光放大器与波分复用技术
- 格式:pdf
- 大小:1.96 MB
- 文档页数:127
光波导芯片波分复用解释说明1. 引言1.1 概述光通信作为一种高速、大容量的数据传输技术,已成为现代信息社会中不可或缺的基础设施。
然而,在面对日益增长的带宽需求和传输距离要求时,传统的电路板和金属导线等传输介质已经显得力不从心。
因此,光波导芯片作为一种新型的光学器件应运而生。
1.2 文章结构本文将首先介绍光波导芯片的定义、原理、结构和特点。
随后,我们将重点讨论波分复用技术,并详细解释其原理、基础概念以及相关设备和组成要素。
然后,我们将探讨光波导芯片在波分复用中的应用,包括其在光传输中的作用机制解析、在波分复用系统中关键功能的介绍,以及一些实际应用中的效果与案例分享。
最后,我们将总结主要观点和发现,并展望光波导芯片和波分复用技术未来发展方向。
1.3 目的本文旨在通过对光波导芯片和波分复用技术进行详细说明,帮助读者深入了解光通信领域中的重要概念和技术。
同时,通过介绍光波导芯片在波分复用中的应用,使读者对该技术在实际场景中的应用效果有更全面的认识。
最后,我们将展望未来光波导芯片和波分复用技术的发展方向,为相关研究和工程领域提供参考和启示。
2. 光波导芯片:2.1 定义和原理:光波导芯片是一种集成光学器件,其通过特殊的材料结构和工艺制作而成。
它利用高折射率的核心层将光信号引导在其表面附近传输,形成一条或多条光波导路径。
这些路径类似于管道,可以将光信号有效地控制、传播和分配。
光波导芯片原理基于总反射和电磁波的耦合效应。
当光线传入具有高折射率的核心层时,由于介质折射率的差异,部分能量会被全内反射并沿着波导路径传输。
在光波导芯片中,可以通过调整核心层和包围层之间的折射率差异来改变传播模式、控制波导路径和操纵光信号。
2.2 结构和特点:通常情况下,光波导芯片由三个主要组成部分构成:核心层、包围层和衬底。
核心层是最重要的部分,用于引导光信号;包围层则用于限制光信号的传播区域,并保持其在核心层内传输;衬底则为光波导芯片提供支撑和稳定性。
光纤通信的新技术班级电信(一)班学号姓名2010年10月光纤通信的新技术摘要:光纤通信发展的目标是提高通信能力和通信质量,降低价格,满足社会需要。
进入20世纪90年代以后,光纤通信成为一个发展迅速、技术更新快、新技术不断涌现的领域。
如光放大技术,光波分复用技术,光交换技术,光孤子通信,相干光通信,光时分复用技术和波长变换技术等。
关键词:光纤通信新技术特点1光放大技术1.1光纤放大器光放大器有半导体光放大器和光纤放大器两种类型。
半导体光放大器的优点是小型化,容易与其他半导体器件集成;缺点是性能与光偏振方向有关,器件与光纤的耦合损耗大。
光纤放大器的性能与光偏振方向无关,器件与光纤的耦合损耗很小,因而得到广泛应用。
1.2掺铒光纤放大器(EDFA)的优点工作波长正好落在光纤通信最佳波段;增益高;噪声系数小;频带宽。
1.3掺铒放大器的应用EDFA的应用可分为三种形式:中继放大器;前置放大器;后置放大器。
2光波分复用技术随着人类社会信息时代的到来,对通信的需求呈现加速增长的趋势。
发展迅速的各种新型业务(特别是高速数据和视频业务)对通信网的带宽(或容量)提出了更高的要求。
为了适应通信网传输容量的不断增长和满足网络交互性、灵活性的要求,产生了各种复用技术。
在光纤通信系统中除了大家熟知的时分复用(TDM)技术外,还出现了其他的复用技术,例如光时分复用(OTDM)、光波分复用(WDM)、光频分复用(OFDM)以及副载波复用(SCM)技术。
2.1光波分复用原理2.11WDM的概念光波分复用(WDM: Wavelength Division Multiplexing)技术是在一根光纤中同时传输多个波长光信号的一项技术。
2.12WDM系统的基本形式光波分复用器和解复用器是WDM技术中的关键部件,将不同波长的信号结合在一起经一根光纤输出的器件称为复用器(也叫合波器)。
反之,经同一传输光纤送来的多波长信号分解为各个波长分别输出的器件称为解复用器(也叫分波器)。
波分复用原理简介产生背景传输带宽的需求增长,传输系统需扩容:✧增加系统数量(光纤数量):敷设光缆,没有有效利用光纤带宽✧提高系统速率(TDM时分复用PDH/SDH):10Gb/s,40Gb/s电子器件技术极限/成本/G.652光纤1550nm窗口的高色散✧波分复用(WDM)技术EDFA(erbium-doped fiber amplifier掺铒光纤放大器)的成熟和商用化基本概念波分复用(WDM)充分利用单模光纤低损耗区的巨大带宽资源,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,将多种不同波长的光载波信号在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输;在接收端,经解复用器(亦称分波器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
波分复用在本质上是光域上的频分复用(FDM)技术。
通道间隔的不同,可分为:–CWDM(Coarse Wavelength Division Multiplexing稀疏/粗波分复用)信道间隔为20nm–DWDM(Dense Wavelength Division Multiplexing密集波分复用)信道间隔从0.2nm 到1.2nm。
波分复用技术的优点(1) 传输容量大,可以充分利用光纤的巨大带宽资源,节约宝贵的光纤资源。
(2) 对各类业务信号“透明”,可以传输不同类型、多种格式的业务信号。
对于“业务”层信号来说,WDM的每个波长就像“虚拟”的光纤一样。
(3) 扩容方便。
WDM技术是理想的扩容手段。
对于早期芯数不多的光纤系统,利用此技术,不必做较大改动,就可以轻松扩容。
增加一个附加光波长就可以引入任意新业务或扩充容量。
(4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。
波分复用概念与其技术讲解波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
通信系统的设计不同,每个波长之间的间隔宽度也有不同。
按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。
CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
CWDM 和DWDM 的区别主要有二点:一是CWDM 载波通道间距较宽,因此,同一根光纤上只能复用5 到6 个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM 调制激光采用非冷却激光,而DWDM采用的是冷却激光。
冷却激光采用温度调谐,非冷却激光采用电子调谐。
由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。
CWDM 避开了这一难点,因而大幅降低了成本,整个CWDM 系统成本只有DWDM 的30%。
CWDM 是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。
在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。
由于光波长与频率的关系:= ×。
实际上为一种频分复用,所以WDM通常也被称为光频分复用(OFDM), WDM系统的主要优点为:1.充分利用光纤的低损耗波段,大大增加光纤的传输容量,降低成本2.对革新到传输的信号的速率,格式具有透明性,有利于数字信号和模拟信号的兼容3.节省光纤和光中继器,便于对已经建成的系统进行扩容4.可以提供波长选路,使建立透明,灵活,具有高度生存性的WDM网络成为可能46.2.2 波分复用/解复用器件在整个WDM 系统中,需要使用多种波长的光信号,通常光纤的损耗随着传输距离的增长而增大。
光纤通信技术的现状及前景摘要:近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
关键词:光纤通信传输发展引言光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。
在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。
光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
自光纤通信问世以来,整个通信领域发生了革命性变化,它使高速率、大容量的通信成为可能。
由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点而备受业内人士的青睐,发展非常迅速。
光纤通信系统的传输容量从1980~2000年2O年间增加了近10000倍,传输速度在过去的1O年中提高了约100倍。
目前我国长途传输网的光纤化比例已超过80%,预计到2010年,全国光缆建设总长度将再增加约105km,并且将有11个大城市铺设10G以上的大容量光纤通信网络。
1.光纤通信技术的现状光纤通信的发展依赖于光纤通信技术的进步。
近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
1.1波分复用技术波分复用(WDM,Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源,根据每一信道光波的频率或波长不同将光纤的低损耗窗口划分成若干个信道。
把光波作为信号的载波,在发送端采用波分复用器(合波器)将不同规定波长的信号光载波合并起来送人l根光纤进行传输。
在接收端,再用1个波分复用器(分波器)将这些不同波长承载不同信号的光载波分开的复用方式。
光信息专业实验说明:波分复用器一、实验目的和内容:1.了解波分复用技术和各种波分复用器件的工作原理和制作工艺;2.认识波分复用器的基本技术参数的实际意义,学会测量插入损耗,隔离度,偏振相关损耗等;3.分析测量误差的来源。
二、实验基本原理:波分复用技术(WDM)波分复用技术就是在单一光纤内同步传输多个不同波长的光波,让数据传输速度和容量获得倍增,它能充分利用单模光纤的低损耗区的巨大带宽资源。
在发送端经复用器(亦称合波器) 将不同规定波长的光载波汇合在一起,并耦合到同一根光纤中进行传输;在接收端,经解复用器(亦称分波器)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
图1 波分复用系统图波分复用系统最大的优点是节约光纤。
它将原来需要多对光纤承载的系统复用在一对或一根光纤上传输,大大节约光纤的用量,对于租用光纤的运营商更有吸引力;其次WDM系统结合掺铒光纤放大器,大大延长了无电中继的传输距离,减少中继站的数目,节约了建设和运行维护成本;波分复用通道对数据格式是透明的,即与信号速率及电调制方式无关,可以承载多种业务,在现在多业务需求的运营环境下很有竞争力;利用WDM技术选路来实现网络交换和恢复,从而可能实现未来透明的、具有高度生存性的光网络。
根据我国实际应用情况,1310/1550nm两波复用扩容系统,980/1550nm、1480/1550nmEDFA 泵浦合波系统,1510/1550nm、1650/1550nm监控信道合波系统的使用都很广泛。
目前多波长波分复用器一般研制的产品都在1550nm区域,这是由于掺铒光纤放大器的需要,也是因为光纤在1550nm区域具有更小的损耗。
一个16路密集波分复用(D WDM)系统的16个光通路的中心频率(或中心波长),信道间隔为100GHz,0.8nm。
为了确保波分复用系统的性能,对波分复用器件提出的基本要求包括:插入损耗小,隔离度大,带内平坦,带外插入损耗变化陡峭,温度稳定性好,复用通路数多,尺寸小等。
OPT的原理和应用技术概述Optical Transport Network(光传送网络),简称OPT,是一种基于光纤传输技术的网络传输系统。
它采用波分复用、光电转换和多路复用等技术,能够通过光纤实现高速、高容量的数据传输。
OPT在现代通信网络中发挥着重要的作用,本文将介绍OPT的原理和应用技术。
原理OPT的原理基于光纤传输技术和波分复用技术。
光纤是一种能够传输光信号的细长纤维,它具有低损耗、高带宽和抗干扰等优点。
波分复用技术可以将不同波长的光信号同时传输在同一根光纤中,从而实现多信道的传输。
OPT的工作原理可以分为以下几个步骤: 1. 光信号发射:发送端将要传输的数据转换为光信号,并通过光发射器发射到光纤中。
2. 光信号传输:光信号通过光纤传输,利用光的全内反射特性,光信号可以在光纤中传输很长的距离而不损失信号质量。
3. 光信号接收:接收端使用光接收器接收光纤中的光信号,并将其转换为电信号。
4. 数据处理:接收端对电信号进行处理和解码,将其转换为原始数据。
应用技术OPT在现代通信网络中有广泛的应用,主要包括以下几个方面:光通信OPT是实现高速、高容量通信的关键技术之一。
光纤具有高带宽和低损耗的特点,可以支持大量的数据传输。
OPT利用波分复用技术,将不同波长的光信号通过同一根光纤传输,从而提高了光纤的传输能力。
通过OPT,可以实现数百上千个信道的同时传输,满足了高带宽的通信需求。
光传送网OPT可以用于构建光传送网,实现长距离的数据传输。
光纤传输具有低损耗、高速率和良好的抗干扰性能,可以实现数百甚至上千公里的传输距离。
光传送网可以连接不同地区的通信网络,实现全球范围内的数据传输。
光交换技术OPT可以应用于光交换技术中,实现对光信号的交换和路由。
光交换技术可以实现对光信号的快速切换和传输路径的选择,从而提高网络的灵活性和可靠性。
光交换技术在光传送网中起到重要的作用,能够实现大容量的光信号交换和转发。
什么是波分复用技术在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。
光波分复用包括频分复用和波分复用。
光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。
通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。
光波分复用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。
光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。
这两个器件的原理是相同的。
光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。
其主要特性指标为插入损耗和隔离度。
通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。
当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。
光波分复用的技术特点与优势如下:(1)充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。
目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。
(2)具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。
(3)对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。
(4)由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。
(5)有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。
(6)系统中有源设备得到大幅减少,这样就提高了系统的可靠性。