池火灾事故后果计算过程
- 格式:docx
- 大小:17.40 KB
- 文档页数:2
液体火灾事故后果(池火)分析(孙自涛整理)一、池火半径r 的计算池火半径(多用于罐区)r=(S/π)1/2 (单位m )池火半径(多用在船舱或其他不规则形态)r=(3s/π) 1/2/2 式中:S 为防火堤内面积或其他不规则形面积。
π取3.14(以下略)二、池火燃烧速度(Mf )计算1、可燃液体沸点高于周围环境温度时。
单位面积燃烧速度Mf 值计算公式为:(有些物质可查表)H T Tb Cp Hcdt dm Mf +-==)0(001.0式中: MF 为单位面积燃烧速度,(Kg/m 2s )H C 为液体燃烧热;(J/Kg )(也可查表) Cp 为定亚比热;(J/Kg.K) (可查表) T b 为物质沸点;(K )(可查表) T 0为环境温度;(K )(可查表) H 为物质气化热;(J/Kg )(可查表)2、可燃液体沸点低于周围环境温度时。
单位面积燃烧速度Mf 值计算公式为:HHc dt dm Mf 001.0== 式中:各符号表示内容同上。
三、计算燃烧时间(即池火持续时间)SMfWt =式中: t 为池火持续时间 , (s )W 为液池液体的总质量,(Kg )S 为液体的面积,m 2Mf 为液体单位面积燃烧速度,(Kg/m 2s )四、计算燃烧火焰高度1、计算公式根据托马斯池火火焰高度经验公式,计算池火的火焰高度h :h = 84r{Mf/[ρo (2gr )0.5] }0.6式中: h 为池火火焰高度m;r 为液池半径或等效半径,(单位m )p 0为周围空气密度。
(取1.29 Kg/m 3)g 为重力加速度,(9.8m/S 2)Mf 即dm/dt 为液体单位面积燃烧速度,(Kg/m 2s )或使用池火焰高度的经验公式转换如下:61.00)]/([42gD m DLh f ρ⨯==式中:L 为火焰高度(m ),D 为液池直径(m ), m f 为燃烧速率(kg/m 2s ),ρ0为空气密度(kg/m 3),g 为引力常数。
火灾热辐射后果预测(池火灾计算)燃烧速度/火焰高度/热辐射强度及后果对航空煤油(以下简称航煤)进行池火模拟,模拟热灼烧后果。
(1)液池直径本项目隔堤围成的面积为2677m 2,则液池半径r=29.2m 。
(2)燃烧速度液体表面单位面积的燃烧速度dm/dt 为:HT T c Hcdt dm O b p +-=)(001.0/式中:dm/dt ——单位表面积燃烧速度,)/(2s m kg ⋅;c H ——液体燃烧热;航煤为43070000kg J /; p c ——液体的定压比热容;航煤为2000)/(K kg J ⋅;b T ——液体的沸点;取航煤的最小沸点为473K ; o T ——环境温度;取25℃即298K ;H ——液体的汽化热;航煤为280000kg J /。
通过计算可知航煤的燃烧速度为)/(068.02s m kg ⋅ (3)火焰高度 火焰高度计算公式为:6.0210])2(/[84gr dtdm r h ρ= 式中,h ——火焰高度;m ; r ——液池半径;29.2m ;0ρ——周围空气密度,ρ0=1.293kg/m 3;(标准状态);g ——重力加速度,2/8.9s m ;m h 66.58])2.298.92(293.10.068[2.29846.021=⨯⨯⨯= 因此,航煤储罐发生池火事故时火焰高度为58.66m 。
(4)热辐射通量当液池燃烧时放出的总热辐射通量为:()()[]172/261.02+⋅⋅+=dtdm c dt dm H rh r Q ηππ式中,Q ——总热辐射通量;W ;η——效率因子;可取0.13~0.35,取其平均值0.24; 其余符号意义同前。
计算得热辐射通量Q=6.3x108瓦。
(5)目标入射热辐射强度及后果假设全部辐射热量由液池中心点的小球面辐射出来,则在距离池中心某一距离(X )处的入射热辐射强度为:24XQt I cπ=式中,I ——入射通量;2/m W ; Q ——总热辐射通量;W ;c t ——热传导系数,在无相对理想的数据时,可取值为1; X ——目标点到液池中心距离;m 。
液体火灾事故后果(池火)分析(孙自涛整理)一、池火半径r 的计算池火半径(多用于罐区)r=(S/π)1/2 (单位m )池火半径(多用在船舱或其他不规则形态)r=(3s/π) 1/2/2 式中:S 为防火堤内面积或其他不规则形面积。
π取3.14(以下略)二、池火燃烧速度(Mf )计算1、可燃液体沸点高于周围环境温度时。
单位面积燃烧速度Mf 值计算公式为:(有些物质可查表)H T Tb Cp Hcdt dm Mf +-==)0(001.0式中: MF 为单位面积燃烧速度,(Kg/m 2s )H C 为液体燃烧热;(J/Kg )(也可查表) Cp 为定亚比热;(J/Kg.K) (可查表) T b 为物质沸点;(K )(可查表) T 0为环境温度;(K )(可查表) H 为物质气化热;(J/Kg )(可查表)2、可燃液体沸点低于周围环境温度时。
单位面积燃烧速度Mf 值计算公式为:HHc dt dm Mf 001.0== 式中:各符号表示内容同上。
三、计算燃烧时间(即池火持续时间)SMf Wt =式中: t 为池火持续时间 , (s )W 为液池液体的总质量,(Kg )S 为液体的面积,m 2Mf 为液体单位面积燃烧速度,(Kg/m 2s )四、计算燃烧火焰高度1、计算公式根据托马斯池火火焰高度经验公式,计算池火的火焰高度h :h = 84r{Mf/[ρo (2gr )0.5] }0.6式中: h 为池火火焰高度m;r 为液池半径或等效半径,(单位m )p 0为周围空气密度。
(取1.29 Kg/m 3)g 为重力加速度,(9.8m/S 2)Mf 即dm/dt 为液体单位面积燃烧速度,(Kg/m 2s )或使用池火焰高度的经验公式转换如下:61.00)]/([42gD m DLh f ρ⨯==式中:L 为火焰高度(m ),D 为液池直径(m ), m f 为燃烧速率(kg/m 2s ),ρ0为空气密度(kg/m 3),g 为引力常数。
加油站事故后果计算1易燃、易爆重大危险源伤害模型评估易燃、易爆重大危险源火灾爆炸模型研究的目的是估算重大火灾爆炸危险源发生火灾、爆炸事故时的破坏严重度,预测人员伤亡半径和财产损失情况,为装置的事故预防和安全管理提供依据,对预防事故的发生和减少人员财产损失具有重要意义。
易燃易爆气体、液体泄漏后遇到引火源会着火燃烧爆炸,燃烧爆炸的方式可分为池火、喷射火、火球和突发火四类。
其中的池火是指装置中的可燃液体一旦泄漏遇火源发生的火灾,热辐射是其主要的危害;在热辐射的作用下,受到伤害或破坏的目标可能是人、设备、设施、建筑物等。
池火灾害严重度评估按以下步骤进行。
(1)确定池半径将液池假定为半径为r 的圆形池子。
当池火灾发生在油罐或油罐区时,可根据防护堤所围池面积计算池直径:5.03⎪⎭⎫ ⎝⎛=πS D式中:D —池直径,m ;S —防护堤所围池面积,m 2;当池火灾发生在输油管道或加油区,且无防火堤时,假定泄漏的液体无蒸发,并已充分蔓延、地面无渗透,则根据泄漏的液体量和地面性质计算最大池面积:ρmin H W S =式中:S —最大池面积,m 2;W —泄漏的液体量,kg ;Hmin —最小油厚度,与地面性质和状态油罐,如表3-4所示。
ρ—油的密度,kg/ m 3。
(2)确定火焰高度广泛使用的托马斯给出的计算火焰高度的经验公式为:61.00242⎥⎥⎦⎤⎢⎢⎣⎡=gr m D Lf ρ式中:L —火焰高度,m ; D —直径,m ;mf —燃烧速度,kg/(m 2⋅S); ρ0—空气密度,kg/m 3;g —重力加速度,9.8m/s ;燃烧速度指易燃液体发生池火灾时,液体表面上单位面积的燃烧速度,其值可用公式计算,也可从手册中查到。
表3-5列出了一些可燃液体的燃烧速度。
表3-5 一些可燃液体的燃烧速度(3)计算热辐射通量(q0)假定能量由圆柱型火焰侧面非顶面均匀辐射,则液池燃烧时放出的总热辐射通量为:⋅+∆=DLD f m H D q f c πππ2202.02.0式中:q0—火焰表面的热通量,kW/m2;∆Hc —燃烧热,kJ/kg; f —热辐射系数,可取0.3;其它符号意义同前。
池火灾事故后果计算过程1)池火灾事故后果计算过程(1)柴油泄漏量设定一个5000m3柴油罐底部DN200进油管管道破裂出现长50cm,宽1 cm的泄漏口,泄漏后10分钟切断泄漏源。
泄漏的液体在防火堤内形成液池,泄漏时工况设定情况见表9-4。
表9-4 油品连续泄漏工况柴油泄漏量用柏努利公式计算:Q = CdAρ [2(P-P0)/ ρ+2gh]1/2W = Q.t式中: Q-泄漏速率(kg/s);W-泄漏量(kg);t-油品泄漏时间(s),t=600 sCd-泄漏系数,长方形裂口取值0.55(按雷诺数Re>100计);A-泄漏口面积(m2);A =0.005 m2ρ-泄漏液体密度(kg/ m3);P-容器内介质压力(Pa);P0 -大气压力(Pa);g-重力加速度(9.8 m /s2);h-泄漏口上液位高度(m),柴油罐液面安全高度15.9 m。
经计算Q = 42.23 kg/s、W = 25341 kg(10分钟泄漏量)(2)泄漏柴油总热辐射通量Q(w)柴油泄漏后在防火堤内形成液池,遇点火源燃烧而形成池火。
总热辐射通量Q(w)采用点源模型计算:Q = (л r2 + 2л rh) •m f •η•Hc/( 72 m f 0。
61+ 1)式中: m f—单位表面积燃烧速度kg/m2 .s,柴油为 0.0137;Hc—柴油燃烧热,Hc = 43515kJ/kg;h—火焰高度h(m),按下式计算:h = 84 r{ m f /[ρO(2 g r)1/2]}0.6ρO—环境空气密度,ρO=1.293kg/ m3;g—重力加速度,9.8 m /S2 η—燃烧效率因子,取0.35;r —液池半径(m), r =(4S/π)1/2S—液池面积,S=3442 m2;W—泄漏油品量kgρ-柴油密度,ρ=870kg/ m3;火灾持续时间:T= W/S.m f计算结果: Q(w)=1006347(kw)T=537s=9min(3)池火灾伤害半径火灾通过辐射热的方式影响周围环境,根据概率伤害模型计算,不同入射热辐射通量造成人员伤害或财产损失的情况表9-5。
池火灾模型1)池火灾事故后果计算过程(1)柴油泄漏量3设定一个5000m柴油罐底部DN200进油管管道破裂出现长50cm,宽1 cm的泄漏口,泄漏后10分钟切断泄漏源。
泄漏的液体在防火堤内形成液池,泄漏时工况设定情况见表9-4。
表9-4 油品连续泄漏工况介质温度介质压力介质密度泄口面积泄漏时间泄漏源备注 032( C) (Mpa) (kg/m) (m) (min)按10分钟后切断柴油罐常温常压 870 0.005 10泄漏源计柴油泄漏量用柏努利公式计算:1/2Q = CdAρ [2(P-P0)/ ρ+2gh] W = Q.t式中: Q,泄漏速率(kg/s);W,泄漏量(kg);t,油品泄漏时间(s),t=600 sC,泄漏系数,长方形裂口取值0.55(按雷诺数Re,100计); d2 2A,泄漏口面积(m);A =0.005m3ρ,泄漏液体密度(kg/ m);P,容器内介质压力(Pa);P,大气压力(Pa); 02g,重力加速度(9.8 m /s);h,泄漏口上液位高度(m),柴油罐液面安全高度15.9 m。
经计算Q = 42.23 kg/s、W = 25341 kg(10分钟泄漏量) (2)泄漏柴油总热辐射通量Q(w) 柴油泄漏后在防火堤内形成液池,遇点火源燃烧而形成池火。
总热辐射通量Q(w)采用点源模型计算:2 0。
61 Q = (л r+ 2л rh)m ηHc/( 72 m + 1) •f ••f2 式中: m —单位表面积燃烧速度kg/m.s,柴油为 0.0137; fHc—柴油燃烧热,Hc = 43515kJ/kg;h—火焰高度h(m),按下式计算:1/20.6 h = 84 r{ m /[ρ(2 g r)]} fO3ρ—环境空气密度,ρ=1.293kg/ m; OO2 g—重力加速度,9.8 m /Sη—燃烧效率因子,取0.35;1/2r —液池半径(m),r =(4S/π)2S—液池面积,S=3442 m;W—泄漏油品量kg3ρ,柴油密度,ρ=870kg/ m;火灾持续时间:T= W/S.m f计算结果: Q(w)=1006347(kw)T=537s=9min)池火灾伤害半径 (3火灾通过辐射热的方式影响周围环境,根据概率伤害模型计算,不同入射热辐射通量造成人员伤害或财产损失的情况表9-5。
二、甲苯储罐池火灾事故后果模拟某公司在TDI 生产过程中需要甲苯作为原料,该公司在厂区内设置有 2 个容积均为1000m3的甲苯储罐。
若甲苯从设备及管路中泄漏到地面后,将向四周流淌、扩展,形成一定厚度的液池,若受到防火堤、隔堤的阻挡,液体将在限定区域内得以积聚,形成一定范围的液池。
这时,若遇到火源,液池可能被点燃,发生地面液池火灾,下面将对其影响范围进行预测。
(1)甲苯的燃烧速度甲苯燃烧热H c =42445kJ/ ㎏,比热容C p =1.84kJ/ ㎏·K,沸点T b =383.6K,气化热H =360kJ/ ㎏。
取环境温度T o =30℃(303.15K ),液体表面上单位面积的重量燃烧速度dm/dt 为:(2)液池半径甲苯储罐隔堤所围池面积S ≈1200㎡,计算得到其液池当量(3)火焰高度设环境温度为30℃,这时周围空气密度ρ0 =1.165kg/m3;重力加速度g =9.8m/s 2。
由公式计算出甲苯储罐泄漏并发生池火灾时的火焰高度h 为:(4)热辐射通量热辐射通量计算式中的效率因子η取值0.25,其余符号的意义和单位与上述计算式相同:液池燃烧时放出的总热辐射通量Q 为:Q =(5)目标入射热辐射强度液池火灾的主要危害来自火焰的强烈热辐射,而且燃烧的持续时间比较长,属于稳定火灾,因而采用稳态火灾作用下热辐射强度准则来确定它对周围人员和设备设施的烧伤或破坏距离。
当火灾产生的热辐射强度足够大时,可使周围的物体燃烧或变形,强烈的热辐射可能烧毁设备甚至造成人员伤亡等。
火灾损失估算建立在辐射强度与损失等级的相应关系基础上。
表1 为不同入射热辐射强度造成伤害或损失的情况。
表1 热辐射的不同入射热辐射强度所造成的损失根据以上判断指标,用下式估算液池火灾可能的损失区域距离X:式中X:目标点到液池中心的距离,m ;I:热辐射强度,W/ ㎡;Q :总热辐射通量,W;tc :热传导系数,取值为1。
由此可得出火灾对设备与人的伤害情况,见表 2表2 火灾对设备与人的伤害情况(6)液池火灾事故模拟结果分析以上对甲苯储罐泄漏发生池火灾事故进行了模拟计算,通过计算可知,如果甲苯储罐内的甲苯全部发生泄漏引发池火灾,在以隔堤的几何中心为圆心, 143.2m 远处基本没有影响,对外径 90.5m 、内径 51.2m 范围内的人员伤害不大,对 51.2m 范围以内的人员将有烧伤甚至死亡的危险,周围的可燃物有可能被引燃造成火灾事故,操作设备将受到不同程度损坏。
池火灾事故后果计算过程
1)池火灾事故后果计算过程(1)柴油泄漏量设定一个5000m3柴油罐底部DN200进油管管道破裂出现长50cm,宽1 cm的泄漏口,泄漏后10分钟切断泄漏源。
泄漏的液体在防火堤内形成液池,泄漏时工况设定情况见表9-4。
表9-4 油品连续泄漏工况泄漏源介质温度( 0C)介质压力(Mpa)介质密度(kg/m3)泄口面积(m2)泄漏时间(min)备注柴油罐常温常压8700.00510按10分钟后切断泄漏源计柴油泄漏量用柏努利公式计算:Q = CdAρ *2(P-P0)/ ρ+2gh+1/2 W = Q.t式中: Q-泄漏速率(kg/s);W-泄漏量(kg);t-油品泄漏时间(s),t=600 sCd-泄漏系数,长方形裂口取值0.55(按雷诺数Re>100计);A-泄漏口面积(m2);A =0.005 m2ρ-泄漏液体密度(kg/ m3);P-容器内介质压力(Pa);P0 -大气压力(Pa);g-重力加速度(9.8 m /s2);h-泄漏口上液位高度(m),柴油罐液面安全高度15.9 m。
经计算Q = 42.23 kg/s、W = 25341 kg(10分钟泄漏量)(2)泄漏柴油总热辐射通量Q(w)柴油泄漏后在防火堤内形成液池,遇点火源燃烧而形成池火。
总热辐射通量Q(w)采用点源模型计算:Q = (л r2 + 2л rh) •m f •η•Hc/(72 m f 0。
61+ 1)式中: m f—单位表面积燃烧速度kg/m2 .s,柴油为0.0137;Hc—柴油燃烧热,Hc = 43515kJ/kg;h—火焰高度h(m),按下式计算:h = 84 r{ m f /*ρO(2 g r)1/2+}0.6 ρO—环境空气密度,ρO=1.293kg/ m3;g—重力加速度,9.8 m /S2 &。