火灾爆炸热辐射后果影响预测(池火灾计算)
- 格式:docx
- 大小:67.80 KB
- 文档页数:3
5.5火灾、爆炸事故后果分析法为评价天然气管道破裂事故后果的严重程度,ASME B31.8S介绍了美国运输部管道安全办公室(DOT—OPS)2000年委托美国天然气研究所所作的研究报告“确定天然气管道事故高危区的模型”(GRI—00/0189,A Model for Sizing High Consequence Areas Associated with Natural Gas Pipeline),提出了一个计算天然气等管道断裂引燃事故的热辐射高危区半径的方程式。
表5.5-1 国际上通用的热辐射危害后果标准该方程式是以热辐射量为5000Btu/h·f t2(15.8KW/㎡)作为临界危险强度的,即其伤亡判据为:在这样的辐射强度下,该处的人群如果在30s之内没找到掩蔽场所,则100人中有1个会死亡。
该判据与国际上通用的热辐射危害后果标准类似。
式中:r—为受影响区域的半径,f t;0.69—是天然气管道的计算因子,对其他气体或富气管道,该因子值不同;d-为管道外径,in;P-为该管道最大允许操作压力(MAOP),psi;据此,计算高安市城区天然气管网工程高危区范围如下表。
表5.5-2 天然气管道破裂引燃事故的热辐射高危区半径范围(m)上述计算指地面上管道,而埋地管道则范围应小些。
5.2.4.1 罐区火灾爆炸事故造成人员伤亡涉及范围项目206B储罐区储存有甲醇、乙酸乙酯、丙酮、醋酸、吡啶、乙醇、四氢呋喃等等易燃易爆性物质,种类较多,且储量较大,现取罐区储量较大,物料相对较为危险的物质甲醇进行计算分析根据本项目生产涉及的物料特性,罐区储存的甲醇为甲类易燃液体,3只储罐容积50m³,甲醇燃烧速度为0.0576 kg /㎡·s,则本报告选用易燃危险物质甲醇为罐区池火灾事故伤害模型进行计算。
根据池火灾事故伤害模型,可燃液体泄漏后流到地面形成液池,或流到水面并覆盖水面,遇到火源燃烧而形成池火。
池火灾事故后果计算过程1)池火灾事故后果计算过程(1)柴油泄漏量设定一个5000m3柴油罐底部DN200进油管管道破裂出现长50cm,宽1 cm的泄漏口,泄漏后10分钟切断泄漏源。
泄漏的液体在防火堤内形成液池,泄漏时工况设定情况见表9-4。
表9-4 油品连续泄漏工况泄漏源介质温度( 0C)介质压力(Mpa)介质密度(kg/m3)泄口面积(m2)泄漏时间(min)备注柴油罐常温常压8700.00510按10分钟后切断泄漏源计柴油泄漏量用柏努利公式计算:Q = CdAρ *2(P-P0)/ ρ+2gh+1/2 W = Q.t式中: Q-泄漏速率(kg/s);W-泄漏量(kg);t-油品泄漏时间(s),t=600 sCd-泄漏系数,长方形裂口取值0.55(按雷诺数Re>100计);A-泄漏口面积(m2);A =0.005 m2ρ-泄漏液体密度(kg/ m3);P-容器内介质压力(Pa);P0 -大气压力(Pa);g-重力加速度(9.8 m /s2);h-泄漏口上液位高度(m),柴油罐液面安全高度15.9 m。
经计算Q = 42.23 kg/s、W = 25341 kg(10分钟泄漏量)(2)泄漏柴油总热辐射通量Q(w)柴油泄漏后在防火堤内形成液池,遇点火源燃烧而形成池火。
总热辐射通量Q(w)采用点源模型计算:Q = (л r2 + 2л rh) •m f •η•Hc/(72 m f 0。
61+ 1)式中: m f—单位表面积燃烧速度kg/m2 .s,柴油为0.0137;Hc—柴油燃烧热,Hc = 43515kJ/kg;h—火焰高度h(m),按下式计算:h = 84 r{ m f /*ρO(2 g r)1/2+}0.6 ρO—环境空气密度,ρO=1.293kg/ m3;g—重力加速度,9.8 m /S2 &。
池火灾事故后果模拟张龙梅;王艳丽;鲁顺清【摘要】The pool fire is a major type in flammable liquid storage tank zone. The model of mudan was summarized, combined with thermal radiation damage models such as personnel, equipment and domino secondary accident probability model, and then simulated pool fire accident consequences under the conditions of wind. The drawings about thermal radiation, the harm/damage radius and domino secondary accident frequency were gotten, which were about upwind and down the wind respectively.%池火灾是可燃液体储罐区易发生的主要火灾类型。
本文总结了mudan池火灾计算模型,结合人员、设备等的热辐射受损模型和多米诺二次事故概率模型,模拟了有风情况下池火灾的事故后果,分别得到了上风向和下风向池火灾热通量关系图,伤害/破坏半径以及多米诺二次事故频率。
【期刊名称】《广州化工》【年(卷),期】2015(000)010【总页数】4页(P217-220)【关键词】池火灾;mudan模型;伤害/破坏半径;多米诺二次事故频率【作者】张龙梅;王艳丽;鲁顺清【作者单位】中国地质大学武汉工程学院,湖北武汉 430074;中国地质大学武汉工程学院,湖北武汉 430074;中国地质大学武汉工程学院,湖北武汉430074【正文语种】中文【中图分类】X937池火灾是指储罐中的可燃液体遇火源或泄漏后遇火源发生的火灾,是可燃液体贮罐区易发生的主要火灾类型。
池火灾事故后果计算过程1)池火灾事故后果计算过程(1)柴油泄漏量设定一个5000m3柴油罐底部DN200进油管管道破裂出现长50cm,宽1 cm的泄漏口,泄漏后10分钟切断泄漏源。
泄漏的液体在防火堤内形成液池,泄漏时工况设定情况见表9-4。
表9-4 油品连续泄漏工况柴油泄漏量用柏努利公式计算:Q = CdAρ [2(P-P0)/ ρ+2gh]1/2W = Q.t式中: Q-泄漏速率(kg/s);W-泄漏量(kg);t-油品泄漏时间(s),t=600 sCd-泄漏系数,长方形裂口取值0.55(按雷诺数Re>100计);A-泄漏口面积(m2);A =0.005 m2ρ-泄漏液体密度(kg/ m3);P-容器内介质压力(Pa);P0 -大气压力(Pa);g-重力加速度(9.8 m /s2);h-泄漏口上液位高度(m),柴油罐液面安全高度15.9 m。
经计算Q = 42.23 kg/s、W = 25341 kg(10分钟泄漏量)(2)泄漏柴油总热辐射通量Q(w)柴油泄漏后在防火堤内形成液池,遇点火源燃烧而形成池火。
总热辐射通量Q(w)采用点源模型计算:Q = (л r2 + 2л rh) •m f •η•Hc/( 72 m f 0。
61+ 1)式中: m f—单位表面积燃烧速度kg/m2 .s,柴油为 0.0137;Hc—柴油燃烧热,Hc = 43515kJ/kg;h—火焰高度h(m),按下式计算:h = 84 r{ m f /[ρO(2 g r)1/2]}0.6ρO—环境空气密度,ρO=1.293kg/ m3;g—重力加速度,9.8 m /S2 η—燃烧效率因子,取0.35;r —液池半径(m), r =(4S/π)1/2S—液池面积,S=3442 m2;W—泄漏油品量kgρ-柴油密度,ρ=870kg/ m3;火灾持续时间:T= W/S.m f计算结果: Q(w)=1006347(kw)T=537s=9min(3)池火灾伤害半径火灾通过辐射热的方式影响周围环境,根据概率伤害模型计算,不同入射热辐射通量造成人员伤害或财产损失的情况表9-5。
池火灾模型1)池火灾事故后果计算过程(1)柴油泄漏量3设定一个5000m柴油罐底部DN200进油管管道破裂出现长50cm,宽1 cm的泄漏口,泄漏后10分钟切断泄漏源。
泄漏的液体在防火堤内形成液池,泄漏时工况设定情况见表9-4。
表9-4 油品连续泄漏工况介质温度介质压力介质密度泄口面积泄漏时间泄漏源备注 032( C) (Mpa) (kg/m) (m) (min)按10分钟后切断柴油罐常温常压 870 0.005 10泄漏源计柴油泄漏量用柏努利公式计算:1/2Q = CdAρ [2(P-P0)/ ρ+2gh] W = Q.t式中: Q,泄漏速率(kg/s);W,泄漏量(kg);t,油品泄漏时间(s),t=600 sC,泄漏系数,长方形裂口取值0.55(按雷诺数Re,100计); d2 2A,泄漏口面积(m);A =0.005m3ρ,泄漏液体密度(kg/ m);P,容器内介质压力(Pa);P,大气压力(Pa); 02g,重力加速度(9.8 m /s);h,泄漏口上液位高度(m),柴油罐液面安全高度15.9 m。
经计算Q = 42.23 kg/s、W = 25341 kg(10分钟泄漏量) (2)泄漏柴油总热辐射通量Q(w) 柴油泄漏后在防火堤内形成液池,遇点火源燃烧而形成池火。
总热辐射通量Q(w)采用点源模型计算:2 0。
61 Q = (л r+ 2л rh)m ηHc/( 72 m + 1) •f ••f2 式中: m —单位表面积燃烧速度kg/m.s,柴油为 0.0137; fHc—柴油燃烧热,Hc = 43515kJ/kg;h—火焰高度h(m),按下式计算:1/20.6 h = 84 r{ m /[ρ(2 g r)]} fO3ρ—环境空气密度,ρ=1.293kg/ m; OO2 g—重力加速度,9.8 m /Sη—燃烧效率因子,取0.35;1/2r —液池半径(m),r =(4S/π)2S—液池面积,S=3442 m;W—泄漏油品量kg3ρ,柴油密度,ρ=870kg/ m;火灾持续时间:T= W/S.m f计算结果: Q(w)=1006347(kw)T=537s=9min)池火灾伤害半径 (3火灾通过辐射热的方式影响周围环境,根据概率伤害模型计算,不同入射热辐射通量造成人员伤害或财产损失的情况表9-5。
火灾、爆炸危害评估一、蒸气云爆炸事故灾害严重度估算(可参考《爆破安全规程》GB6722-2003第六节中的有关公式和标准。
)蒸气云爆炸在石油化工企业是一种发生频率较高、而且后果十分严重的事故,其事故严重度一般通过下列参数进行估算:1、死亡区死亡区内的人员如缺少防护则被认为将无例外地蒙受严重伤害或死亡,其内径为零,外径为R 1。
其与爆炸物量间的关系为:0.37TN T 1/1000W 13.6R )( (1) 式中:W TNT ——爆源的TNT 当量,kg 。
(这个数据可以根据下式计算而得)其中,W TNT 的计算式一般为:W TNT =1.8aW f Q f /Q TNT式中:1.8——地面爆炸系数;a ——蒸气云当量系数,取a =0.04;W f ——蒸气云中可燃气体的质量,kg ;Q f ——可燃气体的爆炸热, kJ /kg ;Q TNT ——TNT 的爆热,取Q TNT =4520kJ /kg例1:制氧车间氢气站设有容积20m 3氢气罐一个,事故预测时按超压(10Mpa )计算氢气量。
氢气储罐大规模破裂时,气体泄漏形成气云,达到爆炸极限时遇激发能源即可发生气体爆炸,对气体爆炸,按超压-冲量准则预测蒸气云爆炸事故后果。
1)蒸气云爆炸总能量蒸气云爆炸总能量由下式计算:E=1.8 aV f q f式中:1.8-地面爆炸系数;a -可燃气体蒸气云的当量系数,取0.04;V f ——事故发生时氢气量为V f =2000 Nm 3q f ——氢气燃烧热,Q f =12770 kJ/m 3。
经计算:E=1.8×0.04×2000×12770 = 1839 MJ2)蒸气云爆炸当量蒸气云TNT 当量由下式计算:W TNT = E/Q TNT式中:Q TNT —TNT 爆炸热,取Q TNT =4520 kJ/kg 。
W TNT =1839000/4520=407 kg3)爆炸冲击波超压伤害范围死亡半径按下式计算:R 1=13.6(W TNT /1000)0.37 =13.6(407/1000)0.37=10m2、重伤区重伤区的人员如缺少防护,则绝大多数人员将遭受严重伤害,极少数人可能死亡或受轻伤。
火灾热辐射后果预测(池火灾计算)
燃烧速度/火焰高度/热辐射强度及后果
对航空煤油(以下简称航煤)进行池火模拟,模拟热灼烧后果。
(1)液池直径
本项目隔堤围成的面积为2677m 2,则液池半径r=29.2m 。
(2)燃烧速度
液体表面单位面积的燃烧速度dm/dt 为:
H
T T c Hc
dt dm O b p +-=
)(001.0/
式中:
dm/dt ——单位表面积燃烧速度,)/(2
s m kg ⋅;
c H ——液体燃烧热;航煤为43070000
kg J /; p c ——液体的定压比热容;航煤为2000)/(K kg J ⋅;
b T ——液体的沸点;取航煤的最小沸点为473K ; o T ——环境温度;取25℃即298K ;
H ——液体的汽化热;航煤为280000kg J /。
通过计算可知航煤的燃烧速度为)/(068.02s m kg ⋅ (3)火焰高度 火焰高度计算公式为:
6
.02
1
0])2(/[
84gr dt
dm r h ρ= 式中,h ——火焰高度;m ; r ——液池半径;29.2m ;
0ρ——周围空气密度,ρ0=1.293kg/m 3
;(标准状态);
g ——重力加速度,2
/8.9s m ;
m h 66.58])2.298.92(293.10.068[2.29846
.02
1
=⨯⨯⨯= 因此,航煤储罐发生池火事故时火焰高度为58.66m 。
(4)热辐射通量
当液池燃烧时放出的总热辐射通量为:
()()[
]
172/261
.02+⋅⋅+=dt
dm c dt dm H rh r Q ηππ
式中,Q ——总热辐射通量;W ;
η——效率因子;可取0.13~0.35,取其平均值0.24; 其余符号意义同前。
计算得热辐射通量Q=6.3x108瓦。
(5)目标入射热辐射强度及后果
假设全部辐射热量由液池中心点的小球面辐射出来,则在距离池中心某一距离(X )处的入射热辐射强度为:
2
4X
Qt I c
π=
式中,I ——入射通量;2/m W ; Q ——总热辐射通量;W ;
c t ——热传导系数,在无相对理想的数据时,可取值为1; X ——目标点到液池中心距离;m 。
当入射通量一定时,可以求出目标点到液池中心距离X :
当2
/5.37m kW I =时,m I Qt X c 57.36105.3714.341
106.343
8=⨯⨯⨯⨯⨯==π
当2/25m kW I =时,X=44.79m 当2/5.12m kW I =时,X=63.35m 当2/0.4m kW I =时,x=111.98m 当2/6.1m kW I =时,X=177.06m
火灾通过热辐射的方式影响周围环境,当火灾产生的热辐射强度足够大时,可造成周围设施受损甚至人员伤亡。
不同入射通量造成的损失如下表:
根据上述计算结果可知,航煤储罐在发生池火灾的情况下,距储罐36.57m 范围内的人员死亡率为1%,且该范围内所有设备将被破坏;在距储罐36.57m~44.79m范围内的人员将被严重烧伤;在距苯储罐44.79m~63.35m范围内的人员将被1度烧伤。