LTE物理层信道信号
- 格式:pdf
- 大小:1.78 MB
- 文档页数:39
lte物理层处理流程LTE(Long Term Evolution)是一种无线通信技术,它的物理层处理流程是实现无线信号的传输和接收。
本文将从物理层处理流程的角度,详细介绍LTE系统是如何处理数据的。
LTE物理层处理流程主要包括信道编码、调制和解调、信道复用和解复用、多天线技术以及功率控制等环节。
LTE系统对要传输的数据进行信道编码。
信道编码的目的是为了提高信道的可靠性和传输效率。
在信道编码过程中,数据被划分为一定的块,并添加纠错码,以便在传输过程中能够纠正误码。
纠错码的添加可以提高传输的可靠性,保证数据的完整性。
接下来,经过信道编码的数据被调制。
调制的目的是将数字信号转换为模拟信号,以便在无线信道中传输。
LTE系统采用的调制方式是正交频分复用(OFDM),它将数据分成多个子载波进行传输,提高了信道的利用率和抗干扰能力。
在调制完成后,LTE系统对信号进行解调。
解调的过程是调制的逆过程,将接收到的模拟信号转换为数字信号。
解调后的信号被送入解码器进行纠错,以还原原始数据。
解调和解码的过程是为了消除传输过程中的干扰和误差,确保数据的可靠性。
LTE系统还需要进行信道复用和解复用的操作。
信道复用是指将多个用户的数据进行合理分配,使它们能够在同一时隙中传输。
信道解复用则是将接收到的多路信号进行分离,恢复出原始的用户数据。
信道复用和解复用的过程是为了提高系统的容量和效率,使多个用户能够同时进行通信。
LTE系统还采用了多天线技术,包括发射端的空间多址技术和接收端的空间分集技术。
发射端的空间多址技术利用多个天线同时发送信号,提高了信号的传输速率和可靠性。
接收端的空间分集技术则利用多个天线接收信号,通过对多个接收信号进行合理的处理,提高了信号的抗干扰能力和覆盖范围。
LTE系统还需要进行功率控制,即根据信道的质量和用户的需求,调整发射功率,以达到最佳的传输效果。
功率控制的目的是提高系统的能效,减少干扰和功耗。
LTE物理层处理流程主要包括信道编码、调制和解调、信道复用和解复用、多天线技术以及功率控制等环节。
LTE下行物理信号与信道1.下行物理信号♦下行同步信号▫主同步信号(PSS)PSS主同步信号:使用Zadoff Chu(ZC)序列产生,用于区别扇区号▫辅同步信号(SSS)SSS辅同步信号:使用伪随机序列产生,用于区别基站LTE小区、基站规划:168个基站(SSS来区分基站号),每个基站3个扇区(PSS区分扇区)。
一共504个小区(PCI-Physical Cell Identifier ),在LTE系统中进行复用。
作用:UE与系统进行同步♦下行参考信号▫小区专用参考信号(CRS)CRS:用于下行信道估计,及非beamforming模式下的解调。
调度上下行资源,用作切换测量。
▫MBSFN参考信号▫UE专用参考信号(DRS)DRS:仅出现于波束赋型模式,用于UE解调。
▫PRS:主要用于定位下行参考信号特点作用1:由上述特点,参考信号可以用来测量下行信道的质量作用2:位置是固定的,当一个参考信号发送时候,不能有任何其他信号发射;作用3:识别天线;2.下行物理信道(1)功能概述:物理下行控制信道(PDCCH):承载下行调度信息,用于指示PDSCH相关的传输格式,资源分配,HARQ信息等;物理下行共享信道(PDSCH):承载下行业务数据 ;物理广播信道(PBCH):承载广播信息 ,传递UE接入系统所必需的系统信息,如带宽,天线数目等;物理控制格式指示信道(PCFICH):一个子帧中用于PDCCH的OFDM符号数目;物理HARQ指示信道(PHICH):用于NodB向UE 反馈和PUSCH相关的ACK/NACK信息,承载HARQ信息;物理多播信道(PMCH):传递MBMS相关的数据,在支持MBMS业务时,用于承载多小区的广播信息。
(2)下行信道的映射(3)下行物理信道的处理过程.1、下行物理信道一般处理流程具体如下:1)加扰:对将在一个物理信道上传输的每一个码字中的编码比特进行加扰;上行链路物理信道加扰的作用是区分用户,下行链路加扰可以区分小区和信道。
1传输、逻辑、物理信道之间关系:21、逻辑信道32、MAC层在逻辑信道上提供数据传送业务,逻辑信道类型集合是为MAC层提4供的不同类型的数据传输业务而定义的。
逻辑信道通常可以分为两类:控制信5道和业务信道。
控制信道用于传输控制平面信息,而业务信道用于传输用户平6面信息。
73、其中,控制信道包括:84、广播控制信道(BCCH):广播系统控制信息的下行链路信道。
95、寻呼控制信道(PCCH):传输寻呼信息的下行链路信道。
106、专用控制信道(DCCH):在UE和RNC之间发送专用控制信息的点对11点双向信道,该信道在RRC连接建立过程期间建立。
127、公共控制信道(CCCH):在网络和UE之间发送控制信息的双向信13道,这个逻辑信道总是映射到RACH/FACH传输信道。
148、业务信道包括:159、专用业务信道(DTCH):专用业务信道是为传输用户信息的专用于16一个UE的点对点信道。
该信道在上行链路和下行链路都存在。
1710、公共业务信道(CTCH):向全部或者一组特定UE传输专用用户信18息的点到多点下行链路。
1911、2、传输信道2012、传输信道定义了在空中接口上数据传输的方式和特性。
一般分为两类:121专用信道和公共信道。
专用信道使用UE的内在寻址方式;公共信道如果需要寻22址,必须使用明确的UE寻址方式。
2313、其中,仅存在一种类型的专用信道,即专用传输信道(DCH)。
它是一个上24行或下行传输信道。
DCH在整个小区或小区内的某一部分使用波束赋形的天线进25行发射。
2614、另外,UTRA定义了六类公共传输信道:BCH, FACH, PCH, RACH, CPCH和27DSCH。
2815、广播信道(BCH):是一个下行传输信道,用于广播系统或小区特29定的信息。
BCH总是在整个小区内发射,并且有一个单独的传送格式。
3016、前向接入信道(FACH):是一个下行传输信道。
FACH在整个小区31或小区内某一部分使用波束赋形的天线进行发射。
LTE的关键物理层技术LTE的关键物理层技术主要有:正交频分的多载波传输(OFDM)、多入多出(MIMO)、高阶调制(LTE最高64QAM)。
OFDM的特点正交频分传输是一种多载波传输技术,整个传输信号由很多子载波组成,各子载波之间互为正交(而传统的频分复用技术的各载波是不正交),来避免子载波之间的互相干扰。
与传统的频分复用相比,正交频分复用技术使得子载波可以排列更紧密,频谱效率更高。
(CDMA系统中的各码道之间也是互相正交的。
正交信号之间的互相干扰是可以消除的)OFDM的作用OFDM的引入主要是为了抗信道衰弱。
无线信道由于信号在传输过程中的各种反射、折射、多谱LE频移,使接收到的信号的幅度和相位产生剧烈的变化,就会产生严重的衰弱现象。
在同样的衰弱情况下,较窄的信道带宽,在整个传输带宽内,它的衰弱可能是比较一致的,称为平坦衰落(从时域的角度看,也称为慢衰落);而较宽的信道带宽,在整个传输带宽内,它的衰弱可能是变化的,称为不平坦衰落(从时域的角度看,也称为快衰落)。
平坦衰落由于在传输信道带宽内信号变化是一致的,在产生衰落时可以用较简单的均衡技术来恢复;而不平坦衰落导致的传输失真的恢复比较困难。
由于LTE要求的传输速率相当高,它的信道带宽必然比较宽(20M,而LTE-A 可以达到100M);并且,LTE系统需要支持这种使用环境,最高移动速度达到500公里每小时(LTE -TDD支持的最高速度是300公里)(衰落最严重的情况是市区内高速运动)。
因此,LTE系统的信道衰落比较严重(在高速率的传输系统中,OFDM已成为一种趋势)。
OFDM在抗多径衰落方面有着先天的优势。
OFDM把较宽的带宽分割成很多子载波(LTE中子载波带宽15K),因此,在每个子载波内,衰落是平坦的。
这样,就可以通过简单的均衡技术来达到较好的效果。
OFDM技术的主要特点∙1.高速数据先经过串并转换,再调制到各子载波。
这样子载波上的码速率就很低,可以有效降低码间串扰。
lte物理层处理过程
LTE(Long Term Evolution)是一种无线通信技术,其物理层处理过程是整个LTE系统中非常重要的一部分。
物理层处理过程涉及到无线信号的调制、多路复用、功率控制、信道编码等一系列操作,以确保数据的可靠传输和高效利用无线资源。
首先,在LTE系统中,物理层处理过程涉及到信号的调制和多路复用。
LTE系统采用正交频分复用(OFDM)技术,通过将数据分割成多个子载波并进行调制,以实现高速数据传输。
同时,多路复用技术将多个用户的数据同时传输到同一个频段上,提高了频谱的利用率。
其次,在物理层处理过程中,功率控制是非常重要的一环。
LTE 系统通过动态功率控制技术,根据用户的信道质量和距离,调整发射功率,以确保信号的覆盖范围和质量。
这样可以有效减少干扰,提高系统的容量和覆盖范围。
另外,信道编码也是物理层处理过程中的关键环节。
LTE系统采用了Turbo码和LDPC码等高效的编码技术,通过对数据进行编码和交织,提高了信道的抗干扰能力和纠错性能,从而保证了数据传
输的可靠性。
除此之外,物理层处理过程还涉及到天线技术、信道估计和均衡等方面。
LTE系统采用了MIMO技术,通过多天线传输和接收,提高了系统的频谱效率和容量。
同时,信道估计和均衡技术可以有效抑制多径干扰,提高信号的质量和覆盖范围。
总之,LTE物理层处理过程是一个复杂而精密的系统工程,涉及到调制、多路复用、功率控制、信道编码等多个方面。
通过这些处理过程,LTE系统可以实现高速数据传输、广覆盖和高可靠性,为用户提供了更加丰富和便捷的无线通信体验。