2不确定性推理1基本概念2不确定性推理中的基本问题不确定
- 格式:pdf
- 大小:193.64 KB
- 文档页数:5
确定性与不确定性推理主要方法-人工智能导论确定性与不确定性推理主要方法1.确定性推理:推理时所用的知识与证据都是确定的,推出的结论也是确定的,其真值或者为真或者为假。
2.不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
3.演绎推理:如:人都是会死的(大前提)李四是人(小前提)所有李四会死(结论)4.归纳推理:从个别到一般:如:检测全部产品合格,因此该厂产品合格;检测个别产品合格,该厂产品合格。
5.默认推理:知识不完全的情况下假设某些条件已经具备所进行的推理;如:制作鱼缸,想到鱼要呼吸,鱼缸不能加盖。
6.不确定性推理中的基本问题:①不确定性的表示与量度:1)知识不确定性的表示2)证据不确定性的表示3)不确定性的量度②不确定性匹配算法及阈值的选择1)不确定性匹配算法:用来计算匹配双方相似程度的算法。
2)阈值:用来指出相似的“限度”。
③组合证据不确定性的算法最大最小方法、Hamacher方法、概率方法、有界方法、Einstein 方法等。
④不确定性的传递算法1)在每一步推理中,如何把证据及知识的不确定性传递给结论。
2)在多步推理中,如何把初始证据的不确定性传递给最终结论。
⑤结论不确定性的合成6.可信度方法:在确定性理论的基础上,结合概率论等提出的一种不确定性推理方法。
其优点是:直观、简单,且效果好。
可信度:根据经验对一个事物或现象为真的相信程度。
可信度带有较大的主观性和经验性,其准确性难以把握。
C-F模型:基于可信度表示的不确定性推理的基本方法。
CF(H,E)的取值范围: [-1,1]。
若由于相应证据的出现增加结论H 为真的可信度,则CF(H,E)> 0,证据的出现越是支持 H 为真,就使CF(H,E) 的值越大。
反之,CF(H,E)< 0,证据的出现越是支持 H 为假,CF(H,E)的值就越小。
若证据的出现与否与 H 无关,则 CF(H,E)= 0。
不确定推理的概念与应用1、概念不确定推理(Uncertain Reasoning)是人工智能领域中的一个重要概念,它主要解决的是在面对不确定信息时,如何进行推理和决策的问题。
在现实生活中,我们所接触到的信息往往是带有不确定性的,例如天气预报的准确性无法做到100%,医学诊断中的数据也存在误差,金融市场的预测涉及到复杂的变量等等。
因此,在这些情况下,我们需要一种方法来处理不确定性,帮助我们做出正确的决策。
不确定推理的出现就是为了解决这一类问题。
它不仅可以帮助我们分析和推理不确定信息,还可以根据不确定信息进行决策和规划,从而使人工智能系统能够更好地适应现实生活中的复杂环境。
2、基本问题不确定推理主要解决的基本问题包括:不确定性的建模与表示、不确定性的推理和决策。
2.1 不确定性的建模与表示不确定性的建模与表示是不确定推理的基石,它涉及到如何将不确定性信息表达为数学模型,并通过模型来描述和处理不确定性。
通常,不确定性可以通过概率论、模糊逻辑、证据理论等方法来进行建模和表示。
其中,概率论是一种常用的形式,它通过概率分布来描述不确定性的程度。
模糊逻辑则可以更好地处理模糊性和不精确性的问题。
证据理论则可以用于处理不同来源的不确定信息的融合。
在不确定性的建模与表示中,需要考虑的问题包括:不确定性的类型、不确定信息的采集和融合、不确定信息的表示和存储等等。
2.2 不确定性的推理不确定性的推理是指在给定不确定信息的情况下,通过推理算法来从中得出有关结论的过程。
不确定推理的算法涉及到模糊推理、贝叶斯推理、推理机制等,基本原理是根据不确定信息的模型和规则进行计算和推断。
在不确定推理中,需要解决的问题包括:推理的计算复杂性、推理的效率和准确性、推理结果的解释和可信度等等。
2.3 不确定性的决策不确定推理的最终目的是为了做出决策。
在不确定信息的基础上,如何进行决策是一个关键的问题。
不确定性的决策涉及到决策算法、决策规则、决策模型等,其目标是根据不确定信息来选择最优的行动或决策策略。
不确定性推理概述4.1.1 不确定推理的概念所谓推理就是从已知事实出发,运⽤相关知识(或规则)逐步推出结论或证明某个假设成⽴或不成⽴的思维过程。
其中已知事实和知识(规则)是构成推理的两个基本要素。
已知事实是推理过程的出发点,把它称为证据。
4.1.2 不确定性推理⽅法的分类可信度⽅法、主观Bayes⽅法、证据理论都是在概率论的基础上发展起来的不确定性推理⽅法。
4.1.3 不确定性推理知识库是⼈⼯智能的核⼼,⽽知识库中的知识既有规律性的⼀般原理,⼜有⼤量的不完全的专家知识,即知识带有模糊性、随机性、不可靠或不知道不确定因素。
世界上⼏乎没有什么事情是完全确定的。
不确定性推理即是通过某种推理得到问题的精确判断。
(1)不确定性问题的代数模型⼀个问题的代数模型由论域、运算和公理组成。
建⽴不确定性问题模型必须说明不确定知识的表⽰、计算、与语义解释。
不确定性的表⽰问题:指⽤什么⽅法描述不确定性,通常有数值和⾮数值的语义表⽰⽅法。
数值表⽰便于计算,⽐较,再考虑到定性的⾮数值描述才能较好的解决不确定性问题。
例如对规则A->B(即A真能推导B真)和命题(或称证据、事实)A,分别⽤f(B,A)来表⽰不确定性度量。
推理计算问题:指不确定性的传播和更新,也即获得新的信息的过程。
包括:①已知C(A),A->B,f(B,A),如何计算C(B)②证据A的原度量值为C1(A),⼜得C2(A),如何确定C(A)③如何由C(A1)和C(A2)来计算C(A1∧A2),C(A1∨A2)等。
⼀般初始命题/规则的不确定性度量常常由有关领域的专家主观确定。
语义问题:是指上述表⽰和计算的含义是什么?即对它们进⾏解释,概率⽅法可以较好地回答这个问题,例如f(B,A)可理解为前提A为真时对结论B为真的⼀种影响程度,C(A)可理解为A为真的程度。
特别关⼼的是f(B,A)的值是:①A真则B真,这时f(B,A)=?②A真则B假,这时f(B,A)=?③A对B没有影响时,这时f(B,A)=?对C(A)关⼼的值是①A真时,C(A)=?②A假时,C(A)=?③对A⼀⽆所知时,C(A)=?(2)不确定推理⽅法的分类不确定推理⽅法在⼈⼯智能系统中通常是不够严谨的,但尚能解决某些实际问题,符合⼈类专家的直觉,在概率上也可给出某种解释。
不确定性推理不确定性推理6.1 不确定性推理的基本概念不确定性是智能问题的一个本质特征,研究不确定性推理是人工智能的一项基本内容。
为加深对不确定性推理的理解和认识,在讨论各种不确定性推理方法之前,首先先对不确定性推理的含义,不确定性推理的基本问题,以及不确定性推理的基本类型进行简单讨论。
6.1.1 不确定性推理的含义不确定性推理是指那种建立在不确定性知识和证据的基础上的推理。
例如,不完备、不精确知识的推理,模糊知识的推理等。
不确定性推理实际上是一种从不确定的初始证据出发,通过运用不确定性知识,最终推出具有一定程度的不确定性但却又是合理或基本合理的结论的思维过程。
采用不确定性推理是客观问题的需求,其原因包括以下几个主要方面。
(1)所需知识不完备、不精确。
所谓知识的不完备是指在解决某一问题时,不具备解决该问题所需要的全部知识。
例如,医生在看病时,一般是从病人的部分症状开始诊断的。
所谓知识的不精确是指既不能完全确定知识为真,又不能完全确定知识为假。
例如,专家系统中的知识多为专家经验,而专家经验又多为不精确知识。
(2)所需知识描述模糊。
所谓知识描述模糊是指知识的边界不明确,它往往是由模糊概念所引起的。
例如,人们平常所说的“很好”、“好”、“比较好”、“不很好”、“不好”、“很不好”等都是模糊概念。
那么,当用这类概念来描述知识时,所得到的知识当然也是模糊的。
例如,“如果李清这个人比较好,那么我就把他当成好朋友”所描述的就是一条模糊知识。
(3)多种原因导致同一结论。
所谓多种原因导致同一结论是指知识的前提条件不同而结论相同。
在现实世界中,可由多种不同原因导出同一结论的情况有很多。
例如,引起人体低烧的原因至少有几十种,如果每种原因都作为一条知识,那就可以形成几十条前提条件不同而结论相同的知识。
当然,在不确定性推理中,这些知识的静态强度可能是不同的。
(4)解决方案不唯一。
所谓解决方案不唯一是指同一个问题可能存在多种不同的解决方案。