浙江高考历年真题之解析几何大题(理科)
- 格式:doc
- 大小:932.00 KB
- 文档页数:15
普通高等学校招生全国统一考试(浙江卷)数学(理)试题解析一、选择题 (本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设函数2,0,()()4,0.x x f x f x xα-≤⎧==⎨⎩若,则实数α=(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 【答案】B【解析】当0≤α时,4,42)(-==-=ααf ; 当0>α,4,42)(2===ααf .(2)把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+I,则(1)z z +⋅= (A )3-i (B )3+i (C )1+3i (D )3 【答案】A【解析】∵i z +=1,∴i z -=1,∴i z z z z -=-+=•+3)1)(2()1(.(3)若某几何体的三视图如图所示,则这个几何体的直观图能够是【答案】D【解析】由正视图可排除A 、B 选项;由俯视图可排除C 选项. (4)下列命题中错误的是(A )如果平面αβ⊥平面,那么平面α内一定存有直线平行于平面β (B )如果平面不垂直于平面β,那么平面α内一定不存有直线垂直于平面β (C )如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面 (D )如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D【解析】若面⊥α面β,在面α内与面的交线不相交的直线平行平面β,故A 准确;B 中若α内存有直线垂直平面β,则βα⊥,与题没矛盾,所以B 准确;由面⊥面的性质知选项C 准确.(5)设实数,x y 满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若,x y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19 【答案】B【解析】可行域如图所示联立⎩⎨⎧=-+=-+072052y x y x ,解之得⎩⎨⎧==13y x ,又∵边界线为虚线取不到,且目标函数线的斜率为43-,∴当y x z 43+=过点(4,1)时,有最小值16.(6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=则cos()2βα+= (A)3 (B)3- (C)9 (D)9-【答案】C【解析】∵31)4cos(=+απ,20πα<<,∴332)4sin(=+απ,又∵33)24cos(=-βπ,02<<-βπ,∴36)24sin(=-βπ,∴)]24()4cos[()2cos(βπαπβα--+=+=)24sin()4sin()24cos()4cos(βπαπβπαπ-++-+=363323331⨯+⨯=935. (7)若,a b 为实数,则“01m ab <<”是11a b b a<或>的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当0,0>>b a 时,由10<<ab 两边同除b 可得ba 1<成立;当0,0<<b a 时,两边同除以a 可得a b 1>成立,∴“10<<ab ”是“b a 1<或a b 1>”的充会条件,反过来0<ab ,由b a 1<或ab 1>得不到10<<ab .(8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由双曲线422y x -=1知渐近线方程为x y 2±=,又∵椭圆与双曲线有公共焦点,∴椭圆方程可化为22x b +()225y b +=()225b b +,联立直线与椭圆方程消y 得,()20552222++=b b b x,又∵1C 将线段AB 三等分,∴()3220552212222a b b b =++⨯+, 解之得212=b .(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率[(A )15 (B )25 (C )35 D 45【答案】B【解析】由古典概型的概率公式得522155222233232222=+-=A A A A A A A P .(10)设a ,b ,c 为实数,)1)1()(),)(()(22+++=+++=bx cx ax x g c bx x a x x f (.记集合S=()0,,()0,,x f x x R T x g x x R =∈==∈若S ,T 分别为集合元素S ,T 的元素个数,则下列结论不可能...的是 (A )S =1且T =0 (B )1T =1S =且 (C )S =2且T =2 (D )S =2且T =3 【答案】C【解析】当0===c b a 时,1=s 且 0||=T ;当0,0≠=b a 且042<-c b 时,1=s 且1||=T ;当04,02>-≠a b a 时,2=s 且3||=T .非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分(11)若函数2()f x x x a =-+为偶函数,则实数a = 。
浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示).解析:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=- ,()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得 2,3,1a b c ∴=== ,221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-, 002122222212002||tan 1121||1y k k F PF k k m y m y m -∴∠==≤=+-+-⋅- 201||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->2、(2006年)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的离心率e=23。
(Ⅰ)求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。
解析:(Ⅰ)过 A 、B 的直线方程为12xy += 因为由题意得⎪⎪⎩⎪⎪⎨⎧+-==+12112222x y b y a x 有惟一解,即0)41(2222222=-+-+b a a x a x a b 有惟一解, 所以2222(44)0(0),a b a b ab ∆=+-=≠故4422-+b a =0又因为e 32c =,即22234a b a -= , 所以224a b = 从而得2212,,2a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得62c =, 所以 1266((22F F -,从而M (1+46,0)由 ⎪⎩⎪⎨⎧+-==+12112222x y y x ,解得 121,x x == 因此1(1,)2T =因为126tan 1-=∠T AF ,又21tan =∠TAM ,62tan =∠2TMF ,得 1266112162tan -=+-=∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.由2214x y +=,解得21,221x b =±- 所以222121||21112S b x x b b b b =-=-≤+-=,当且仅当22b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx bx y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB 222212216(41)1|1241k b k x x kk -++-=+=+ ②又因为O 到AB 的距离221||1Sd AB k ===+ 所以221b k =+ ③ ③代入②并整理,得424410k k -+=,解得,2213,22k b ==, 代入①式检验,△>0,故直线AB 的方程是2622y x =+或2622y x =-或2622y x =-+或2622y x =--. 4、(2008年)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{ 【答案】B 【解析】.},2{},4,,3{},4,3,2{B A C A U u 选=∴==(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】..∴.1-,1∴,2),2),1.1-,1.22,0-∴22-)2222222A b a b a i bi a i bi a b a b a b a ab b a i abi b a bi a 选件综上,是充分不必要条不是必要条件,或(是充分条件,(或(=====+=+∴======∴===+=+(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm【答案】D 【解析】.138.93*3.186*3.363*4*3.935*34*6363*4*3D S S S S S S S S S S S 。
选几何体表面面积左面面积右面面积前后面面积,上底面面积几何体下底面面积右右前后上下左右前后上下=++++=∴=======+===4.为了得到函数()).∈(33R a a xx x f +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】D【解析】.12π3sin 2∴)12π(3sin 2)4π3sin(23cos 3sin D x y x x x x y 可以得到。
1.(本题满分15 分)如图,平面PAC ⊥平面ABC ,ABC 是以AC 为斜边的等腰直角三角形。
E,F ,O分别为PA, PB, PC 的中点,AC 16, PA PC 10 。
(I )设 C 是OC 的中点,证明:PC // 平面BOE ;(II )证明:在ABO 内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA , OB 的距离。
zyx2.如图,在棱长为 1 的正方体ABCD -A1B1C1D1 中,P 是侧棱CC1 上的一点,CP=m ,(Ⅰ)试确定m,使得直线AP 与平面BDB 1D1 所成角的正切值为 3 2 ;(Ⅱ)在线段A1C1 上是否存在一个定点Q,使得对任意的m,D1Q 在平面APD 1 上的射影垂直于AP,并证明你的结论。
3. 如图甲,△ABC 是边长为 6 的等边三角形,E,D 分别为AB 、AC 靠近B、C 的三等分点,点G 为BC 边的中点.线段AG 交线段ED 于F 点,将△AED 沿ED 翻折,使平面AED ⊥平面BCDE ,连接AB 、AC 、AG 形成如图乙所示的几何体。
(I)求证BC⊥平面AFG ;(II)求二面角B-AE -D 的余弦值..4 在如图所示的几何体中,EA 平面ABC,DB 平面ABC,AC BC ,AC BC BD 2AE ,M是AB的中点.(1)求证:CM EM ;D(2)求CM与平面CDE所成的角ECAMB4.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BCF CEF ,AD 3,E F 2.90D(Ⅰ)求证:AE ∥平面DCF ;AC (Ⅱ)当AB 的长为何值时,二面角 A EF C 的大小为60 ?BF E(第18 题)25.如图,在矩形ABCD 中,点E,F 分别在线段AB ,AD 上,AE=EB=AF= FD 4.沿直3线EF 将AEF 翻折成A' EF , 使平面A' EF 平面BEF.(I)求二面角A' FD C 的余弦值;(II )点M ,N 分别在线段FD,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使 C与A' 重合,求线段FM 的长.6.如图,在三棱锥P-ABC 中,AB =AC,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
复习: 电阻一定时,导体中的电流跟导体两端的电压成正比. 电压不变时,导体中的电流跟导体的电阻成反比. 上节课通过实验探究了电流与电压、电阻的关系: 以上实验结果综合起来得出结论,即欧姆定律。
结论是:欧姆于1787年3月16日生于德国巴伐利亚的埃朗根 。
1811年毕业于埃朗根大学并取得哲学博士学位, 1854年7月6日在慕尼黑逝世。
欧姆最重要的贡献是建立电路定律, 著作:《伽伐尼电路——数学研究》 为了纪念他在电路理论方面的贡献,电阻单位命名为欧姆。
导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。
I——电流——安培(A )U——电压——伏特(V ) R——电阻——欧姆(Ω) (1)内容: (2)公式: (3)单位:I=U/R 欧姆定律是从实验中总结出来的规律,它适用于任何情况下的电流计算。
欧姆定律公式中各个物理量只能是同一导体在同一时刻所具有的量,也就是说不能用甲导体的电压、电阻去求乙导体的电流。
或用甲时刻的电压、电阻去求乙时刻的电流。
氖管 电阻 例题:试电笔内必须有一支很大的电阻,用来限制通过人体的电流。
现用一支试电笔,其中的电阻为880KΩ,氖管的电阻和人体的电阻都比这个小得多,可以不计。
使用时流过人体的电流是多少? 解题要求: 1、先读题,后画出电路图,再标出已知量、未知量 2、要换算单位的先换算 3、要对题目进行必要分析,后分步进行计算 4、解题过程中要先写出公式,再在公式中代入数据和单位,最后得结果。
5、每个物理量用自己的字母表示。
氖管 电阻 例题:试电笔内必须有一支很大的电阻,用来限制通过人体的电流。
现用一支试电笔,其中的电阻为880KΩ,氖管的电阻和人体的电阻都比这个小得多,可以不计。
使用时流过人体的电流是多少? 如果把安培换算成毫安,则 解: 已知:R =880KΩ R=880 KΩ I=? U =220V 分析:使用这支试电笔时,流过人体的电流是0.25mA,这个电流的大小对人体是安全的。
高二理科数学寒假网络课程(五)--浙江省高考中的解析几何大题浙江省近几年高考中,解析几何大题难度较大,作为压轴题能较好的区分学生的程度,题目新颖,变化多端,掌握起来没有固定套路。
2013年:椭圆,圆,直线综合.(1)求椭圆方程 (2)最值条件下求直线方程2012年:椭圆,直线综合. (1)求椭圆方程 (2)最值条件下求直线方程2011年:抛物线,圆,直线综合. (1)求点到准线距离 (2)求直线方程2010年:椭圆,圆,直线综合. (1)求直线方程 (2)求参数取值范围2009年:椭圆,抛物线,直线综合.(1)求椭圆方程 (2)求参数的最值(2013年浙江)如图,点P(0,-1)是椭圆C1:22221x ya b+=(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.如图,点P (0,-1)是椭圆C 1:22221x y a b+=(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解:(1)由题意得1,2.b a =⎧⎨=⎩ 所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离211d k =+,所以22243||2421k AB d k +=-=+. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由220,44,x ky k x y ++=⎧⎨+=⎩ 得(4+k 2)x 2+8kx =0, 故0284kx k=-+. 所以|PD |=22814k k ++. 设△ABD 的面积为S ,则S =12|AB |·|PD |=228434k k ++, 所以S =2232134343k k +++≤22321613131324343k k =+⋅+,当且仅当102k =±时取等号. 所以所求直线l 1的方程为y =102x ±-1.(2012年浙江) 如图,椭圆C :2222+1x y a b =(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB被直线OP 平分. (1)求椭圆C 的方程;(2) 求∆ABP 的面积取最大时直线l 的方程.如图,椭圆C :2222+1x y a b =(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2) 求∆ABP 的面积取最大时直线l 的方程. (1)由题:12c e a ==; (1)左焦点(﹣c ,0)到点P (2,1)的距离为:22(2)1d c =++=10. (2)由(1) (2)可解得:222431a b c ===,,.∴所求椭圆C 的方程为:22+143x y =.(2)易得直线OP 的方程:y =12x ,设A (x A ,y A ),B (x B ,y B ),R (x 0,y 0).其中y 0=12x 0. ∵A ,B 在椭圆上,∴220220+12333434422+143A A A B A B AB A B A B B B x y x y y x x k x x y y y x y ⎧=⎪-+⎪⇒==-=-=-⎨-+⎪=⎪⎩. 设直线AB 的方程为l :y =﹣32x m +(m ≠0),代入椭圆:2222+143333032x y x mx m y x m ⎧=⎪⎪⇒-+-=⎨⎪+⎪⎩=-.显然222(3)43(3)3(12)0m m m ∆=-⨯-=->. ∴﹣12<m <12且m ≠0.由上又有:A B x x +=m ,A B y y +=233m -.∴|AB |=1AB k +|A B x x -|=1AB k +2()4A B A B x x x x +-=1ABk +243m -.∵点P (2,1)到直线l 的距离为:31211ABABm m d k k -+-+==++.∴S ∆ABP =12d |AB |=12|m +2|243m -,当|m +2|=243m -,即m =﹣3 or m =0(舍去)时,(S ∆ABP )max =12.此时直线l 的方程y =﹣3122x +.(2011年浙江)已知抛物线1:C2x=y,圆2:C22(4)1x y+-=的圆心为点M。
2013-2017年浙江高考理科数学历年真题之解析几何大题(教师版)1、(2013年)如图,点(0,1)P -是椭圆22122:1(0)x y C a b a b+=>>的一个顶点,1C 的长轴是圆222:4C x y +=的直径,12,l l 是过点P 且互相垂直的两条直线,其中1l 交2C 于,A B 两点,2l 交1C 于另一点D .(Ⅰ)求椭圆1C 的方程;ⅠⅠ()求ABD ∆面积取最大值时直线1l 的方程. (Ⅰ)解:依题意得21a b =⎧⎨=⎩ ,所以椭圆C 的方程为22 1.4x y += ⅠⅠ()设112200(,),(,),(,),A x y B x y D x y 由题意知直线1l 的斜率存在,不妨设为k ,则1l 的方程为1y kx =-.又圆222:4C x y +=,故点O 到直线1l的距离d =所以||AB ==又12l l ⊥,故直线2l 的方程为0x ky k ++=故028.4kx k =-+所以2||4PD k=+ 设ABD ∆的面积为S,则21||||24S AB PD k=⋅=+所以321313S =≤=当且仅当k =. 所求直线1l的方程为1y x =-.(第21题图)2、(2014年)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;ⅠⅠ()若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.解析:(I )设直线l 的方程为()0y kx m k =+<,由22221y kx mx y a b=+⎧⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭, 由点P 在第一象限,故点P的坐标为22⎛⎫⎝; (II )由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k+≥2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.3、(2015年)已知椭圆222y x +=1上两个不同的点A , B 关于直线y =mx +21对称. (I)求实数m 的取值范围;(II)求△AOB 面积的最大值(O 为坐标原点)解: (I)设A (x 1, y 1), B (x 2, y 2), AB 的中点M (x 0, y 0), 则2x 0=x 1+x 2, 2y 0=y 1+y 2显然m ≠0, 故可设直线AB 的斜率k =2121x x y y --=m1-由222121=+y x ,222222=+y x , 相减得(x 1-x 2)(x 1+x 2)+2(y 1-y 2)(y 1+y 2)=0 即x 0m2-y 0=0 又点M (x 0, y 0)在直线y =mx +21上, ∴y 0=mx 0+21, 故得x 0=m 1-, y 0=21- 又点M 在椭圆1222=+y x 的内部, 故得41212+m <1, 解得m 2>32 因此, m >36或m <36- (此题用点差法最佳, 简明使得出错的几率小)法二: 设A (x 1, y 1), B (x 2, y 2), AB 的中点M (x 0, y 0), 则2x 0=x 1+x 2 显然m ≠0, 故可设直线AB 的方程为y =m1-x +b 由⎪⎩⎪⎨⎧=++-=22122y x bx m y 得(1+22m )x 2x m b 4-+2(b 2-1)=0有两个不等实根x 1, x 2,∴△=)1)(21(81622-+-b mm b >0 整理得m 2+2-m 2b 2>0 (*)且x 0=21(x 1+x 2)=222+m bm, y 0=m 1-x 0+b =222+m bm又∵点M (x 0, y 0)在直线y =mx +21上, ∴y 0=mx 0+21, 整理得bm =m m 222+-代入(*)式得m 2+22224)2(m m +->0 即4m 2-(m 2+2)>0, 解得m 2>32 因此, m >36或m <36- (其中也可得x 0=m 1-, y 0=21-)(II)由k =m 1-, 则0<k 2<23. 由(I)可得直线AB : y +21=k (x -k ) 即kx -y -k 221-=0∴原点O 到直线AB 的距离d =22121k k ++由⎪⎩⎪⎨⎧=+--=2221222y x k kx y 得x 2-2kx +21(2k 2+1)1222+-k =0 (利用|x 1-x 2|=∆)∴|AB |=21k +|x 1-x 2|=222222246121128)12(241k k k k k k k-++=+++-+故S △AOB =21|AB |d =8)21(841)46)(12(412222+--=-+k k k ≤22, 且0<k 2<23因此, 当k 2=21即m =2±时, △AOB 的面积S △AOB 有最大值224、(2016年)如图,设椭圆2221x y a+=()1a >.(1)求直线1y kx =+被椭圆截得的线段长(用a 、k 表示);(2)若任意以点(0,1)A 为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 解析:5、 (2017年)如图,已知抛物线x 2=y ,点A (-12,14),B (32,94),抛物线上的点p(x,y)(-12<x <32).过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值. 解析:。
2004−2019浙江高考真题《立体几何》汇编三视图1. (2009浙江文12理12)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .2. (2010浙江文8)某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .3352cm 3B .3320cm 3C .3224cm 3D .3160cm 33. (2010浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .侧视图俯视图正视图侧视图俯视图侧视图俯视图4. (2011浙江文7)某几何体的三视图如图所示,则这个几何体的直观图可以是( )5. (2011浙江理3)某几何体的三视图如图所示,则这个几何体的直观图可以是( )6. (2012浙江文3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .13cmB .23cmC .33cmD .63cmDC BA侧视图俯视图正视图DCB A 侧视图俯视图正视图侧视图俯视图正视图7. (2012浙江理11)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于 3cm .8. (2013浙江文5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .1083cmB .1003cmC .923cmD .843cm9. (2013浙江理12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm .侧视图俯视图正视图俯视图侧视图正视图侧视图正视图3410. (2014浙江文3)某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .723cmB .903cmC .1083cmD .1383cm11. (2014浙江理3)某几何体的三视图(单位:cm )如图所示,则该几何体的表面积是( )A .902cmB .1292cmC .1322cmD .1382cm12. (2015浙江文2理2)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .403cm俯视图侧视图正视图俯视图侧视图正视图侧视图正视图13. (2016浙江理11)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .14. (2016浙江文9)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 2cm ,体积是 3cm .15. (2017浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是()A .12π+B .32π+C .312π+D .332π+俯视图正视图316. (2018浙江3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .817. (2019浙江4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh 柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:3cm )是( ) A .158B .162C .182D .324俯视图正视图俯视图侧视图正视图点、直线、平面位置关系18. (2005浙江文7理6)设α,β为两个不同的平面,l ,m 为两条不同的直线,且l α⊂,m β⊂.有如下两个命题:①若αβ∥,则l m ∥;②若l m ⊥,则αβ⊥.那么( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题19. (2007浙江文7理6)若P 是两条异面直线l ,m 外的任意一点,则( )A .过点P 有且仅有一条直线与l ,m 都平行B .过点P 有且仅有一条直线与l ,m 都垂直C .过点P 有且仅有一条直线与l ,m 都相交D .过点P 有且仅有一条直线与l ,m 都异面20. (2008浙江文9)对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .a α⊂,b α⊂B .a α⊂,b α∥C .a α⊥,b α⊥D .a α⊂,b α⊥21. (2009浙江文4)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若l α⊥,αβ⊥,则l β⊂B .若l α∥,αβ∥,则l β⊂C .若l α⊥,αβ∥,则l β⊥D .若l α⊥,αβ⊥,则l β⊥22. (2010浙江理6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,l m ∥,则m α⊥C .若l α∥,m α⊂,则l m ∥D .若l α∥,m α∥,则l m ∥23. (2011浙江文4)若直线l 不平行于平面α,且l α⊄,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都想交24. (2011浙江理4)下列命题中错误的是( )A .如果αβ平面⊥平面,那么平面α内一定存在直线平行于平面βB .如果αβ平面不垂直于平面,那么平面α内一定不存在直线垂直于平面βC .如果αγ平面⊥平面,βγ平面⊥平面,l αβ=,那么l γ⊥平面D .如果αβ平面⊥平面,那么平面α内所有直线都垂直于平面β25. (2012浙江文5)设直线l 是直线,α,β是两个不同的平面.( )A .若l α∥,l β∥,则αβ∥B .若l α∥,l β⊥,则αβ⊥C .若αβ⊥,l α⊥,则l β⊥D .若αβ⊥,l α∥,则l β⊥26. (2013浙江文4)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m α∥,n α∥,则m n ∥B .若m α∥,m β∥,则αβ∥C .若m n ∥,m α⊥,则n α⊥D .若m α∥,αβ⊥,则m β⊥27. (2014浙江文6)设m ,n 是两条不同的直线,α,β是两个不同的平面.( )A .若m n ⊥,n α∥,则m α⊥B .若m β∥,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥28. (2015浙江文4)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂.( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若l β∥,则αβ∥D .若αβ∥,则l m ∥29. (2016浙江文2理2)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m α∥,n β⊥,则( ) A .m l ∥ B .m n ∥C .n l ⊥D .m n ⊥30. (2018浙江6)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m n ∥”是“m α∥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件小题31. (2004浙江文15)已知α平面⊥β平面,l αβ=,P 是空间一点,且P 到平行α,β的距离分别是1,2,则点P 到l 的距离为 .32. (2004浙江理16)已知平面α和平面β相交于直线l ,P 是空间一点,P A ⊥α,垂足为A ,PB ⊥β,垂足为B ,且1PA =,2PB =,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 .33. (2004浙江文10理10)如图,在正三棱柱111ABC A B C -中,已知1AB =,D 在棱1BB 上,且1BD =,若AD 与平面11AA C C 所成的角为α,则sin α=( ) ABCDDB 1A 1C 1CBA34. (2005浙江文12理12)设M ,N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE沿DE 折起,使二面角A DE B --为45°,此时点A 在平面BCDE 内的射影为点B ,则M ,N 的连线与AE 所成角的大小等于 .35. (2006浙江文8)如图,正三棱柱111ABC A B C -的各棱长都为2,E ,F 分别是AB ,11A C 的中点,则EF 的长是( ) A .2BCD36. (2006浙江理9)如图,O 是半径为1的球的球心,点A ,B ,C 在球面上,OA ,OB ,OC 两两垂直,E ,F 分别是大圆弧AB 与AC 的中点,则点E ,F 在该球面上的球面距离是( ) A .4π B .3π C .2π D.4B 1C 1A 1FE CBA37. (2006浙江文14)如图,正四面体ABCD 的棱长为1,平面α过棱AB ,且CD α∥,则正四面体上的所有点在平面α内的射影构成的图形面积是 .38. (2006浙江理14)正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .39. (2007浙江文17理16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=︒.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥︒,则二面角AB αβ--的大小是 .40. (2008浙江文15理14)如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA AB BC ===O 的体积等于 .BDACαBDACαDBCA41. (2008浙江理10)如图,AB 是平面α的斜线段...,A 为斜足.若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( ) A .圆B .椭圆C .一条直线D .两条平行直线42. (2009浙江理5)在三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是( ) A .30° B .45°C .60°D .90°43. (2009浙江理17)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD △沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是 .PABαKFDCBA44. (2012浙江理10)已知矩形ABCD ,1AB =,BC .将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对于任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直45. (2013浙江理10)在空间中,过点A 作平面π的垂线,垂足为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,()1Q f f P βα=⎡⎤⎣⎦,()2Q f f P αβ⎡⎤=⎣⎦,恒有12PQ PQ =,则( ) A .α平面与β平面垂直 B .α平面与β平面所成的(锐)二面角为45° C .α平面与β平面平行 D .α平面与β平面所成的(锐)二面角为60°46. (2014浙江文10理17)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15m AB =,25m AC =,30BCM ∠=︒,则tan θ的最大值是 .(仰角θ为直线AP 与平面ABC 所成角)PMCB A47. (2015浙江文7)如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支48. (2015浙江理8)如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成( ) A .A DB α'∠≤B .A DB α'∠≥C .A CB α'∠≤D .A CB α'∠≥49. (2015浙江理13)如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .αPBAA'DCBAMNDCBA50. (2016浙江文14)如图,已知平面四边形ABCD ,3AB BC ==,1CD =,AD =90ADC ∠=︒.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是 .51. (2016浙江理14)如图,在△ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体PBCD 的体积的最大值是 .52. (2017浙江9)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角 为α,β,γ,则( ) A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<D'DC APDCBARCQBP A D53. (2018浙江8)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) A .123θθθ≤≤ B .321θθθ≤≤ C .132θθθ≤≤ D .231θθθ≤≤54. (2019浙江8)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<大题55. (2004浙江文19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求证:AM ⊥平面BDF ; (3)求二面角A DF B --的大小.M FEDCBA56. (2004浙江理19)如图,已知正方形ABCD 和矩形ACEF所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点. (1)求证:AM ∥平面BDE ; (2)求二面角A DF B --的大小;(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60︒.57. (2005浙江文18)如图,在三棱锥P ABC -中,AB BC ⊥,12AB BC PA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC .(1)求证:OD ∥平面PAB ;(2)求直线OD 与平面PBC 所成角的大小.58. (2005浙江理18)如图,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC . (1)求证:OD ∥平面PAB ;(2)当12k =,求直线PA 与平面PBC 所成角的大小;(3)当k 取何值时,O 在平面PBC 内的射影恰好为PBC △的重心?MFEDCBA59. (2006浙江文17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求BD 与平面ADMN 所成角.60. (2006浙江理17)如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点. (1)求证:PB DM ⊥;(2)求CD 与平面ADMN 所成的角.61. (2007浙江理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求CM 与平面CDE 所成的角.62. (2007浙江文20)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点.(1)求证:CM EM ⊥;(2)求DE 与平面EMC 所成角的正切值.63. (2008浙江文20理18)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,90BCF CEF ∠=∠=︒,AD ,2EF =.(1)求证:AE DCF ∥平面;(2)当AB 的长为何值时,二面角A EF C --的大小为60°?64. (2009浙江文19)如图,DC ⊥平面ABC ,EB DC ∥,22AC BC EB DC ====,120ACB ∠=︒,P ,Q 分别为AE ,AB 的中点. (1)证明:PQ ACD ∥平面;(2)若AD 与平面ABE 所成角的正弦值.FEDCBA QPCDEBA65. (2009浙江理20)如图,平面PAC ⊥平面ABC ,ABC △是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为P A ,PB ,AC 的中点,16AC =,10PA PC ==. (1)设G 是OC 的中点,证明:FG ∥平面BOE ;(2)证明:在ABO △内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.66. (2010浙江文20)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE △沿直线DE 翻折成A DE '△,使平面A DE '⊥平面BCD ,F 为线段A C '的中点. (1)求证:BF ∥平面A DE ';(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值.67. (2010浙江理20)如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,243AE EB AF FD ====, 沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF . (1)求二面角A FD C '--的余弦值;(2)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '中和,求线段FM 的长.GF EPOCBAA'MFED CBANM A'F EDCB A68. (2011浙江文20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (1)证明:AP BC ⊥;(2)已知8BC =,4PO =,3AO =,2OD =,求二面角B AP C --的大小.69. (2011浙江理20)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知8BC =,4PO =,3AO =,2OD =. (1)证明:AP BC ⊥;(2)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.70. (2012浙江文20)如图,在侧棱垂直底面的四棱柱1111ABCD A B C D -中,AD ⊥AB,AB =2AD =,4BC =,12AA =,E 是1DD 的中点,F 是平面11B C E 与直线1AA 的交点.(1)证明:(i )11EF A D ∥;(ii )111BA B C EF ⊥平面;(2)求1BC 与11B C EF 平面所成角的正弦值.OPDCBAOPDCBAD 1C 1B 1A 1EF B D CA71. (2012浙江理20)如图,在四棱锥P ABCD -中,底面是边长为的菱形,120BAD ∠=︒,且PA ABCD ⊥平面,PA =,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ PC ⊥,垂足为点Q ,求二面角A MN Q --的平面角的余弦值.72. (2013浙江文20)如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,2AB BC ==,AD CD ==PA 120ABC ∠=︒.G 为线段PC 上的点. (1)证明:BD ⊥平面P AC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PGGC的值.73. (2013浙江理20)如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,BD =.M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. (1)证明:PQ BCD ∥平面;(2)若二面角C BM D --的大小为60°,求BDC ∠的大小.QMNDABPGDB APQPMDBA74. (2014浙江文20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)证明:AC BCDE ⊥平面;(2)求直线AE 与平面ABC 所成角的正切值.75. (2014浙江理20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC(1)证明:DE ACD ⊥平面; (2)求二面角B AD E --的大小.76. (2015浙江文18)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求直线1A B 和平面11BB C C 所成的角的正弦值.BED CABED CAC 1B 1A 1DC BA77. (2015浙江理17)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14AA =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:11A D A BC ⊥平面;(2)求二面角11A BD B --的平面角的余弦值.78. (2016浙江文18)如图,三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.79. (2016浙江理17)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,90ACB ∠=︒,1BE EF FC ===,2BC =,3AC =.(1)求证:BF ⊥平面ACFD ;(2)求二面角B AD F --的平面角的余弦值.C 1B 1A 1DC BA80. (2017浙江19)如图,已知四棱锥P −ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,22PC AD DC CB ===,E 为PD 的中点. (1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值.81. (2018浙江19)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===. (1)证明:1111AB A B C ⊥平面;(2)求直线1AC 与平面1ABB 所成的角的正弦值.82. (2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11A B 的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.ED CBAPC 1B 1A 1CBAC 1B 1A 1FECBA。
解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示).解析:(Ⅰ)设椭圆方程为()222210x y a b a b +=>>,半焦距为c ,则2111,a MA a A F a c c =-=- ,()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得 2,3,1a b c ∴=== ,221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-, 002122222212002||tan 1121||1y k k F PF k k m y m y m -∴∠==≤=+-+-⋅- 201||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->2、(2006年)如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的离心率e=23。
(Ⅰ)求椭圆方程;(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。
解析:(Ⅰ)过 A 、B 的直线方程为12xy += 因为由题意得⎪⎪⎩⎪⎪⎨⎧+-==+12112222x y b y a x 有惟一解,即0)41(2222222=-+-+b a a x a x a b 有惟一解, 所以2222(44)0(0),a b a b ab ∆=+-=≠故4422-+b a =0又因为e 3c =即22234a b a -= , 所以224a b = 从而得2212,,2a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c =, 所以 1266((F F ,从而M (1+46,0)由 ⎪⎩⎪⎨⎧+-==+12112222x y y x ,解得 121,x x == 因此1(1,)2T =因为126tan 1-=∠T AF ,又21tan =∠TAM ,62tan =∠2TMF ,得 1266112162tan -=+-=∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.由2214x y +=,解得21,221x b =±- 所以222121||21112S b x x b b b b =-=-≤+-=,当且仅当22b =时,.S 取到最大值1. (Ⅱ)解:由2214y kx bx y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kbx b +++-=2216(41)k b ∆=-+ ①|AB 222212216(41)1|1241k b k x x kk -++-=+=+ ② 又因为O 到AB 的距离221||1Sd AB k ===+ 所以221b k =+ ③ ③代入②并整理,得424410k k -+=,解得,2213,22k b ==, 代入①式检验,△>0,故直线AB 的方程是262y x =+或262y x =-或262y x =-+262y x =--. 4、(2008年)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。
(Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得QAQB2为常数。
解析:(Ⅰ)设()N x y ,为C 上的点,则2213||28NP x y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭N 到直线58y =-的距离为58y +.22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为21()2y x x =+.(Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||11|QB k x =++.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k ⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 2||21QA k =+222||2(1)112||QB k k x QA x k+++=+g .当2k =时,2||55||QB QA =从而所求直线l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||11|QB k x =++.过(10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以2||21QA k=+222||2(1)112||QB k k x QA x k+++=+g .当2k =时,2||55||QB QA =从而所求直线l 方程为220x y -+=.5、(2009年)已知椭圆1C :22221(0)y x a b a b+=>>的右顶点为(1,0)A ,过1C 的ABOQy xlMAB OQylMHl 1焦点且垂直长轴的弦长为1. (I )求椭圆1C 的方程;(II )设点P 在抛物线2C :2()y x h h =+∈R 上,2C 在点P 处的切线与1C 交于点,M N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.解析:(Ⅰ)解:由题意,得2121b b a=⎧⎪⎨=⎪⎩,·.从而21a b =⎧⎨=⎩,.因此,所求的椭圆方程为2214y x +=. (Ⅱ)解:如图,设21122()()()M x y N x y P t t h +,,,,,,则抛物线2C 在点P 处的切线斜率为|2x t y t ='=. 直线MN 的方程为:22y tx t h =-+.将上式代入椭圆1C 的方程中,得2224(2)40x tx t h +-+-=. 即222224(1)4()()40t x t t h x t h +--+--=. ① 因为直线MN 与椭圆1C 有两个不同的交点,所以①式中的422116[2(2)4]0t h t h ∆=-++-+>. ②设线段MN 的中点的横坐标是3x ,则21232()22(1)x x t t h x t +-==+. 设线段PA 的中点的横坐标是4x ,则412t x +=. 由题意,得34x x =,即2(1)10t h t +++=. ③由③式中的22(1)40h ∆=+-≥,得1h ≥,或3h -≤.当3h -≤时,22040h h +<-<,. 则不等式②不成立,所以1h ≥. 当1h =时,代入方程③得1t =-, 将11h t ==-,代入不等式②,检验成立.所以,h 的最小值为1.6、(2010年)已知1>m ,直线,02:2=--m my x l 椭圆 21222,,1:F F y mx C =+ 分别为椭圆C 的左、右焦点.(I )当直线l 过右焦点F 2时,求直线l 的方程;(II )设直线l 与椭圆C 交于A ,B 两点,21F AF ∆,21F BF ∆的重心分 别为G ,H.若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.解析:(Ⅰ)解:因为直线2:02m l x my --=经过22(1,0)F m -2221,22m m m -==得又因为 1.m >所以 2.m =故直线l 的方程为210.x -=(Ⅱ)解:设1122(,),(,)A x y B x y ,由2222,21m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x 得:222104m y my +++=则由2228(1)804m m m ∆=--=-+>,知28m < 且有212121,.282m m y y y y +=-=- 由于12(,0),(,0)F c F c -故O 为F 1F 2的中点,由2,2AG GO BH HO ==u u u r u u u r u u u r u u u r ,可知2112(,),(,)3333x y y x G H2221212()()||.99x x y y GH --=+设M 是GH 的中点,则1212(,)66x x y y M ++由题意可知,2||||MO GH <好222212121212()()4[()()]6699x x y y x x y y ++--+<+ 即12120.x x y y +<而2212121212()()22m m x x y y my my y y +=+++221(1)(),82m m =+- 所以210.82m -<即2 4.m <又因为10.m >∆>且所以1 2.m <<所以m 的取值范围是(1,2)。
7、(2011年)已知抛物线1:C 2x =y ,圆2:C 22(4)1x y +-=的圆心为点M 。
(Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂足于AB ,求直线l 的方程.解析:8、(2012年)如图,椭圆2222:1(0)x y C a b a b +=>>的离心率为12,其左焦点到点P(2,1)的距离为10,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分。