中央空调水系统图(矢量图,可编辑)
- 格式:pptx
- 大小:131.42 KB
- 文档页数:1
大型中央空调工作原理及系统结构图中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。
各部分的作用及工作原理如下:制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。
经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。
中央空调系统部分组成:冷冻水循环系统该部分由冷冻泵、室内风机及冷冻水管道等组成。
从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。
室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。
冷却水循环部分该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。
冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。
该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。
冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。
主机主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下:首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。
在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。
随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。
冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。
最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。
中央空调水系统设计(经典版)水系统分类按水压特性划分,可分为开式系统和闭式系统。
按冷、热水管道方式划分,可分为二管制系统、三管制系统和四管制系统。
按各末端设备的水流程划分,可分为同程式和异程式系统。
按水量特性划分,可分为定水量系统和变水量系统。
按水的性质划分,可分为冷冻水系统、冷却水系统和热水系统。
开式系统特点水系统与大气体直接相通。
常见于冷却水系统,系统比较简单。
水池容量较大时,夏季它具有一定的蓄冷能力。
水中含氧量高,管路与设备的腐蚀机会多。
需要增加克服静水压力的额外能量,水泵功率会增加。
水力平衡相对困难。
闭式系统特点水管路系统不直接与大气相通水泵选型相对于开式比较小(静压)水泵扬程、功率均相对比较小;管路与设备腐蚀机会少;系统相对设计简单;要设有膨胀水箱(定压作用),高度应高于水系统最高点1.5m以上;要有放气阀等阀件。
同程式水系统供回水经过每一环路的管路长度相等;主要是保证各管路系统的阻力大致相同,水流量分配均匀;需设回程管,管道长度长,初投资稍高。
异程式水系统供回水经过每一环路的管路长度不相等;不需回程管,管路短,管路简单、投资低;可能会导致水液量分配不均现象;可在支管上安装流量调节装置;建议安装平衡阀。
二管制水系统热、供冷合用同一管路系统;适用于冬、夏季冷、热负荷分明,过渡季很短或过渡季可不需空气调节的建筑较;夏季供冷、冬季供热、过渡季可采用天然冷源(如新风)冷却的建筑;管路系统简单、初投资省;无法同时满足供冷、供热的要求。
三管制水系统冷、热水供水管同时接至了末端设备(盘管仍为冷、热合用),每个末端设备可独立供冷或供热,供冷,供热回水的管路共用;能同时满足供冷、供热的要求,管路相对简单;在既有供冷又有供热的末端设备同时运行时,回水总管的水温是冷冻水与热水回水的混合温度,这一水温将高于冷水机组正常要求的回水温度而低于热交换器正常运行的回水温度;存在冷热损失,设备能耗将比两者各自独立运行时大得多。
大型中央空调工作原理
及系统结构图
Company number【1089WT-1898YT-1W8CB-9UUT-92108】
体。
在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。
随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。
冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。
最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。