形式。
(1)在土壤电阻率P≤100Ω•m的潮湿地区,可利用铁塔和钢筋混凝土杆自然接地。
对发电厂、变电站的进线段应另设雷电保护接地装置。
在居民区,当自然接地电阻符合要求时,可不设人工接地装置。
(2)在土壤电阻率100Ω•m2000Ω•m的地区,可采用6~8根总长度不超过500m的放射形接地极或连续伸长接地极。
输电线路接地电阻问题和降阻措施浅析架空输电线路杆塔接地对电力系统的安全稳定运行至关重要,降低杆塔接地电阻是提高线路耐雷水平,减少线路雷击跳闸率的主要措施。
由于杆塔接地电阻高而产生的雷击闪络事故相当多。
由于在大部分位于高原山区,工程地质条件复杂,多数杆塔的接地电阻过高,且锈蚀严重,造成线路耐雷水平低,经常发生雷电绕击、反击,使线路跳闸,进而影响电网的安全稳定运行。
本文结合某高原山区220kV输电线路工程杆塔接地施工为例,论述了工程施工过程中接地电阻偏高的影响因素,经采用多种降阻方法,使之达到合格范围,对防止雷击跳闸、保证电网安全意义重大,以期为类似工程提供参考。
标签:电力系统;输电线路;接地电阻;影响因素;降阻方法1前言随着我国超高压、特高压电网的快速发展,输电线路防雷接地的重要性日益突出,但是高土壤电阻率地区的接地问题多年来一直没有彻底解决。
一方面,随着电力系统的发展,由雷击输电线路引起的事故时有发生,尤其在雷电活动频繁、土壤电阻率高和地形复杂的高原山区,雷击输电线路而引起的事故率更高。
另一方面,随着电力系统容量的迅速增加,输电线路发生单相接地故障时的短路电流也越来越大,从而流经地线的短路电流也越来越大,为了满足地线热稳定的需要,就要采用单位长度电阻较小的地线,从而导致地线的截面过大。
特别是随着OPGW复合光缆在电力系统中的广泛使用,这一问题越来越突出。
特别是在我国西北地区,气候干燥,降水稀少,输电线路路径又大多选择在高寒山区,工程区出露基岩类型较多,而位于山区的送电线路,由于土壤电阻率高、地形、地势复杂,交通不便施工难度大,杆塔接地电阻普遍偏高。
因此,如何有效地解决高原山区接地电阻超标的问题,降低高海拔山区复杂地形条件下输电线路接地电阻接地电阻是电网工程设计、施工、运行、验收共同面临的问题,降低杆塔接地装置的接地电阻具有非常重要的现实意义。
2 影响接地电阻的主要因素2.1 地质条件因素输电线路所处的地质条件对接地电阻影响较大,通过对不同地质条件下输电线路接地电阻大小的研究,主要表现在一下三个结论:①土壤电阻率和输电线路的杆塔接地电阻是正比例关系,所以土壤电阻率偏高是导致杆塔接地电阻超标的一个主要原因。
35kV输电线路杆塔接地存在的问题及改造措施的探讨关键词:35kv输电线路杆塔接地问题改造措施对于输电线路而言,杆塔接地的核心价值在于:当雷电击中避雷线或杆塔的过程当中,雷电流能够经由杆塔、接地网流入大地,避免电力线路受到雷击作用力的影响,从而保障整个电力线路运行的安全性与可靠性。
从这一角度上来说,接地网设计质量的水平高低会直接对整个电力线路的防雷效果产生至关重要的影响。
结合相关实践工作经验来看,大量的输电线路都曾经出现过雷电绕击、反击、以及跳闸等方面的安全事故,由此所引发的经济性损失。
人身损失都是不可预估的。
而产生以上问题的最根本原因就在于:接地电阻过大,接地网设计不够合理。
从这一角度上来说,对35kv输电线路而言,研究其杆塔接地存在的主要问题,探究相应的改造措施是至关重要的。
本文即针对以上相关问题作详细分析与说明。
1 35kv输电线路杆塔接地存在的问题分析1.1 接地网设计存在一定的不合理之处。
杆塔线路接地网设计不合理主要体现在:二十世纪八九十年代设计投运的35kv输电线路有很多目前仍在使用,当时我国接地系统设计及建设标准偏低,接地网大多利用扁钢作为接地体材料,不耐腐蚀,运行时间长后,造成接地电阻过大,引起接地电阻不符合要求。
1.2 施工达不到工程要求。
接地网施工作业属于隐蔽工程,施工质量极易达不到工程要求。
高压输电线路施工线长面广,各处土壤、地质环境又不相同,加上施工人员责任心不强,监督不到位,造成接地体埋深不够,有的甚至部分裸露;回填土未达要求,使得接地电阻过大,腐蚀严重,有的甚至断开,不能很好起到泄流作用。
1.3 接地网腐蚀严重。
接地网由于常年埋于地下,极易发生腐蚀,造成接地电阻增大。
通常接地网呈现局部腐蚀状态,碳钢材料变脆、起层、松散,甚至会出现多处断裂,特别是埋设在酸碱性较强土壤中的接地体,腐蚀更是严重。
在开挖检查中发现所有被锈蚀的接地网,其锈蚀最严重的部位是在接地引下线、垂直接地体入土处至水平接地体弯曲处,有的接地引下线竟被锈断。
输电线路的接地装置存在的问题分析及对策
架空输电线路的杆塔接地,对电力线路的安全运行至关重要,降低接地电阻,减少雷击率的主要措施。
由于杆塔接地电阻高而产生的雷击闪络事故相当多,再加上有些线路地质较差,许多接地电阻不合格。
影响了电网安全稳定运行。
因此,降低接地电阻,对防止雷击,保证电网安全运行是十分重要。
.
一、杆塔接地电阻超标
输电线路接地装置存在问题最多的是电阻超标,特殊地段又是雷活动频繁的山区。
山区地势复杂,多是岩石,土壤电阻率较高,接地装置施工困难。
500kV线路接地电阻超标的原因有以下几点。
1、土壤电阻率高,地质复杂,大多是岩石地区,少见土。
2、由于塔基地质复杂,施工难度高,致使接地装置先天性留下隐患。
3、接地体的埋深浅,外力破坏,雨水冲刷。
4、接地引下线和接地体腐蚀。
因此,对输电线路的杆塔接地加强维护,发现问题,及时整改,对输电线路的接地装置一般采取下面措施进行维护:
1、定期对杆塔接地引下线进行巡视检查,看接地引下线有无被盗和断开现象,检查接地引下线和连接处是否锈蚀。
2、每年要全面检查杆塔的接地电阻值,如发现接地电阻超标要进行改造。
3、对杆塔的接地电阻装置要周期的进行开挖检查,检查接地体的锈
蚀情况。
4、定期检查接地螺栓是否生锈,与接地体的连接是否完好,螺丝是否松动,保证接地线有可靠的接触。
总体来说,我们对输电线路杆塔接地装置应定期检查维护,把腐蚀严重、偷盗、和外力破坏的及时处理。
以保证输电线路安全稳定运行。
输电线路杆塔接地电阻测量及整改方法的分析研究摘要:合格的杆塔接地电阻是防止架空输电线路雷击跳闸的重要保证,本文针对线路运维工作中通常使用的接地电阻值测量方法展开分析,比较不同测量方法的使用范围与实际应用,并针对造成杆塔接地电阻值较高的原因进行研究,提出有效降低杆塔接地电阻的整改措施,进而提高输电线路的防雷水平。
关键词:输电线路;杆塔接地;电阻测量;整改方法1 输电线路杆塔的防雷与接地架空输电线路的雷击跳闸一直是困扰电网安全供电的难题。
近年随着电网的发展,雷击输电线路而引起的跳闸、停电事故日益增多,据电网故障分类统计表明:高压线路运行的总跳闸次数中,由于雷击引发的故障约占50%―60%。
尤其是在多雷、电阻率高、地形复杂的山区,雷击输电线路引起的故障次数更多,寻找故障点、事故抢修更困难,带来的损失更大。
理论和运行实践证明,雷击送电线路杆塔引起其电位升高造成线路“反击”跳闸的次数占了线路跳闸总次数的绝大部分。
在绝缘配置一定时,影响雷击输电线路反击跳闸的主要因素是接地电阻的大小。
所以,做好接地装置的检查,规范接地电阻测量方法保证线路杆塔可靠接地,并对电阻值较大的杆塔接地体实施改造已成为线路防雷的一项重要工作。
2 测量杆塔工频接地电阻的方法输电线路杆塔接地电阻测量的方法主要有三种:伏安法、三极法和钳表法。
伏安法比较繁琐、工作量大,且受外界干扰极大,已经基本淘汰。
目前,常用的方法主要是三极法和钳表法,这两种方法各有优缺点,采用三极法测量接地电阻准确,而且测量方法简单,性能稳定,但测量时需要的人力物力较多,效率低;采用钳表法测量接地电阻比三极法方便、快捷省力,只要用钳表钳住接地线引下线就能测出接地电阻,效率高,但有时会有比较大的测量误差。
所以工作人员必须十分熟悉这两种测量方法的工作原理、测量方法及相关要求,结合被测杆塔的实际情况选择适当的测量方法。
2.1钳表法测量杆塔接地电阻钳表法是使用钳形接地电阻测试仪对有避雷线且多基杆塔避雷线直接接地的架空输电线路杆塔接地装置的接地电阻进行测试的方法。
浅谈输电杆塔接地电阻影响因素及降阻措施摘要:输电线路杆塔接地对电力系统的安全稳定运行至关重要,由于杆塔接地不良而发生的雷害事故所占的线路故障比例非常高。
本文阐述了杆塔接地的普遍性要求,并对输电线路杆塔中接地电阻偏高原因及其降阻措施方面进行了分析探讨。
关键词:输电线路;杆塔接地;影响因素;降阻措施输电线路的接地,既是杆塔保护接地,又是线路防雷保护接地。
接地装置的设计施工及运行维护,是一个系统的工程,只有全过程质量控制,才能保证线路的接地始终处于良好状态,才能保证线路安全运行。
1 输电杆塔接地的普遍性要求1.1 对杆搭接地电阻要求关于杆搭的接地电阻,DL/T620—1997《交流电气装置的过电压保护和绝缘配合》第6.1.4条规定:有避雷线的线路,每基杆塔不连避雷线的工频接地电阻,在雷季干燥时,不宜超过表1所列数值表l 有避雷线的线路杆塔的工频接地电阻土壤电阻率(Ω•m)≤100>100~500 >500~1000 >1000~2000 >2000接地电阻(Ω)10 15 20 25 30注:如土壤电阻率超过2000Ω•m,接地电阻很难降低到30Ω时,可采用6~8根总长不超过500m 的放射形接地体,或采用连续伸长接地体,接地电阻不受限制。
对杆塔接地电阻的要求是随着杆塔所在位置的土壤电阻率的升高而放宽的。
这是考虑到投资与电网安全的一种最优“性价比”。
在雷电活动强烈的地方和经常发生雷击故障的杆塔和线段,应尽可能地降低杆塔接地电阻。
规程第6.1.7条还规定:中雷区及以上地区35kV 及66kV 无避雷线线路宜采取措施,减少雷击引起的多相短路和两相异点接地引起的断线事故,钢筋混凝土杆和铁塔宜接地,接地电阻不受限制,但多雷区不宜超过30Ω。
钢筋混凝土杆和铁塔应充分利用其自然接地作用,在土壤电阻率不超过100Ω•m或有运行经验的地区,可不另设人工接地装置。