2.垂直于弦的直径(一)垂径定理
- 格式:pdf
- 大小:51.75 KB
- 文档页数:2
第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标1.理解圆的对称性;掌握垂径定理.2.利用垂直于弦的直径的性质解决相关实际问题.二、教学重点及难点重点:垂直于弦的直径所具有的性质以及证明.难点:利用垂直于弦的直径的性质解决实际问题.三、教学用具多媒体课件,三角板、直尺、圆规。
四、相关资源《赵州桥》图片.五、教学过程【合作探究,形成知识】探究圆的对称性1.学生动手操作问:大家把事先准备好的一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?师生活动:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.教师在学生归纳的过程中注意学生语言的准确性和简洁性.2.探索得出圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.师生活动:学生总结操作结论,教师强调圆的对称轴是直径所在的直线.3.问:圆有几条对称轴?师生活动:学生回答,教师强调圆有无数条对称轴.4.你能证明这个结论吗?师生活动:四人一小组,小组合作交流,尝试证明.让学生注意要证明圆是轴对称图形,只需证明圆上任意一点关于对称轴的对称点也在圆上.教师板书分析及证明过程.设计意图:在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,掌握证明轴对称图形的方法.探究垂径定理按下面的步骤做一做,回答问题:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,垂足为点M;第四步,将纸打开,设AM的延长线与圆交于另一点B,如图1.图1 图2问题1在上述操作过程中,你发现了哪些相等的线段和相等的弧?为什么?师生活动:学生动手操作,观察操作结果,得出结论,看哪个小组做得又快、又好,记入今天的英雄榜.最后师生共同演示、验证猜想的正确性,从而解决本节课的又一难点——垂径定理的证明,此时再板书垂径定理及其推理的过程.证明:如上图2所示,连接OA,OB,得到等腰△OAB,即OA=OB.因为CD⊥AB,所以△OAM与△OBM都是直角三角形.又因为OM为公共边,所以这两个直角三角形全等.所以AM=BM.又因为⊙O关于直径CD所在的直线对称,所以A点和B点关于直线CD对称.所以当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此AM=BM,AC=BC.同 .理可得AD BD垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.问题2 你能用符号语言表达这个结论吗?师生活动:学生尝试将文字转变为符号语言,用数学符号表达定理的逻辑关系.教师更正并板书.符号语言表达:AM MB CD O AC BC CD AB M AD BD=⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩,是圆的直径,,于点⇒ 设计意图:增加学生的兴趣,使学生通过探索发现、思维碰撞,获得对数学知识最深刻的感受,体会成功的乐趣,发展思维能力.【例题应用 提高能力】例1 如图,AB 所在圆的圆心是点O ,过点O 作OC ⊥AB 于点D .若CD =4 m ,弦AB = 16 m ,求此圆的半径.师生活动:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形.在直角三角形中可以利用勾股定理构造方程.教师在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.解:设圆的半径为R ,由题意可得OD =R -4,AD =8 m .在Rt △ADO 中,222AO OD AD =+,即222(4)8R R =-+.解得R =10(m ).答:此圆的半径是10 m .设计意图:增加一道引例,是基础应用题,为课本例题的实际应用作铺垫,有过渡作用,不但让学生掌握了知识,又增加了学习数学的兴趣,更体会到成功的喜悦.例2如图,赵州桥是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).【教学图片】《二次函数》图片6赵州桥的图片,用于教学过程。
垂径定理垂径定理内容:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
数学表达为:如右图,DC为圆O的直径,直径DC垂直于弦AB,则AE=EB,劣弧AC等于劣弧BC。
1定义垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧2证明如图,在⊙O中,DC为直径,AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD垂径定理证明图证明:连OA、OB分别交于点A、点B.∵OA、OB是⊙O的半径∴OA=OB∴△OAB是等腰三角形∵AB⊥DC∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)∴弧AD=弧BD,∠AOC= 角BOC∴弧AC=弧BC3推论推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦(不是直径)4.垂直于弦5.经过圆心4有关性质知识点圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质大纲要求1.正确理解和应用圆的点集定义,掌握点和圆的位置关系;2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。
一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;6.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。
课题02:24.1.2垂直于弦的直径(1)编制:彭泉松审定:彭泉松课标要求:学生灵活运用垂径定理解决问题。
德育目标:结合教学内容,向学生进行爱国主义教育和美育渗透,培养独立思考与小组交流。
学习目标:1、理解圆的轴对称性及垂径定理的推证;能应用垂径定理进行计算和证明。
2、通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.学习重点:①垂径定理及应用;②从感性到理性的学习能力.学习难点:垂径定理的证明与运用.学习过程:一、知识复习:学生口答圆的有关概念二、自学课本P81 结合实验活动,提出问题:1、探究:让学生用自己的方法探究圆的对称性,引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.2、提出问题:老师引导学生观察、分析、发现和提出问题.通过“演示实验——观察——感性——理性”引出垂径定理.分析证明:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.求证:AE=EB,= ,= .证明:垂径定理:组织学生剖析垂径定理的条件和结论:CD为⊙O的直径,CD⊥AB AE=EB,= ,= .为了运用的方便,不易出现错误,将原定理叙述为:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.(二)知识迁移中发现新问题1、剖析:2、新组合,发现新问题:(A层学生自己组合,小组交流,B层学生老师引导),,……(包括原定理,一共有10种)(三)探究新问题,归纳新结论:推论(学生理解)(1)平分弦(不是直径)的直径垂直于弦,并且平分弦对应的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦对应的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.三、例题讲解:例1、如图,已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.分析:要求⊙O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OE⊥AB于E,例2、赵州桥是我国隋代建造的石拱桥,距今约1400年的历史,是我国古代人民勤劳与智慧的结晶,它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m ,拱高(弧的中点到弦的距离)为7.23m ,你能求出赵州桥主桥拱的半径吗?归纳:解决有关弦的问题,经常做过圆心作弦的垂线,或连接圆心和弦的中点,连结半径等辅助线,为应用垂径定理和勾股定理创造条件四、当堂训练(A 组) 1、按图填空:在⊙O 中,(1)若MN ⊥AB ,MN 为直径,则________,________,________;(2)若AC =BC ,MN 为直径,AB 不是直径,则_______,________,________;(3)若MN ⊥AB ,AC =BC ,则________,________,________;(4)若 = ,MN 为直径,则________,________,________2、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是( ). A .CE=DE B .»»BCBD C .∠BAC=∠BAD D .AC>AD 3、如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3, 则弦AB 的长是( ) A .4 B .6 C .7 D .8(B 组)4.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm , 则经过P 点的最短弦长为________;最长弦长为_______.5、 已知:如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点. 求证AC=BD .6、如图,在⊙O 中,AB ,AC 为互相垂直且相等的两条弦,O D ⊥AB 于点D ,OE ⊥AC 于E ,求证:四边形ADOE 是正方形(C 组) 7、如图,⊙O 的直径为4,动弦C D ⊥直径AB 于E ,C F ⊥当弦CD 运动时,OE 2+EF 2的值是否发生变化,若不 变,求出其值,若变化,请说出理由。
各位老师,同学们:大家好!今天,我说课的内容是垂直于弦的直径定理。
本节课我将从教学内容,教材分析,教学目标,教学过程和板书设计五个方面对本课的设计进行说明。
本节课选自义务教材人教版九年级数学上册第二十四章第一节《圆》的第二节课“垂直于弦的直径”。
教材分析包括教材的地位和作用,教学重点和难点,教法和学法分析。
教材的地位和作用:垂径定理既是前面圆的性质的体现,是圆的轴对称性的具体化,也是今后证明线段相等、角相等、垂直关系的重要依据,同时也是为进行圆的计算和作图提供了方法和依据,所以它在教材中处于非常重要的位置。
通过“实验—观察—猜想—证明”的途径,培养学生的动手能力,分析、能力,同时利用圆的轴对称性,可以对学生进行数学美的教育。
因此,这节课无论从知识上,还是在从学生能力的培养及情感教育方面都起着十分重要的作用。
根据教材的地位和作用,以及九年级学生已有的知识水平,我把本节课的重点设为:垂径定理及应用。
难点设为:对题设与结论的区分及证明方法。
从学生的认知规律出发,为了更好的突出重点、化解难点,我主要采用了引导发现法和直观演示法,让学生经历知识的发生和发展过程,培养学生分析问题、解决问题的能力。
在教学过程中,我让学生采用分组讨论法和观察、归纳法,通过自己主动思考,然后在小组内进行讨论,培养学生的批判性思维能力和集思广益的技能,同时,还有助于提高学生的语言表达能力。
结合学生已有的知识结构和年龄特征,我这样设计本节课的教学目标:知识与能力目标:使学生理解圆的轴对称性,掌握垂径定理,学会运用垂径定理解决有关的证明、计算和作图问题,以培养学生观察能力、分析能力及联想能力。
过程与方法目标:通过复习提问、创设情境,激发学生的求知欲望;学生在老师的引导下进行自主探索、合作交流,收获新知;通过分组训练、深化新知,共同感受收获的喜悦。
情感态度与价值观目标: 通过联系、发展、对立与统一的思考方法对学生进行辨证唯物主义观点及美育教育,感受数学的价值,树立正确的数学观。
第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。