误差的基本性质与处理
- 格式:pdf
- 大小:194.84 KB
- 文档页数:11
标准文档误差理论与数据处理实验报告姓名:黄大洲学号:3111002350班级:11级计测1班指导老师:陈益民实验一 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法二、实验原理(1)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。
1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。
设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...nin i l l l l x n n=++==∑算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。
i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。
残余误差代数和为:11n niii i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1nii v==∑01)残余误差代数和应符合:当1n ii l =∑=nx ,求得的x 为非凑整的准确数时,1nii v =∑为零;当1nii l =∑>nx ,求得的x 为凑整的非准确数时,1nii v =∑为正;其大小为求x 时的余数。
当1n ii l =∑<nx ,求得的x 为凑整的非准确数时,1nii v =∑为负;其大小为求x 时的亏数。
2)残余误差代数和绝对值应符合: 当n 为偶数时,1ni i v =∑≤2n A; 当n 为奇数时,1nii v =∑≤0.52n A ⎛⎫- ⎪⎝⎭ 式中A 为实际求得的算术平均值x 末位数的一个单位。
(2)测量的标准差测量的标准偏差称为标准差,也可以称之为均方根误差。
1、测量列中单次测量的标准差2222121...nini nnδδδδσ=+++==∑式中 n —测量次数(应充分大)i δ —测得值与被测量值的真值之差211nii vn σ==-∑2、测量列算术平均值的标准差:x nσσ=三、实验内容:1.对某一轴径等精度测量8次,得到下表数据,求测量结果。
第二章 误差的基本性质与处理2-1.试述标准差 、平均误差和或然误差的几何意义。
答:从几何学的角度出发,标准差可以理解为一个从 N 维空间的一个点到一条直线的距离的函数;从几何学的角度出发,平均误差可以理解为 N 条线段的平均长度; 2-2.试述单次测量的标准差 和算术平均值的标准差 ,两者物理意义及实际用途有何不同。
【解】单次测量的标准差σ表征同一被测量n 次测量的测量值分散性的参数,可作为测量列中单次测量不可靠性的评定标准。
2n δσ++=算术平均值的标准差xσ-是表征同一被测量各个独立列算术平均值分散性的参数,可作为算术平均值不可靠性的评定标准xσ-=在n ,当测量次数n 愈大时,算术平均值愈接近被测量的真值,测量精度也愈高。
2-3试分析求服从正态分布、反正弦分布、均匀分布误差落在中的概率 【解】(1)误差服从正态分布时2222(2)(2)()P ed ed δδσσδδ--==引入新变量t:,t tδσδσ==,经变换上式成为: 22()2()20.41950.8484%t t P edt t -==Φ=⨯==⎰(2)误差服从反正弦分布时因反正弦分布的标准差为:σ=,所以区间[],,a a ⎡⎤=-⎣⎦,故:1()1aaP δπ+-==⎰(3) 误差服从均匀分布时因其标准差为:σ=,⎡⎤⎡⎤=⎢⎥⎣⎦⎣⎦,故111()20.8282%22P d a a δπ==⨯==⎰2-4.测量某物体重量共8次,测的数据(单位为g)为236.45,236.37,236.51,236.34,236.39,236.48,236.47,236.40,是求算术平均值以及标准差。
0.05(0.03)0.11(0.06)(0.01)0.080.070236.48236.43x +-++-+-+++=+=0.0599σ=0.0212x σ==2-5用別捷尔斯法、极差法和最大误差法计算2-4,并比较2-6测量某电路电流共5次,测得数据(单位为mA )为168.41,168.54,168.59,168.40,168.50。
《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
! 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: @相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o误差为 1μm ,试问该被测件的真实长度为多少解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =,测件的真实长度L0=L -△L =50-=(mm ) 1-7.用二等标准活塞压力计测量某压力得 ,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
误差的基本性质与处理第1章绪论1-1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产⽣的原因,以消除或减⼩误差。
(2)正确处理测量和实验数据,合理计算所得结果,以便在⼀定条件下得到更接近于真值的数据。
(3)正确组织实验过程,合理设计仪器或选⽤仪器和测量⽅法,以便在最经济的条件下,得到理想的结果。
误差理论的主要内容:(1)讨论形成误差的原因;(2)各类误差的特征及处理⽅法;(3)对测量结果进⾏评定。
1-2 试述测量误差的定义及分类,不同种类误差的特点是什么?答1:测量误差的定义:误差=测得值-真值。
测量误差的分类:随机误差、系统误差和粗⼤误差。
各类误差的特点:(1)随机误差:服从统计规律,具有对称性、单峰性、有界性和抵偿性;(2)系统误差:不服从统计规律,表现为固定⼤⼩和符号,或者按⼀定规律变化;(3)粗⼤误差:误差值较⼤,明显地歪曲测量结果。
答2:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗⼤误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循⼀定的规律变化(⼤⼩和符号都按⼀定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定⽅式变化;粗⼤误差的特点是可取性。
1-3 试述误差的绝对值与绝对误差有何异同,并举例说明。
答1:相同点:都是测量值与真值之差。
不同点:误差的绝对值都是正值,⽽绝对误差有正、有负,反映了测得值与真值的差异。
例:某长度的绝对误差为-0.05mm,⽽该误差的绝对值为|-0.05|mm=0.05mm。
答2:(1)误差的绝对值都是正数,只是说实际尺⼨和标准尺⼨差别的⼤⼩数量,不反映是“⼤了”还是“⼩了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺⼨和标准尺⼨的差值。
+多少表明⼤了多少,-多少表⽰⼩了多少。
(2)就测量⽽⾔,前者是指系统的误差未定但标准值确定的,后者是指系统本⾝标准值未定。