统计学课后第四章习题答案说课材料
- 格式:doc
- 大小:19.00 KB
- 文档页数:3
第四章一.思考题1、一组数据的分布特征可以从哪几个方面进行测度?答:可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。
2、怎样理解平均数在统计学中的地位?答:平均数在统计学中具有重要的地位,它是进行统计分析和统计推断的基础。
从统计学思想上看,平均数是一组数据的重心所在,是数据误差相互抵消后的必然结果。
3、简述四分位数的计算方法。
答:四分位数是一组数据排序后处于25%和75%位子上的值。
四分位数是通过3个点将全部数据等分成4分,其中每部分包含25%的数据。
中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值和处在75%位置上的数值。
它是根据为分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数据就是四分位数。
4、对于比率数据的平均数为什么采用几何平均?答:几何平均数是适用于特殊数据的一种平均数,主要适用于计算平均比率。
当所掌握的变量值本身是比率的形式时,采用几何平均法计算平均比率更为合理。
5、简述众数、中位数、平均数的特点和应用场合。
答:众数是数据中出现次数次数最多的变量值。
主要应用于分类数据。
中位数是一组数据排序后处于中间位置的变量值,其适用于顺序数据。
平均数也称均值,它是一组数据相加后除以数据个数的结果,是集中去世的主要测量值,它适用于数值型数据。
6、简述异众比率、四分位差、方差、标准差的使用场合。
答:异众比率主要适合测度分类数据的离散程度,对于顺序数据以及数值型数据也可以计算异众比率。
四分位差主要用于测度顺序数据的离散程度。
方差和标准差适用于测度数值型数据的离散程度。
7、标准分数有哪些用途?答:首先是比较不同单位和不同质数据的位置。
其次是和正态分布结合起来,求得概率和标准分值之间的对应关系。
还有就是在假设检验和估计中应用。
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nxx i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
《统计学概论》第四章课后练习题答案一、思考题1.相对指标有什么作用?P90-912.平均指标有什么作用?P963.为什么说算术平均是最基本平均指标计算方法?P974.强度相对数和平均指标有什么区别?强度相对指标与平均指标的区别主要表现在以下两点:(1)指标的含义不同。
强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是现象发展的一般水平,计算方法不同。
(2)强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系,而平均指标分子与分母的联系是一种内在的联系,即分子是分母(总体单位)所具有的标志,对比结果是对总体各单位某一标志值的平均。
5.时期指标和时点指标有什么区别?P876.为什么说总量指标是基础指标?P877.简述平均指标及其作用。
(2009.10)P96二、单项选择题1.某企业2006年产值比上年增加了150万元,这个指标是()。
A.时期指标B.时点指标C.相对指标D.平均指标2.2006年中国新增就业人数575万人,这个指标是()。
A.时期指标B.时点指标C.相对指标D.平均指标3.某地区2006年底常住人口为100万人,医疗机构500个,平均每个医疗结构可以服务2000人,这个指标是()。
A.平均指标B.强度相对指标C.比较相对指标D.比例相对指标4.研究2006年中国31省区直辖市经济发展情况,江苏省GDP为21645.8亿元,浙江省GDP为15742.51亿元,江苏省GDP与浙江省GDP相比为1:0.73,这个指标是()。
A.比较相对数B.强度相对数C.比例相对数D.结构相对数5.2006年浙江省人均GDP 为31874元/人,全国总的人均GDP 为16084元/人,浙江省是全国的1.98倍,这个指标是( )。
P 94A .比较相对数B .强度相对数C .比例相对数D .结构相对数【解析】全国人均GDP 和浙江省人均GDP 是不同空间下的同类指标数值,不是总体全部数值和总体部分数值的关系,因而“浙江省GDP/全国GDP”是一个比较相对数。
第四章 大数定律与中心极限定理习题4.11. 如果X X Pn →,且Y X Pn →.试证:P {X = Y } = 1.证:因 | X − Y | = | −(X n − X ) + (X n − Y )| ≤ | X n − X | + | X n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥−≤2||2||}|{|0εεεY X P X X P Y X P n n ,又因X X Pn →,且Y X Pn →,有02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎫⎩⎨⎧≥−+∞→εY X P n n ,则P {| X − Y | ≥ ε} = 0,取k 1=ε,有01||=⎭⎬⎫⎩⎨⎧≥−k Y X P ,即11||=⎭⎬⎫⎩⎨⎧<−k Y X P , 故11||lim1||}{1=⎭⎬⎫⎩⎨⎧<−=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧<−==+∞→+∞=k Y X P k Y X P Y X P k k I . 2. 如果X X Pn →,Y Y Pn →.试证:(1)Y X Y X Pn n +→+; (2)XY Y X Pn n →.证:(1)因 | (X n + Y n ) − (X + Y ) | = | (X n − X ) + (Y n − Y )| ≤ | X n − X | + | Y n − Y |,对任意的ε > 0,有⎭⎫⎩⎨⎧≥−+⎭⎬⎫⎩⎨⎧≥−≤≥+−+≤2||2||}|)()({|0εεεY Y P X X P Y X Y X P n n n n ,又因X X P n →,Y Y P n →,有02||lim =⎭⎫⎩⎨⎧≥−+∞→εX X P n n ,02||lim =⎭⎬⎫⎩⎨⎧≥−+∞→εY Y P n n ,故0}|)()({|lim =≥+−++∞→εY X Y X P n n n ,即Y X Y X Pn n +→+;(2)因 | X n Y n − XY | = | (X n − X )Y n + X (Y n − Y ) | ≤ | X n − X | ⋅ | Y n | + | X | ⋅ | Y n − Y |,对任意的ε > 0,有⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤2||||2||||}|{|0εεεY Y X P Y X X P XY Y X P n n n n n ,对任意的h > 0,存在M 1 > 0,使得4}|{|1h M X P <≥,存在M 2 > 0,使得8}|{|2hM Y P <≥, 存在N 1 > 0,当n > N 1时,8}1|{|h Y Y P n <≥−, 因| Y n | = | (Y n − Y ) + Y | ≤ | Y n − Y | + | Y |,有4}|{|}1|{|}1|{|22h M Y Y Y P M Y P n n <≥+≥−≤+≥, 存在N 2 > 0,当n > N 2时,4)1(2||2h M X X P n <⎭⎬⎫⎩⎨⎧+≥−ε,当n > max{N 1, N 2}时,有244}1|{|)1(2||2||||22h h h M Y P M X X P Y X X P n n n n =+<+≥+⎭⎬⎫⎩⎨⎧+≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,存在N 3 > 0,当n > N 3时,42||1hM Y Y P n <⎭⎬⎫⎩⎨⎧≥−ε,有244}|{|2||2||||11h h h M X P M Y Y P X Y Y P n n =+<≥+⎭⎬⎫⎩⎨⎧≥−≤⎭⎬⎫⎩⎨⎧≥⋅−εε,则对任意的h > 0,当n > max{N 1, N 2, N 3} 时,有h h h Y Y X P Y X X P XY Y X P n n n n n =+<⎭⎬⎫⎩⎨⎧≥−⋅+⎭⎬⎫⎩⎨⎧≥⋅−≤≥−≤222||||2||||}|{|0εεε,故0}|{|lim =≥−+∞→εXY Y X P n n n ,即XY Y X Pn n →.3. 如果X X Pn →,g (x )是直线上的连续函数,试证:)()(X g X g Pn →. 证:对任意的h > 0,存在M > 0,使得4}|{|h M X P <≥, 存在N 1 > 0,当n > N 1时,4}1|{|h X X P n <≥−, 因| X n | = | (X n − X ) + X | ≤ | X n − X | + | X |,则244}|{|}1|{|}1|{|h h h M X P X X P M X P n n =+<≥+≥−≤+≥, 因g (x ) 是直线上的连续函数,有g (x ) 在闭区间 [− (M + 1), M + 1] 上连续,必一致连续, 对任意的ε > 0,存在δ > 0,当 | x − y | < δ 时,有 | g (x ) − g ( y ) | < ε ,存在N 2 > 0,当n > N 2时,4}|{|hX X P n <≥−δ,则对任意的h > 0,当n > max{N 1, N 2} 时,有{}}|{|}1|{|}|{|}|)()({|0M X M X X X P X g X g P n n n ≥+≥≥−≤≥−≤U U δεh hh h M X P M X P X X P n n =++<≥++≥+≥−≤424}|{|}1|{|}|{|δ, 故0}|)()({|lim =≥−+∞→εX g X g P n n ,即)()(X g X g Pn →.4. 如果a X P n →,则对任意常数c ,有ca cX Pn →. 证:当c = 0时,有c X n = 0,ca = 0,显然ca cX Pn →;当c ≠ 0时,对任意的ε > 0,有0||||lim =⎭⎬⎫⎩⎨⎧≥−+∞→c a X P n n ε, 故0}|{|lim =≥−+∞→εca cX P n n ,即ca cX Pn →.5. 试证:X X P n →的充要条件为:n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n .证:以连续随机变量为例进行证明,设X n − X 的密度函数为p ( y ),必要性:设X X Pn →,对任意的ε > 0,都有0}|{|lim =≥−+∞→εX X P n n ,对012>+εε,存在N > 0,当n > N 时,εεε+<≥−1}|{|2X X P n , 则∫∫∫≥<∞+∞−+++=+=⎟⎟⎠⎞⎜⎜⎝⎛−+−εε||||)(||1||)(||1||)(||1||||1||y y n n dy y p y y dy y p y y dy y p y y XX X X E εεεεεεεεεεεεε=+++<≥−+<−+=++≤∫∫≥<11}|{|}|{|1)()(12||||X X P X X P dy y p dy y p n n y y ,故n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n ; 充分性:设n → +∞ 时,有0||1||→⎟⎟⎠⎞⎜⎜⎝⎛−+−XX X X E n n , 因∫∫∫≥≥≥++≤++==≥−εεεεεεεεεε||||||)(||1||1)(11)(}|{|y y y n dy y p y y dy y p dy y p X X P ⎟⎟⎠⎞⎜⎜⎝⎛−+−+=++≤∫∞+∞−||1||1)(||1||1X X X X E dy y p y y n n εεεε, 故0}|{|lim =≥−+∞→εX X P n n ,即X X Pn →.6. 设D (x )为退化分布:⎩⎨⎧≥<=.0,1;0,0)(x x x D试问下列分布函数列的极限函数是否仍是分布函数?(其中n = 1, 2, ….)(1){D (x + n )}; (2){D (x + 1/n )}; (3){D (x − 1/n )}.解:(1)对任意实数x ,当n > −x 时,有x + n > 0,D (x + n ) = 1,即1)(lim =++∞→n x D n ,则 {D (x + n )} 的极限函数是常量函数f (x ) = 1,有f (−∞) = 1 ≠ 0,故 {D (x + n )} 的极限函数不是分布函数; (2)若x ≥ 0,有01>+n x ,11=⎟⎠⎞⎜⎝⎛+n x D ,即11lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,若x < 0,当x n 1−>时,有01<+n x ,01=⎟⎠⎞⎜⎝⎛+n x D ,即01lim =⎟⎠⎞⎜⎝⎛++∞→n x D n ,则⎩⎨⎧≥<=⎟⎠⎞⎜⎝⎛++∞→.0,1;0,01lim x x n x D n 这是在0点处单点分布的分布函数,满足分布函数的基本性质,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛+n x D 1的极限函数是分布函数;(3)若x ≤ 0,有01<−n x ,01=⎟⎠⎞⎜⎝⎛−n x D ,即01lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,若x > 0,当x n 1>时,有01>−n x ,11=⎟⎠⎞⎜⎝⎛−n x D ,即11lim =⎟⎠⎞⎜⎝⎛−+∞→n x D n ,则⎩⎨⎧>≤=⎟⎠⎞⎜⎝⎛−+∞→.0,1;0,01lim x x n x D n 在x = 0处不是右连续,故⎭⎬⎫⎩⎨⎧⎟⎠⎞⎜⎝⎛−n x D 1的极限函数不是分布函数.7. 设分布函数列 {F n (x )} 弱收敛于连续的分布函数F (x ),试证:{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ). 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,对任意的ε > 0,取正整数ε2>k ,则存在分点x 1 < x 2 < … < x k −1,使得1,,2,1,)(−==k i kix F i L ,并取x 0 = −∞,x k = +∞, 可得k k i k x F x F i i ,1,,2,1,21)()(1−=<=−−L ε, 因 {F n (x )} 弱收敛于F (x ),且F (x ) 连续,有 {F n (x )} 在每一点处都收敛于F (x ),则存在N > 0,当n > N 时,1,,2,1,2|)()(|−=<−k i x F x F i i n L ε,且显然有20|)()(|00ε<=−x F x F n ,20|)()(|ε<=−k k n x F x F ,对任意实数x ,必存在j ,1 ≤ j ≤ k ,有x j −1 ≤ x < x j ,因2)()()()(2)(11εε+<≤≤<−−−j j n n j n j x F x F x F x F x F ,则εεεε−=−−>−−>−−222)()()()(1x F x F x F x F j n ,且εεεε=+<+−<−222)()()()(x F x F x F x F j n ,即对任意的ε > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < ε , 故 {F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ).8. 如果X X Ln →,且数列a n → a ,b n → b .试证:b aX b X a Ln n n +→+. 证:设y 0是F aX + b ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F b aX b aX ,又设y 是满足 | y − y 0 | < h 的F aX + b ( y ) 的任一连续点,因⎟⎠⎞⎜⎝⎛−=⎭⎬⎫⎩⎨⎧−≤=≤+=+a b y F a b y X P y b aX P y F X b aX }{)(,有a b y x −=是F X (x )的连续点,且X X L n→, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F b aX b aX n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F b aX b aX b aX b aX b aX b aX n n , 因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续, 存在M ,使得F X (x ) 在x = ± M 处连续,且41)(ε−>M F X ,4)(ε<−M F X ,因X X Ln →,有41)()(lim ε−>=+∞→M F M F X X n n ,4)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,41)(ε−>M F n X ,4)(ε<−M F n X ,可得2)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因数列a n → a ,b n → b ,存在N 3,当n > N 3时,M h a a n 4||<−,4||h b b n <−, 可得当n > max{N 2, N 3}时,⎭⎫⎩⎨⎧>−+−=⎭⎬⎫⎩⎨⎧>+−+2|)()(|2|)()(|h b b X a a P h b aX b X a P n n n n n n n2}|{|24||42||||||ε<>=⎭⎬⎫⎩⎨⎧>+⋅≤⎭⎬⎫⎩⎨⎧>−+⋅−≤M X P h h X M hP h b b X a a P nn n n n , 则⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2|)()(|2}{)(000h b aX b X a h y b aX P y b X a P y F n n n n n n n n b X a n n n U222|)()(|200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>+−++⎭⎬⎫⎩⎨⎧+≤+≤+h y F h b aX b X a P h y b aX P b aX n n n n n n , 且⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>+−+≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2|)()(|}{22000h b aX b X a y b X a P h y b aX P h y F n n n n n n n n b aX n U2)(2|)()(|}{00ε+<⎭⎬⎫⎩⎨⎧>+−++≤+≤+y F h b aX b X a P y b X a P n n n b X a n n n n n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F b aX b X a b aX n n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F b aX b aX b aX n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F aX + b ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F b aX b aX b aX b X a n n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F aX + b ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F b aX b aX b aX b X a n n n n n ,即对于F aX + b ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−++|)()(|00y F y F b aX b X a n n n , 故)()(y F y F b aX Wb X a n n n ++→,b aX b X a Ln n n +→+. 9. 如果X X Ln →,a Y Pn →,试证:a X Y X Ln n +→+. 证:设y 0是F X + a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0ε<−++y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X + a ( y )的任一连续点,因F X + a ( y ) = P {X + a ≤ y } = P {X ≤ y − a } = F X ( y − a ),有x = y − a 是F X (x )的连续点,且X X Ln →, 有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|ε<−++y F y F a X a X n , 则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|00ε<−+−≤−++++++y F y F y F y F y F y F a X a X a X a X a X a X n n ,因a Y Pn →,有02||lim =⎭⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 2,当n > N 2时,22||ε<⎭⎬⎫⎩⎨⎧>−h a Y P n , 则⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−⎭⎬⎫⎩⎨⎧+≤+≤≤+=+2||2}{)(000h a Y h y a X P y Y X P y F n n n n Y X n n U222||200ε+⎟⎠⎞⎜⎝⎛+<⎭⎬⎫⎩⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤+≤+h y F h a Y P h y a X P a X n n n , 且⎭⎬⎫⎩⎨⎧⎭⎫⎩⎨⎧>−≤+≤⎭⎬⎫⎩⎨⎧−≤+=⎟⎠⎞⎜⎝⎛−+2||}{22000h a Y y Y X P h y a X P h y F n n n n a X n U2)(2||}{00ε+<⎭⎬⎫⎩⎨⎧>−+≤+≤+y F h a Y P y Y X P n n Y X n n n , 即22)(22000εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−+++h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(00εε+<<−+++y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X + a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<++++)(2)(22)(0100y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X + a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>++++)(2)(22)(0200y F y F h y F y F a X a X a X Y X n n n n ,即对于F X + a ( y ) 的任一连续点y 0,当n > max{N 1, N 2}时,ε<−++|)()(|00y F y F a X Y X n n , 故)()(y F y F a X WY X n n ++→,a X Y X Ln n +→+. 10.如果X X Ln →,0Pn Y →,试证:0Pn n Y X →.证:因X 的分布函数F X (x ) 满足F X (−∞) = 0,F X (+∞) = 1,F X (x ) 单调不减且几乎处处连续,则对任意的h > 0,存在M ,使得F X (x ) 在x = ± M 处连续,且41)(h M F X −>,4)(hM F X <−, 因X X L n →,有41)()(lim h M F M F X X n n −>=+∞→,4)()(lim h M F M F X X n n <−=−+∞→,则存在N 1,当n > N 1时,41)(h M F n X −>,4)(hM F n X <−,可得2)(1)(}|{|hM F M F M X P n n X X n <−+−=>,因0Pn Y →,对任意的ε > 0,有0||lim =⎭⎬⎫⎩⎨⎧>+∞→M Y P n n ε,存在N 2,当n > N 2时,2||h M Y P n <⎭⎬⎫⎩⎨⎧>ε, 则当n > max{N 1, N 2}时,有h M Y P M X P M Y M X P Y X P n n n n n n <⎭⎬⎫⎩⎨⎧>+>≤⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧>>≤>εεε||}|{|||}|{|}|{|U ,故0}|{|lim =>+∞→εn n n Y X P ,即0Pn n Y X →.11.如果X X Ln →,a Y Pn →,且Y n ≠ 0,常数a ≠ 0,试证:aXY X L n n →. 证:设y 0是F X / a ( y ) 的任一连续点,则对任意的ε > 0,存在h > 0,当 | y − y 0 | < h 时,4|)()(|0//ε<−y F y F a X a X ,又设y 是满足 | y − y 0 | < h 的F X / a ( y ) 的任一连续点,因)(}{)(/ay F ay X P y a X P y F X a X =≤=⎭⎬⎫⎩⎨⎧≤=,有x = ay 是F X (x )的连续点,且X X Ln →,有)()(lim x F x F X X n n =+∞→,存在N 1,当n > N 1时,4|)()(|ε<−x F x F X X n ,即4|)()(|//ε<−y F y F a X a X n ,则当n > N 1且 | y − y 0 | < h 时,2|)()(||)()(||)()(|0////0//ε<−+−≤−y F y F y F y F y F y F a X a X a X a X a X a X n n ,因X 的分布函数F X (x )满足F X (−∞) = 0,F X (+∞) = 1,F X (x )单调不减且几乎处处连续,存在M ,使得F X (x ) 在x = ± M 处连续,且121)(ε−>M F X ,12)(ε<−M F X ,因X X Ln →,有121)()(lim ε−>=+∞→M F M F X X n n ,12)()(lim ε<−=−+∞→M F M F X X n n ,则存在N 2,当n > N 2时,121)(ε−>M F n X ,12)(ε<−M F n X ,可得6)(1)(}|{|ε<−+−=>M F M F M X P n n X X n ,因0≠→a Y Pn ,有02||lim =⎭⎬⎫⎩⎨⎧>−+∞→h a Y P n n ,存在N 3 > 0,当n > N 3时,62||||ε<⎭⎬⎫⎩⎨⎧>−a a Y P n ,有62||||ε<⎭⎬⎫⎩⎨⎧<a Y P n ,且64||2ε<⎭⎬⎫⎩⎨⎧>−M h a a Y P n , 可得当n > max{N 1, N 2, N 3}时,⎭⎬⎫⎩⎨⎧>⋅−⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−2||||||||2)(2h Y a a Y X P h aY Y a X P h a X Y X P n n n n n n n n n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫⎩⎨⎧<⎭⎬⎫⎩⎨⎧>−>≤2||||4||}|{|2a Y M h a a Y M X P n n n U U22||||4||}|{|2ε<⎭⎬⎫⎩⎨⎧<+⎭⎬⎫⎩⎨⎧>−+>≤a Y P M h a a Y P M X P n n n ,则⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧+≤≤⎭⎬⎫⎩⎨⎧≤=22)(000/h a X Y X h y a XP y Y X P y F n n n n n n Y X n n U22220/0ε+⎟⎠⎞⎜⎝⎛+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧+≤≤h y F h a X Y X P h y a X P a X n n n n n ,且⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−⎭⎬⎫⎩⎨⎧≤≤⎭⎬⎫⎩⎨⎧−≤=⎟⎠⎞⎜⎝⎛−222000/h a X Y X y Y X P h y a X P h y F n n n nn n a X n U2)(20/0ε+<⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>−+⎭⎬⎫⎩⎨⎧≤≤y F h a X Y X P y Y X P n n Y X n n n n n ,即22)(220/0/0/εε+⎟⎠⎞⎜⎝⎛+<<−⎟⎠⎞⎜⎝⎛−h y F y F h y F a X Y X a X n n n n ,因当n > N 1且 | y − y 0 | < h 时,2)()(2)(0//0/εε+<<−y F y F y F a X a X a X n ,在区间⎟⎠⎞⎜⎝⎛++h y h y 00,2取F X / a ( y ) 的任一连续点y 1,满足 | y 1 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε+<+≤+⎟⎠⎞⎜⎝⎛+<)(2)(22)(0/1/0/0/y F y F h y F y F a X a X a X Y X n n n n ,在区间⎟⎠⎞⎜⎝⎛−−2,00h y h y 取F X / a ( y ) 的任一连续点y 2,满足 | y 2 − y 0 | < h ,当n > max{N 1, N 2, N 3}时,εεε−>−≥−⎟⎠⎞⎜⎝⎛−>)(2)(22)(0/2/0/0/y F y F h y F y F a X a X a X Y X n n n n ,即对于F X / a ( y ) 的任一连续点y 0,当n > max{N 1, N 2, N 3}时,ε<−|)()(|0/0/y F y F a X Y X n n ,故)()(//y F y F a X WY X n n →,aX Y X L n n →. 12.设随机变量X n 服从柯西分布,其密度函数为+∞<<∞−+=x x n nx p n ,)1π()(22.试证:0Pn X →.证:对任意的ε > 0,)arctan(π2)arctan(π1)1π(}|{|22εεεεεεn nx dx x n n X P n ==+=<−−∫, 则12ππ2)arctan(lim π2}|0{|lim =⋅==<−+∞→+∞→εεn X P n n n , 故0Pn X →.13.设随机变量序列{X n }独立同分布,其密度函数为⎪⎩⎪⎨⎧<<=.,0;0,1)(其他ββx x p其中常数β > 0,令Y n = max{X 1, X 2, …, X n },试证:βPn Y →.证:对任意的ε > 0,P {| Y n − β | < ε} = P {β − ε < Y n < β + ε} = P {max{X 1, X 2, …, X n } > β − ε}= 1 − P {max{X 1, X 2, …, X n } ≤ β − ε} = 1 − P {X 1 ≤ β − ε} P {X 2 ≤ β − ε} … P {X n ≤ β − ε}n⎟⎟⎠⎞⎜⎜⎝⎛−−=βεβ1, 则11lim }|{|lim =⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−=<−+∞→+∞→nn n n Y P βεβεβ, 故βPn Y →.14.设随机变量序列{X n }独立同分布,其密度函数为⎩⎨⎧<≥=−−.,0;,e )()(a x a x x p a x 其中Y n = min{X 1, X 2, …, X n },试证:a Y Pn →.证:对任意的ε > 0,P {| Y n − a | < ε} = P {a − ε < Y n < a + ε} = P {min{X 1, X 2, …, X n } < a + ε}= 1 − P {min{X 1, X 2, …, X n } ≥ a + ε} = 1 − P {X 1 ≥ a + ε} P {X 2 ≥ a + ε} … P {X n ≥ a + ε}εεεn na a x n a a x dx −∞++−−∞++−−−=⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−=∫e 1e 1e 1)()(, 则1)e 1(lim }|{|lim =−=<−−+∞→+∞→εεn n n n a Y P ,故a Y Pn →.15.设随机变量序列{X n }独立同分布,且X i ~ U(0, 1).令nni i n X Y 11⎟⎟⎠⎞⎜⎜⎝⎛=∏=,试证明:c Y P n →,其中c 为常数,并求出c .证:设∑∏===⎟⎟⎠⎞⎜⎜⎝⎛==n i i n i i n n X n X n Y Z 11ln 1ln 1ln ,因X i ~ U (0, 1), 则1)ln (ln )(ln 101−=−==∫x x x xdx X E i ,2)2ln 2ln (ln )(ln 12122=+−==∫x x x x x xdx X E i ,1)](ln [)(ln )Var(ln 22=−=i i i X E X E X , 可得1)(ln 1)(1−==∑=n i i n X E n Z E ,n X nZ ni in 1)Var(ln 1)Var(12==∑=,由切比雪夫不等式,可得对任意的ε > 0,221)Var(}|)({|εεεn Z Z E Z P n n n =≤≥−,则01lim }|)({|lim 02=≤≥−≤+∞→+∞→εεn Z E Z P n n n n ,即0}|)({|lim =≥−+∞→εn n n Z E Z P ,1)(−=→n P n Z E Z ,因n Z n Y e =,且函数e x 是直线上的连续函数,根据本节第3题的结论,可得1e e −→=PZ n n Y , 故c Y Pn →,其中1e −=c 为常数.16.设分布函数列{F n (x )}弱收敛于分布函数F (x ),且F n (x ) 和F (x ) 都是连续、严格单调函数,又设 ξ 服从(0, 1)上的均匀分布,试证:)()(11ξξ−−→F F Pn. 证:因F (x ) 为连续的分布函数,有F (−∞) = 0,F (+∞) = 1,则对任意的h > 0,存在M > 0,使得21)(h M F −>,2)(h M F <−, 因F (x ) 是连续、严格单调函数,有F −1( y ) 也是连续、严格单调函数, 可得F −1( y ) 在区间 [F (− M − 1), F (M + 1)] 上一致连续, 对任意的ε > 0,存在δ > 0,当y , y * ∈ [F (− M − 1), F (M + 1)] 且 | y − y * | < δ 时,| F −1( y ) − F −1( y *) | < ε, 设y * 是 [F (−M ), F (M )] 中任一点,记x * = F −1( y *),有x * ∈ [−M , M ],不妨设0 < ε < 1, 则对任意的x 若满足 ε≥−|*|x x ,就有 δ≥−|*)(|y x F ,根据本节第7题的结论知,{F n (x )} 在 (−∞, +∞) 上一致收敛于分布函数F (x ), 则对δ > 0和任意实数x ,总存在N > 0,当n > N 时,都有 | F n (x ) − F (x ) | < δ, 因当n > N 时,δ<−|)()(|x F x F n 且δ≥−|*(|y x F ,有*)(y x F n ≠,即*)(1y F x n −≠, 则对任意的0 < ε < 1,当n > N 时,*)(1y F n −满足ε<−=−−−−|*)(*)(||**)(|111y F y F x y F n n , 可得对任意的0 < ε < 1,当n > N 时,h M F M F P F F P n −>−∈≥<−−−1)]}(),([{}|)()({|11ξεξξ由h 的任意性可知1}|)()({|lim 11=<−−−+∞→εξξF F P n n ,故)()(11ξξ−−→F F Pn.17.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = µ,试证:µP n k k X k n n →⋅+∑=1)1(2.证:令∑=⋅+=nk k n X k n n Y 1)1(2,并设Var (X n ) = σ 2, 因µµµ=+⋅+=+=∑=)1(21)1(2)1(2)(1n n n n k n n Y E nk n , 且222212222)1(324)12)(1(61)1(4)1(4)Var(σσσ++=++⋅+=+=∑=n n n n n n n n k n n Y nk n , 则由切比雪夫不等式可得,对任意的ε > 0,222)1(3241)Var(1}|{|1σεεεµ++−=−≥<−≥n n n Y Y P n n , 因1)1(3241lim 22=⎥⎦⎤⎢⎣⎡++−+∞→σεn n n n ,由夹逼准则可得1}|{|lim =<−+∞→εµn n Y P , 故µP n k kn X k n n Y →⋅+=∑=1)1(2. 18.设随机变量序列{X n }独立同分布,数学期望、方差均存在,且E (X n ) = 0,Var (X n ) = σ 2.试证:E (X n ) = 0,Var (X n ) = σ 2.试证:2121σP n k k X n →∑=. 注:此题与第19题应放在习题4.3中,需用到4.3节介绍的辛钦大数定律.证:因随机变量序列}{2n X 独立同分布,且222)]([)Var()(σ=+=n n n X E X X E 存在,故}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即2121σP n k k X n →∑=.19.设随机变量序列{X n }独立同分布,且Var (X n ) = σ 2存在,令∑==n i i X n X 11,∑=−=n i i n X X n S 122)(1.试证:22σPnS →.证:2122112122122121)2(1)(1X X n X n X X X n X X X X n X X n S n i i ni i n i i n i i i n i i n−=⎟⎟⎠⎞⎜⎜⎝⎛+−=+−=−=∑∑∑∑∑=====,设E(X n ) = µ,{X n }满足辛钦大数定律条件,{X n }服从大数定律,即µP nk k X n X →=∑=11,则根据本节第2题第(2)小问的结论知,22µPX →,因随机变量序列}{2n X 独立同分布,且2222)]([)Var()(µσ+=+=n n n X E X X E 存在,则}{2nX 满足辛钦大数定律条件,}{2nX 服从大数定律,即22121µσ+→∑=P n k k X n ,故根据本节第2题第(1)小问的结论知,22222122)(1σµµσ=−+→−=∑=P n i i nX X n S .20.将n 个编号为1至n 的球放入n 个编号为1至n 的盒子中,每个盒子只能放一个球,记⎩⎨⎧=.,0;,1反之的盒子的球放入编号为编号为i i X i 且∑==ni i n X S 1,试证明:0)(Pn n n S E S →−. 证:因n X P i 1}1{==,nX P i 11}0{−==,且i ≠ j 时,)1(1}1{−==n n X X P j i ,)1(11}0{−−==n n X X P j i , 则n X E i 1)(=,⎟⎠⎞⎜⎝⎛−=n n X i 111)Var(, 且i ≠ j 时,)1(1)(−=n n X X E j i ,)1(11)1(1)()()(),Cov(22−=−−=−=n n n n n X E X E X X E X X j i j i j i , 有1)()(1==∑=ni i n X E S E ,1)1(1)1(11),Cov(2)Var()Var(211=−⋅−+−=+=∑∑≤<≤=n n n n n X X X S nj i j i ni i n , 可得0)]()([1)(=−=⎥⎦⎤⎢⎣⎡−n n n n S E S E n n S E S E ,221)Var(1)(Var n S n n S E S n n n ==⎥⎦⎤⎢⎣⎡−, 由切比雪夫不等式,可得对任意的ε > 0,2221)(Var 1)()(εεεn n S E S n S E S E n S E S P n n n n n n =⎥⎦⎤⎢⎣⎡−≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−, 则01lim )()(lim 022=≤⎭⎬⎫⎩⎨⎧≥⎥⎦⎤⎢⎣⎡−−−≤+∞→+∞→εεn n S E S E n S E S P n n n n n n , 故0)(Pn n nS E S →−.习题4.21. 设离散随机变量X 的分布列如下,试求X 的特征函数.1.02.03.04.03210PX解:特征函数ϕ (t ) = e it ⋅ 0 × 0.4 + e it ⋅ 1 × 0.3 + e it ⋅ 2 × 0.2 + e it ⋅ 3 × 0.1 = 0.4 + 0.3 e it + 0.2 e 2it + 0.1 e 3it .2. 设离散随机变量X 服从几何分布P {X = k } = (1 − p ) k − 1 p , k = 1, 2, … .试求X 的特征函数.并以此求E (X ) 和Var (X ). 解:特征函数ititk k ititk k itk p p p p p p t e)1(1e )]1([ee)1(e )(1111−−=−=−⋅=∑∑+∞=−+∞=−ϕ; 因22]e )1(1[e ]e )1(1[]e )1([e ]e )1(1[e )(it it it it it it it p ip p i p p p i p t −−=−−⋅−−⋅−−−⋅⋅=′ϕ,有)()0(2X iE pip ip ===′ϕ,故pX E 1)(=; 因332]e )1(1[]e )1(1[e ]e )1([]e )1(1[e 2]e )1(1[e )(it it it itit itit itp p p i p p ip p i ip t −−−+−=⋅−−⋅−−−−−⋅⋅=′′−−ϕ, 有)(2)2()0(2223X E i pp p p p =−−=−−=′′ϕ,可得222)(p p X E −=, 故222112)Var(p pp p p X −=⎟⎟⎠⎞⎜⎜⎝⎛−−=. 3. 设离散随机变量X 服从巴斯卡分布rk r p p r k k X P −−⎟⎟⎠⎞⎜⎜⎝⎛−−==)1(11}{,k = r , r + 1, …试求X 的特征函数.解:特征函数∑∑+∞=−−+∞=−−+−−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=r k r k it r k itr r r k r k r itkp r k k r p p p r k t )(e)1)(1()1()!1(e )1(11e )(L ϕ ∑∑+∞=−=−−−+∞=−=−−=+−−−=r k p x r k r r it rk p x r k r it ititdx x d r p x r k k r p e )1(111e )1()()!1()e ()1()1()!1()e (L itit it p x r r it p x r r r it p x k k r r r it x r r p x dx d r p x dx d r p e )1(e )1(11e )1(1111)1()!1()!1()e (11)!1()e ()!1()e (−=−=−−−=+∞=−−−−−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=∑rit itr it r it p p p p ⎥⎦⎤⎢⎣⎡−−=−−=e )1(1e ]e )1(1[)e (. 4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.(1))0(,e 2)(||1>=∫∞−−a dt a x F x t a ; (2))0(,1π)(222>+=∫∞−a dt at a x F x . 解:(1)因密度函数||11e 2)()(x a ax F x p −=′=,故⎥⎥⎦⎤⎢⎢⎣⎡−++=⎥⎦⎤⎢⎣⎡+=⋅=+∞−∞−+∞+−∞−+∞+∞−−∫∫∫0)(0)(0)(0)(||1e e 2e e 2ee 2)(ait a it a dx dx a dx a t x a it x a it x a it x a it x a itx ϕ 222112at a a it a it a +=⎟⎠⎞⎜⎝⎛−−+=; 因222222221)(22)()(a t ta t a t a t +−=⋅+−=′ϕ,有)(0)0(1X iE ==′ϕ, 故E (X ) = 0;因32242242222222221)(26)(2)(22)(2)(a t a t a a t t a t t a a t a t +−=+⋅+⋅−+⋅−=′′ϕ, 有)(22)0(222641X E i a a a =−=−=′′ϕ,可得222)(a X E =, 故222202)Var(aa X =−=;(2)因密度函数22221π)()(ax a x F x p +⋅=′=, 则∫+∞∞−+⋅=dx a x a t itx 2221e π)(ϕ, 由第(1)小题的结论知∫∞+∞−=+=dx x p a t a t itx )(e )(12221ϕ,根据逆转公式,可得∫∫∞+∞−−∞+∞−−−+⋅===dt at a dt t a x p itx itx x a 2221||1e π21)(e π21e 2)(ϕ, 可得||||222e πe 2π21e y a y a itya a a dt a t −−−+∞∞−=⋅=+⋅∫, 故||||222e e ππ1e π)(t a t a itx a a dx ax a t −−+∞∞−=⋅=+⋅=∫ϕ; 因⎩⎨⎧>−<=′−,0,e ,0,e )(2t a t a t atat ϕ 有a a −=+′≠=−′)00()00(22ϕϕ,即)0(2ϕ′不存在, 故E (X ) 不存在,Var (X ) 也不存在.5. 设X ~ N (µ, σ 2),试用特征函数的方法求X 的3阶及4阶中心矩. 解:因X ~ N (µ, σ 2),有X 的特征函数是222e)(t t i t σµϕ−=,则)(e)(2222t i t t t i σµϕσµ−⋅=′−,)(e)(e )(222222222σσµϕσµσµ−⋅+−⋅=′′−−t t i t t i t i t ,因)()(3e)(e)(2223222222σσµσµϕσµσµ−⋅−⋅+−⋅=′′′−−t i t i t t t i t t i ,有ϕ″′(0) = e 0 ⋅ (i µ )3 + e 0 ⋅ 3i µ ⋅ (−σ 2) = − i µ 3 − 3i µσ 2 = i 3E (X 3) = − i E (X 3), 故E (X 3) = µ 3 + 3µσ 2; 又因2222222422)4()(3e)()(6e)(e)(222222σσσµσµϕσµσµσµ−⋅+−⋅−⋅+−⋅=−−−t t i t t i t t i t i t i t ,有ϕ (4)(0) = e 0 ⋅ (i µ )4 + e 0 ⋅ 6(i µ)2 ⋅ (−σ 2) + e 0 ⋅ 3σ 4 = µ 4 + 6µ 2σ 2 + 3σ 4 = i 4E (X 4) = E (X 4), 故E (X 4) = µ 4 + 6µ 2σ 2 + 3σ 4.6. 试用特征函数的方法证明二项分布的可加性:若X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,则X + Y ~ b (n + m , p ).证:因X ~ b (n , p ),Y ~ b (m , p ),且X 与Y 独立,有X 与Y 的特征函数分别为ϕ X (t ) = ( p e it + 1 − p ) n ,ϕ Y (t ) = ( p e it + 1 − p ) m , 则X + Y 的特征函数为ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ) = ( p e it + 1 − p ) n + m ,这是二项分布b (n + m , p )的特征函数, 故根据特征函数的唯一性定理知X + Y ~ b (n + m , p ).7. 试用特征函数的方法证明泊松分布的可加性:若X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,则X + Y ~ P (λ1 + λ2).证:因X ~ P (λ1),Y ~ P (λ2),且X 与Y 独立,有X 与Y 的特征函数分别为)1(e1e )(−=itt X λϕ,)1(e2e )(−=itt Y λϕ,则X + Y 的特征函数为)1)(e(21e )()()(−++==itt t t Y X Y X λλϕϕϕ,这是泊松分布P (λ1 + λ2)的特征函数,故根据特征函数的唯一性定理知X + Y ~ P (λ1 + λ2).8. 试用特征函数的方法证明伽马分布的可加性:若X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,则X + Y ~ Ga (α1 + α2 , λ).证:因X ~ Ga (α1, λ),Y ~ Ga (α2, λ),且X 与Y 独立,有X 与Y 的特征函数分别为11)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t X ,21)(αλϕ−⎟⎠⎞⎜⎝⎛−=it t Y ,则X + Y 的特征函数为)(211)()()(ααλϕϕϕ+−+⎟⎠⎞⎜⎝⎛−==it t t t Y X Y X ,这是伽马分布Ga (α1 + α2 , λ)的特征函数,故根据特征函数的唯一性定理知X + Y ~ Ga (α1 + α2 , λ).9. 试用特征函数的方法证明χ 2分布的可加性:若X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,则X + Y ~ χ 2 (n + m ).证:因X ~ χ 2 (n ),Y ~ χ 2 (m ),且X 与Y 独立,有X 与Y 的特征函数分别为2)21()(n X it t −−=ϕ,2)21()(m Y it t −−=ϕ,则X + Y 的特征函数为2)21()()()(m n Y X Y X it t t t +−+−==ϕϕϕ,这是χ 2分布χ 2 (n + m )的特征函数,故根据特征函数的唯一性定理知X + Y ~ χ 2 (n + m ).10.设X i 独立同分布,且X i ~ Exp(λ),i = 1, 2, …, n .试用特征函数的方法证明:),(~1λn Ga X Y ni i n ∑==.证:因X i ~ Exp (λ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为11)(−⎟⎠⎞⎜⎝⎛−=−=λλλϕit it t i X ,则∑==ni i n X Y 1的特征函数为nni X Y it t t i n −=⎟⎠⎞⎜⎝⎛−==∏λϕϕ1)()(1,这是伽马分布Ga (n , λ)的特征函数,故根据特征函数的唯一性定理知Y n ~ Ga (n , λ).11.设连续随机变量X 的密度函数如下:+∞<<∞−−+⋅=x x x p ,)(π1)(22µλλ, 其中参数λ > 0, −∞ < µ < +∞,常记为X ~ Ch (λ, µ ).(1)试证X 的特征函数为exp{i µ t − λ | t |},且利用此结果证明柯西分布的可加性; (2)当µ = 0, λ = 1时,记Y = X ,试证ϕ X + Y (t ) = ϕ X (t ) ⋅ϕ Y (t ),但是X 与Y 不独立;(3)若X 1, X 2, …, X n 相互独立,且服从同一柯西分布,试证:)(121n X X X n+++L 与X 1同分布. 证:(1)根据第4题第(2)小题的结论知:若X *的密度函数为22π1)(*xx p +⋅=λλ,即X * ~ Ch (λ, 0), 则X *的特征函数为ϕ * (t ) = e −λ | t |,且X = X * + µ 的密度函数为22)(π1)(µλλ−+⋅=x x p , 故X 的特征函数为ϕ X (t ) = e i µ t ϕ * (t ) = e i µ t ⋅ e −λ | t | = e i µ t −λ | t |; 若X 1 ~ Ch (λ1, µ1),X 2 ~ Ch (λ2, µ2),且相互独立,有X 1与X 2的特征函数分别为||111e )(t t i X t λµϕ−=,||222e )(t t i X t λµϕ−=, 则X 1 + X 2的特征函数为||)()(21212121e )()()(t t i X X X X t t t λλµµϕϕϕ+−++==,这是柯西分布Ch (λ1 + λ2, µ1 + µ2)的特征函数,故根据特征函数的唯一性定理知X 1 + X 2 ~ Ch (λ1 + λ2, µ1 + µ2); (2)当µ = 0, λ = 1时,X ~ Ch (1, 0),有X 的特征函数为ϕ X (t ) = e −| t |,又因Y = X ,有Y 的特征函数为ϕ Y (t ) = e −| t |,且X + Y = 2X ,故X + Y 的特征函数为ϕ X + Y (t ) = ϕ 2X (t ) = ϕ X (2t ) = e −| 2t | = e −| t | ⋅ e −| t | =ϕ X (t ) ⋅ϕ Y (t ); 但Y = X ,显然有X 与Y 不独立;(3)因X i ~ Ch (λ, µ ),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为||e )(t t i X t i λµϕ−=, 则)(121n n X X X nY +++=L 的特征函数为 )(e e )()(1||111t n t t t X t t i n t n ti n ni X ni X nY i in ϕϕϕϕλµλµ===⎟⎠⎞⎜⎝⎛==−⎟⎟⎠⎞⎜⎜⎝⎛⋅−⋅==∏∏,故根据特征函数的唯一性定理知)(121n X X X n+++L 与X 1同分布. 12.设连续随机变量X 的密度函数为p (x ),试证:p (x ) 关于原点对称的充要条件是它的特征函数是实的偶函数.证:方法一:根据随机变量X 与−X 的关系充分性:设X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),根据特征函数的唯一性定理知−X 与X 同分布,因X 的密度函数为p (x ),有−X 的密度函数为p (−x ),故由−X 与X 同分布可知p (−x ) = p (x ),即p (x ) 关于原点对称; 必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ), 因−X 的密度函数为p (−x ),即−X 与X 同分布,则−X 的特征函数ϕ −X (t ) = ϕ X (−t ) = ϕ X (t ),且)(][e ][e ][e )()()(t E E E t t X itX itX X it X X ϕϕϕ=====−−−, 故X 的特征函数ϕ X (t )是实的偶函数. 方法二:根据密度函数与特征函数的关系充分性:设连续随机变量X 的特征函数ϕ X (t )是实的偶函数,有ϕ X (t ) = ϕ X (−t ),因∫+∞∞−−=dt t x p itx )(e π21)(ϕ,有∫∫+∞∞−+∞∞−−−==−dt t dt t x p itxx it )(e π21)(e π21)()(ϕϕ, 令t = −u ,有dt = −du ,且当t → −∞时,u → +∞;当t → +∞时,u → −∞,则)()(e π21)(e π21))((e π21)()(x p du u du u du u x p iuxiux x u i ==−=−−=−∫∫∫+∞∞−−+∞∞−−−∞∞+−ϕϕϕ, 故p (x ) 关于原点对称;必要性:设X 的密度函数p (x ) 关于原点对称,有p (−x ) = p (x ),因∫+∞∞−−==dx x p E t itxitX)(e )(e)(ϕ,有∫∫+∞∞−−+∞∞−−==−dx x p dx x p t itx xt i )(e )(e)()(ϕ,令x = −y ,有dx = −dy ,且当x → −∞时,y → +∞;当x → +∞时,y → −∞, 则)()(e )(e ))((e )()(t dy y p dy y p dy y p t X ity ity y it X ϕϕ==−=−−=−∫∫∫+∞∞−+∞∞−−∞∞+−−,且)(][e ][e ][e )()()(t E E E t t X itX itX X t i X X ϕϕϕ====−=−−, 故X 的特征函数ϕ X (t )是实的偶函数.13.设X 1, X 2, …, X n 独立同分布,且都服从N(µ , σ 2)分布,试求∑==ni i X n X 11的分布.证:因X i ~ N (µ , σ 2),i = 1, 2, …, n ,且X i 相互独立,有X i 的特征函数为222e)(t t i X t i σµϕ−=,则∑==n i i X n X 11的特征函数为nt t i n t n t i n ni X n i X n X n t t t i i 2211112222ee)()(σµσµϕϕϕ−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅====⎟⎠⎞⎜⎝⎛==∏∏,这是正态分布⎟⎟⎠⎞⎜⎜⎝⎛n N 2,σµ的特征函数,故根据特征函数的唯一性定理知⎟⎟⎠⎞⎜⎜⎝⎛=∑=n N X n X ni i 21,~1σµ. 14.利用特征函数方法证明如下的泊松定理:设有一列二项分布{b (k , n , p n )},若λ=→∞n n np lim ,则L ,2,1,0,e !),,(lim ==−∞→k k p n k b kn n λλ.证:二项分布b (n , p n )的特征函数为ϕ n (t ) = ( p n e it + 1 − p n ) n = [1 + p n (e it − 1)] n ,且n → ∞时,p n → 0,因)1(e)1(e )1(e 1e )]1(e 1[lim )]1(e 1[lim )(lim −−⋅−→→∞→∞=−+=−+=itit n it n n np p itn p n it n n n n p p t λϕ,。
统计学第四章课后题及答案解析第四章⼀、单项选择题1.由反映总体单位某⼀数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占⽐重之和等于1或100%的相对数()A.⽐例相对数B.⽐较相对数C.结构相对数D.动态相对数3.某企业⼯⼈劳动⽣产率计划提⾼5%,实际提⾼了10%,则提⾼劳动⽣产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本⽐上年度降低10%实际产品成本⽐上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在⼀个特定总体内,下列说法正确的是( )A.只存在⼀个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有⼀个标志总量C.只能存在⼀个单位总量和⼀个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.⼤量的B.同质的C.有差异的D.不同总体的7.⼏何平均数的计算适⽤于求()A.平均速度和平均⽐率B.平均增长⽔平C.平均发展⽔平D.序时平均数8.⼀组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学⽣的统计学平均成绩是70分,最⾼分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.⽅差B.极差C.标准差D.变异系数10.⽤标准差⽐较分析两个同类总体平均指标的代表性⼤⼩时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个⽔果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采⽤()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.⼏何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。
应用统计学(答案)第四章P834.19解:依题意提出假设:01:82;:82.μμ≥<H H 由Excel 中的ZTEST 函数得到的检验P 值为:()011:32,820.00850.01,拒绝α=-=<=P ZTESE A A H , 该城市空气中悬浮颗粒的平均值显著低于过去的平均值。
4.20解:依题意提出假设:01:=25;:25.H H μμ≠ 由于是小样本,采取t 检验。
计算得到的统计量为: 1.036905t =.由Excel 中的TDIST 函数得到的检验p 值为:()1.039905,19,20.3114370.05,α==>=P TDIST 0H 不拒绝, 没有证据表明该企业生产的金属板不符合要求。
4.21解:依题意提出假设:01:17;:17.%%ππ≤>H H 检验统计量为:()0,1 2.440.0070.05,拒绝H α=-=<=P NORMSDIST该生产商的说法是属实的。
4.23解:依题意提出假设:012112:-=0;:0.H H μμμμ-≠(1)用Excel 【数据分析】工具中的【t-检验:双样本等方差假设】进行检验,结果为:t-检验:双样本等方差假设2.44z ===(2)用Excel 【数据分析】工具中的【t-检验:双样本异方差假设】进行检验,结果为:t-检验:双样本异方差假设由于“()=t 双尾<P T ”小于0=0.05H α,拒绝,表明两种方法的培训效果有显著差异。
4.24解:依题意提出假设:2222012112:=1: 1.H H σσσσ≠,利用Excel 【数据分析】工具中的【F-检验:双样本方差分析】进行检验得到的结果为:F-检验:双样本方差分析由于“()=f 单尾<P F ”小于0=0.025H α,拒绝,表明两部机器生产的袋装茶重量的方差存在显著差异。
4.25解:(1)依题意提出假设:012112:-0;:0.μμμμ≤->H H用Excel 【数据分析】工具中的【t-检验:双样本等方差假设】进行检验,结果为: t-检验:双样本异方差假设由于“()=t 单尾<P T ”小于0=0.025H α,拒绝,表明新肥料获得的平均产量显著地高于旧废料。
第4章练习题1、一组数据中出现频数最多的变量值称为()A.众数B.中位数C.四分位数D.平均数2、下列关于众数的叙述,不正确的是()A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为()A.众数B.中位数C.四分位数D.平均数4、一组数据排序后处于25%和75%位置上的值称为()A.众数B.中位数C.四分位数D.平均数5、非众数组的频数占总频数的比例称为()A.异众比率B.离散系数C.平均差D.标准差6、四分位差是()A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为()A.平均差B.标准差C.极差D.四分位差8、各变量值与其平均数离差平方的平均数称为()A.极差B.平均差C.方差D.标准差9、变量值与其平均数的离差除以标准差后的值称为()A.标准分数B.离散系数C.方差D.标准差10、如果一个数据的标准分数-2,表明该数据()A.比平均数高出2个标准差B.比平均数低2个标准差C.等于2倍的平均数D.等于2倍的标准差11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有()A.68%的数据B.95%的数据C.99%的数据D.100%的数据12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是()A.至少有75%的数据落在平均数加减4个标准差的范围之内B. 至少有89%的数据落在平均数加减4个标准差的范围之内C. 至少有94%的数据落在平均数加减4个标准差的范围之内D. 至少有99%的数据落在平均数加减4个标准差的范围之内13、离散系数的主要用途是()A.反映一组数据的离散程度B.反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平14、比较两组数据离散程度最适合的统计量是()A.极差B.平均差C.标准差D.离散系数15、偏态系数测度了数据分布的非对称性程度。
精选文档第四章动态数列一﹑单项选择题以下动向数列中属于时点数列的是A.历年在校学生数动向数列B.历年毕业生人数动向数列C.某厂各年工业总产值数列D.某厂各年劳动生产率数列组成动向数列的两个基本因素是A. 主词和宾词B. 变量和次数C. 分组和次数D. 现象所属的时间及其指标值动向数列中各项指标数值能够相加的是A.相对数动向数列B.均匀数动向数列C. 期间数列D. 时点数列最基本的动向数列是A.指数数列B.相对数动向数列C. 均匀数动向数列D. 绝对数动向数列动向数列中,指标数值的大小与其时间长短没有直接关系的是A. 期间数列B. 时点数列C. 相对数动向数列D. 均匀数动向数列动向数列中,指标数值是经过连续不停登记获得的数列是A.期间数列B.时点数列C. 相对数动向数列D. 均匀数动向数列以下动向数列中属于期间数列的是A.公司历年员工人数数列B.公司历年劳动生产率数列C.公司历年利税额数列D.公司历年单位产品成本数列动向数列中,各项指标数值不可以够相加的是A. 相对数动向数列B. 绝对数动向数列C. 期间数列D. 时点数列动向数列中,指标数值大小与其时间长短相关的是A.相对数动向数列B.绝对数动向数列C. 期间数列D. 时点数列动向数列中,指标数值是经过一次登记获得的数列是A.相对数动向数列B.绝对数动向数列C. 期间数列D. 时点数列编制动向数列的最基来源则是保证数列中各项指标一定拥有A. 可加性B. 可比性C. 连续性D. 一致性基期为某一固准期间水平的增添量是A.累计增添量B.逐期增添量C.均匀增添量D. 年距增添量基期为先期水平的增添量是A.累计增添量B.逐期增添量C.均匀增添量D. 年距增添量累计增添量与逐期增添量之间的关系是A.累计增添量等于相应的各个逐期增添量之和.A.精选文档B.C.累计增添量等于相应的各个逐期增添量之差D.累计增添量等于相应的各个逐期增添量之商E.累计增添量等于相应的各个逐期增添量之积F.均匀增添量等于G. A.累计增添量 B. 逐期增添量H. C.逐期增添量之和除以逐期增添量的项 D. 以上均不对I.动向数列中的发展水平是指J. A.总量指标B.相对指标K. C.均匀指标 D. 以上指标均可L.进行动向剖析的基础指标是M. A.发展水平B.均匀发展水平N. C. 增添量 D. 均匀增添量O.动向数列的剖析指标主要包含两个类型,即P.发展水平易发展速度B.水平指标和速度指标Q. C.均匀发展水平易均匀发展速度D.增添量和增添速度R.序时均匀数和一般均匀数的共同点在于二者S.都是依据动向数列计算B.都是依据变量数列计算T.都是反应现象的一般水平D.均能够除去现象颠簸的影响U.依据期间数列计算序时均匀数应采纳V. A.简单算术均匀法B.加权算术均匀法W. C.简单序时均匀法 D. 加权序时均匀法X.依据间隔相等连续时点数列计算序时均匀数应采纳Y.简单算术均匀法B.加权算术均匀法Z.简单序时均匀法D.加权序时均匀法AA.依据间隔不相等连续时点数列计算序时均匀数应采纳BB.简单算术均匀法B.加权算术均匀法CC.简单序时均匀法D.加权序时均匀法DD.依据间隔相等中断时点数列计算序时均匀数应采纳EE.简单算术均匀法B.加权算术均匀法FF. C.简单序时均匀法 D. 加权序时均匀法GG.依据间隔不相等中断时点数列计算序时均匀数应采纳HH. A.简单算术均匀法B.加权算术均匀法II. C. 简单序时均匀法 D. 加权序时均匀法JJ.序时均匀数计算中,“首未折半法”运用于KK. A.期间数列的资料B.间隔相等的时点数列资料LL.间隔不等的时点数列资料MM. D.由两个时点数列组成的相对数动向数列NN.将研究对象在不一样时间上的数目差异抽象化,从动向上说明现象在某一期间内发展的一般水平的方法是OO. A.一般均匀数B.序时均匀数PP. C. 均匀发展速度 D. 均匀增添速度QQ.间隔不相等的中断时点数列计算均匀发展水平,应采纳RR.以每次改动连续的时间长度对各时点水平加权均匀SS.用各间隔长度对各间隔的均匀水平加权均匀.精选文档对各时点水平简单算术均匀以数列的总速度按几何均匀法计算依据采纳的对照基期不一样发展速度有环比发展速度与定基发展速度环比发展速度与环比增添速度C.定基发展速度与定基增添速度环比增添速度与定基增添速度发展速度的计算方法能够表述为报告期水平与基期水平之差B.增添量与基期水平之差C.报告期水平与基期水平之比D. 增添量与基期水平之比基期为前一期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D. 均匀发展速度基期为某一固按期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D. 均匀发展速度定基发展速度和环比发展速度的关系是两个相邻期间的定基发展速度之商等于相应的环比发展速度之差等于相应的环比发展速度C.之和等于相应的环比发展速度D.之积等于相应的环比发展速度增添速度是A.动向数列水平之差B.动向数列水平之比增添量同发展速度之比增添量同作为比较基准的数列水平之比定基增添速度与环比增添速度的关系表现为定基增添速度等于各环比增添速度的连乘积B.定基增添速度等于各环比增添速度的连乘积的n次方根各环比增添速度连乘积加一等于定基增添速度加一定基增添速度等于各环比增添速度加一后的连乘积减一既然总速度是环比发展速度的连乘积,那么均匀发展速度就应按A. 简单算术均匀数计算B. 加权算术均匀数计算C.几何均匀数计算D. 调解均匀数计算发展速度与增添速度的关系是定基发展速度等于环比增添速度加一环比增添速度等于环比发展速度减一C.定基增添速度的连乘积等于定基发展速度D.环比增添速度的连乘积等于环比发展速度动向数列中的均匀增添速度是各个期间环比增添速度的算术均匀数各个期间环比增添速度的调解均匀数C.各个期间环比增添速度的几何均匀数.精选文档D.各个期间环比增添速度的序时均匀数采纳几何均匀法计算均匀发展速度的原因是各期环比发展速度之积等于总速度各期环比发展速度之和等于总速度各期环比增添速度之积等于总速度各期环比增添速度之和等于总速度已知各期定基发展速度和期间数,而不知道各期水平要计算均匀发展速度A.只好用水平法计算B.只好用累计法计算C. 两种方法皆能计算D. 两种方法都没法计算已知各期间发展水平之和与最先水平实期间数,要计算均匀发展速度A.只好用水平法计算B.只好用累计法计算C. 两种方法皆能计算D. 两种方法都没法计算当动向数列剖析目的是重视于观察期未发展水平,则均匀发展速度A.应采纳算术均匀法计算B.应采纳调解均匀法计算C. 应采纳几何均匀法计算D. 应采纳方程式法计算当动向数列剖析目的是重视于观察整个期间中各年发展水平的总和,则均匀发展速度A.应采纳算术均匀法计算B.应采纳调解均匀法计算应采纳几何均匀法计算D.应采纳方程式法计算动向数列中的均匀发展速度等于各期间定基发展速度的序时均匀数各期间环比发展速度的序时均匀数各期间环比发展速度的算术均匀数D.各期间定基发展速度的算术均匀数几何均匀数所计算的均匀发展速度的数值大小不受最先水平易最未水平的影响只受中间各期发展水平的影响只受最先水平易最未水平的影响既受最先水平易最未水平的影响,又受中间各期发展水平的影响累计法计算均匀发展速度的本质是从最先水平出发按均匀增添量增添,经过n期,正好达到最未水平B.按均匀发展速度发展,经过n期,正好达到第n期本质水平按均匀发展速度计算获得的各期理论水平之和正好等于各期的本质水平总和按均匀发展速度发展获得的各期理论水平之和正好等于最未期的本质水平直线趋向方程YC=a+bx中a和b的意义是是截距,b表示X=0的趋向值表示最先发展水平的趋向值,b表示均匀发展水平表示最先发展水平的趋向值,b表示均匀发展速度.是直线的截距,表示最先发展水平的趋向值;b是直线的斜率,表示按最小平方法计算的均匀增添量47. 用最小平方法配合趋向直线方程Y C=a+bx在什么条件下,a=Y;b=ΣXY/ΣX2A.ΣX=0B.Σ(Y-Y)=0C.ΣY=0D.Σ(Y-Y)2=最小值二﹑多项选择题组成动向数列的两个基本因素是A.变量B.次数C.现象所属的时间D.现象所属的范围E.反应现象的统计指标数值动向数列按研究任务不一样能够分为A.绝对数动向数列B.均匀数动向数列C.相对数动向数列D.期间数列E.时点数列动向数列的作用表此刻A.描绘现象变化的过程B.说明现象发展的速度和趋向探究现象发展变化的规律性对现象的发展进行展望反应现象整体的散布特色期间数列的特色数列中各个指标数值能够相加数列中指标数值大小与其期间长短无直接关系数列中各个指标数值不可以相加数列中指标数值大小与其期间长短有直接关系数列中指标数值往常是经过连续不停登记而获得的时点数列的特色数列中各个指标数值能够相加数列中指标数值大小与此间隔长短无直接关系数列中各个指标数值不可以相加数列中指标数值大小与此间隔长短有直接关系E.数列中指标数值往常是经过中断登记而获得的以下动向数列中,各项指标数值不可以相加的有A.绝对数动向数列B.相对数动向数列B.均匀数动向数列 D.期间数列时点数列以下数列中,属于两个期间对照组成的相对数动向数列有A.全员劳动生产率动向数列B.百元产值收益率动向数列C.员工人数动向数列D.计划达成程度动向数列出勤率动向数列以下数列中属于期间数列的有A.历年年未人口总数B.历年出生人数B.历年工业增添值 D.各月商品库存量各月未银行存款余额以下数列中属于时点数列的有A.高校每年毕业生人数B.高校每年在校学生数C.银行每个月未银行存款余额D.商铺各月商品库存额.我国历年外汇贮备量编制动向数列应依照的原则有期间长短应当相等B.指标的经济内容应当同样C.整体范围应当一致D.指标的计算方法应当一致E.指标的计算价钱和计量单位应当一致动向数列中的水平剖析指标有A.发展水平B.均匀发展水平C.增添量D.均匀增添量E.均匀发展速度动向数列中的速度剖析指标有A.均匀发展水平B.增添速度C.均匀发展速度D.均匀增添速度E.发展速度以下指标中属于序时均匀数的有A.均匀发展水平B.均匀增添量C.均匀发展速度D.均匀增添速度E.均匀指标动向数列中的发展水平包含A.期初水平B.期未水平C.中间水平D.报告期水平E.基期水平将不一样期间的发展水平加以均匀所获得的均匀数称为A.一般均匀数B.算术均匀数C.序时均匀数D.动向均匀数E.均匀发展水平均匀增添量的计算公式是逐期增添量之和/逐期增添量项数逐期增添量的序时均匀数C.累计增添量/动向数列项数-1D.累计增添量/动向数列项数累计增添量/动向数列项数+1定基发展速度与环比发展速度之间的关系表现为A.两个相邻期间的定基发展速度之商等于相应的环比发展速度定基发展速度等于相应的各个环比发展速度的连乘积C.定基发展速度等于环比发展速度加一D.定基发展速度等于环比增添速度加一后的连乘积环比发展速度乘积等于总速度增添速度和发展速度的关系为A.仅差一个基数B.发展速度=增添速度+1C.定基增添速度=各环比增添速度的连乘积C.定基发展速度=定基增添速度+1定基增添速度=各环比发展速度的连乘积-1定基增添速度等于A.累计增添量除以基期发展水平B.定基发展速度减去一C.总速度减去一D.环比增添速度的连乘积逐期增添量除从先期发展水平环比增添速度等于A累计增添量除以基期发展水平 B.环比发展速度减去一.精选文档C.定基发展速度减去一D.环比增添速度的连乘积逐期增添量除从先期发展水平动向数列中的发展水平能够是A.总量指标B.相对指标C.均匀指标D.变异指标E.样本指标增添1%的绝对值等于累计增添量除以定基发展速度逐期增添量除以环比发展速度C.逐期增添量除以环比增添速度×100D.累计增添量除以定基增添速度×100E. 固按期水平除以100计算均匀发展速度的方法有A.几何均匀法B.水平法C.方程式法D.累计法E.序时均匀法均匀发展速度从广义上讲属于A.静态均匀数B.动向均匀数C.序时均匀数D.几何均匀数E.调解均匀数计算均匀发展速度的几何均匀法和方程式法的差异是A.数理依照不一样B.重视点不一样C.合用条件不一样D.合用范围不一样E.对资料要求不一样常用的长久趋向测定的方法有A.时距扩大法B.挪动均匀法C.分段均匀法D.最小平方法E.季节比率法直线趋向方程Y c=a+bx的参数b是表示A.趋向值B.趋向线的截距C.趋向线的斜率D.当X=0时的Y c的数值当X每改动一个单位时Y c均匀增减的数值三﹑填空题1.动向数列一般由两个基本因素组成,即和。
统计学课后第四章习题答案第一篇:统计学课后第四章习题答案第4章练习题1、一组数据中出现频数最多的变量值称为()A.众数 B.中位数 C.四分位数 D.平均数2、下列关于众数的叙述,不正确的是()A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为()A.众数 B.中位数 C.四分位数 D.平均数4、一组数据排序后处于25%和75%位置上的值称为()A.众数B.中位数C.四分位数D.平均数5、非众数组的频数占总频数的比例称为()A.异众比率 B.离散系数 C.平均差 D.标准差6、四分位差是()A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为()A.平均差 B.标准差 C.极差 D.四分位差8、各变量值与其平均数离差平方的平均数称为()A.极差 B.平均差 C.方差 D.标准差9、变量值与其平均数的离差除以标准差后的值称为()A.标准分数 B.离散系数 C.方差 D.标准差10、如果一个数据的标准分数-2,表明该数据()A.比平均数高出2个标准差B.比平均数低2个标准差C.等于2倍的平均数D.等于2倍的标准差11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有()A.68%的数据B.95%的数据 C.99%的数据D.100%的数据12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是()A.至少有75%的数据落在平均数加减4个标准差的范围之内B.至少有89%的数据落在平均数加减4个标准差的范围之内 C.至少有94%的数据落在平均数加减4个标准差的范围之内 D.至少有99%的数据落在平均数加减4个标准差的范围之内13、离散系数的主要用途是()A.反映一组数据的离散程度B.反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平14、比较两组数据离散程度最适合的统计量是()A.极差B.平均差 C.标准差 D.离散系数15、偏态系数测度了数据分布的非对称性程度。
第4章练习题
1、一组数据中出现频数最多的变量值称为()
A.众数
B.中位数
C.四分位数
D.平均数
2、下列关于众数的叙述,不正确的是()
A.一组数据可能存在多个众数
B.众数主要适用于分类数据
C.一组数据的众数是唯一的
D.众数不受极端值的影响
3、一组数据排序后处于中间位置上的变量值称为()
A.众数
B.中位数
C.四分位数
D.平均数
4、一组数据排序后处于25%和75%位置上的值称为()
A.众数
B.中位数
C.四分位数
D.平均数
5、非众数组的频数占总频数的比例称为()
A.异众比率
B.离散系数
C.平均差
D.标准差
6、四分位差是()
A.上四分位数减下四分位数的结果
B.下四分位数减上四分位数的结果
C.下四分位数加上四分位数
D.下四分位数与上四分位数的中间值
7、一组数据的最大值与最小值之差称为()
A.平均差
B.标准差
C.极差
D.四分位差
8、各变量值与其平均数离差平方的平均数称为()
A.极差
B.平均差
C.方差
D.标准差
9、变量值与其平均数的离差除以标准差后的值称为()
A.标准分数
B.离散系数
C.方差
D.标准差
10、如果一个数据的标准分数-2,表明该数据()
A.比平均数高出2个标准差
B.比平均数低2个标准差
C.等于2倍的平均数
D.等于2倍的标准差
11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有()
A.68%的数据
B.95%的数据
C.99%的数据
D.100%的数据
12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是()
A.至少有75%的数据落在平均数加减4个标准差的范围之内
B. 至少有89%的数据落在平均数加减4个标准差的范围之内
C. 至少有94%的数据落在平均数加减4个标准差的范围之内
D. 至少有99%的数据落在平均数加减4个标准差的范围之内
13、离散系数的主要用途是()
A.反映一组数据的离散程度
B.反映一组数据的平均水平
C.比较多组数据的离散程度
D.比较多组数据的平均水平
14、比较两组数据离散程度最适合的统计量是()
A.极差
B.平均差
C.标准差
D.离散系数
15、偏态系数测度了数据分布的非对称性程度。
如果一组数据的分布是对称的,则偏态系数()
A.等于0
B.等于1
C.大于0
D.大于1
16、如果一组数据分布的偏态系数在0.5~1或-1~-0.5之间,则表明该组数据属于()
A.对称分布
B.中等偏态分布
C.高度偏态分布
D.轻微偏态分布
17、峰态通常是与标准正态分布相比较而言的。
如果一组数据服从标准正态分布,则峰态系数的值是()
A.等于0
B.大于0
C.小于0
D.等于1
18、如果峰态系数k>0,表明该组数据是()
A.尖峰分布
B.扁平分布
C.左偏分布
D.右偏分布
19、某大学经济管理学院有1200名学生,法学院有800名学生,医学院有320名学生,理学院有200名学生。
在上面的描述中,众数是()
A.1200
B.经济管理学院
C.200
D.理学院
20、某居民小区准备采取一项新的物业管理措施,为此,随机抽取了100户居民进行调查,其中表示赞成的有69户,表示中立的有22户,表示反对的有9户。
描述该组数据的集中趋势宜采用()
A.众数
B.中位数
C.四分位数
D.平均数
21、某居民小区准备采取一项新的物业管理措施,为此,随机抽取了100户居民进行调查,其中表示赞成的有69户,表示中立的有22户,表示反对的有9户。
该组数据的中位数是()
A.赞成
B.69
C.中立
D.22
22、某班共有25名学生,期末统计学课程的考试分数分别为:68,73,66,76,86,74,61,89,65,90,69,67,76,62,81,63,68,81,70,73,60,87,75,64,56,该班考试分数的下四分位数和上四分位数分别是()
A.64.5和78.5
B.67.5和71.5
C.64.5和71.5
D.64.5和67.5
23、假定一个样本由5个数据构成:3,7,8,9,13。
该样本的方差为()
A.8
B.13
C.9.7
D.10.4
24、对于右偏分布,平均数、中位数和众数之间的关系是()
A.平均数>中位数>众数
B.中位数>平均数>众数
C.众数>中位数>平均数
D.众数>平均数 >中位数
25、在某行业种随机抽取10家企业,第一季度的利润额(单位:万元)分别是:72,63.1,54.7,54.3,29,26.9,25,23.9,23,20。
该组数据的中位数为()
A.28.46
B.30.2
C.27.95
D.28.12
26、在某行业种随机抽取10家企业,第一季度的利润额(单位:万元)分别是:72,63.1,54.7,54.3,29,26.9,25,23.9,23,20。
该组数据的平均数和标准差分别为()
A.28.46;19.54
B.39.19;19.54
C.27.95;381.94
D.39.19;381.94
26、某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的侧度离散程度的统计量是
A.方差
B.极差
C.标准差
D.变异系数
27、某班学生的平均成绩是80分,标准差是10分。
如果已知该班学生的考试分数为对称分布,可以判断成绩在60~100分之间的学生大约占()
A.95%
B.89%
C.68%
D.99%
28、某班学生的平均成绩是80分,标准差是10分。
如果已知该班学生的考试分数为对称分布,可以判断成绩在70~90分之间的学生大约占()
A.95%
B.89%
C.68%
D.99%
29、某班学生的平均成绩是80分,标准差是5分。
如果已知该班学生的考试分数为非对称分布,可以判断成绩在70~90分之间的学生至少占()
A.95%
B.89%
C.68%
D.75%
30、在某公司进行的计算机水平测试中,新员工的平均得分是80分,标准差是5分。
假定新员工得分的分布是未知的,则得分在65~95分的新员工至少占()
A.75%
B.89%
C.94%
D.95%
31、在某公司进行的计算机水平测试中,新员工的平均得分是80分,标准差是5分,中位数是86分,则新员工得分的分布形状是()
A.对称的
B.左偏的
C.右偏的
D.无法确定
32、对某个告诉路段行驶过的120辆汽车的车速进行测量后发现,平均车速是85公里/小时,标准差是4公里/小时,下列哪个车速可以看作是异常值()
A.78公里/小时
B. 82公里/小时
C.91公里/小时
D.98公里/小时
33、一组样本数据为:3,3,1,5,13,12,11,9,7。
这组数据的中位数是()
A.3
B.13
C.7.1
D.7
34、在离散程度的测度中,最容易受极端值影响的是()
A.极差
B.四分位差
C.标准差
D.平均差
35、测度数据离散程度的相对统计量是()
A.极差
B.平均差
C.标准差
D.离散系数
36、一组数据的离散系数为0.4,平均数为20,则标准差为()
A.80
B.0.02
C.4
D.8
37、在比较两组数据的离散程度时,不能直接比较它们的标准差,因为两组数据的()
A.标准差不同
B.方差不同
C.数据个数不同
D.计量单位不同
38、两组数据的平均数不等,但标准差相等,则()
A.平均数小的,离散程度大
B.平均数大的,离散程度大
C.平均数小的,离散程度小
D.两组数据的离散程度相同。