多边形内角和公式教案
- 格式:docx
- 大小:7.80 KB
- 文档页数:3
第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
这(n-2)个三角形的内角和正好是这个n边形的内角和。
由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。
例2:如果一个多边形的内角和是2160度,求这个多边形的边数。
五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。
《11.3.2 多边形的内角和》教学设计角和为360度ADB C【分成2个三角形180°×2=360°】【分割成4个三角形180°×4-360°=360°】【分割成3个三角形180°×3-180°=360°】小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和2.你知道五边形的内角和是多少度吗?A EBDCA EO《11.3.2 多边形的内角和》教案图1 图2分法二 〔投影4〕如图2,在边AB 上取一点O ,连OE 、OD 、OC ,则可以(5-1)个三角形。
∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°如果把五边形换成n 边形,用同样的方法可以得到n 边形内角和=(n 一2)×180°. 三、例题〔投影6〕例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 如图,已知四边形ABCD 中,∠A +∠C =180°,求∠B 与∠D 的关系.分析:∠A 、∠B 、∠C 、∠D 有什么关系? 解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360° 又∠A +∠C =180°∴∠B +∠D= 360°-(∠A +∠C )=180°这就是说,如果四边形一组对角互补,那么另一组对角也互补.〔投影7〕例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF 的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边12345ABCDEO 1234ABCDEOABCD第十一章三角形11.3 多边形及其内角和《11.3.2 多边形的内角和》导学案学习目标:1.能通过不同的方法探索多边形的内角和与外角和公式.2.会应用多边形的内角和与外角和公式进行有关计算.重点:多边形的内角和与外角和公式.难点:多边形的内角和公式的推导.一、知识链接1.三角形的内角和是多少?2.正方形,长方形的内角和是多少?一、要点探究探究点1:多边形的内角和问题:(1)从四边形的一个顶点出发可以引_____条对角线,它们将四边形分成____个三角形,那么四边形的内角和等于_______度.你能用以前学过的知识证明一下你的结论吗?已知:四边形ABCD.求证:四边形ABCD的内角和为180°.证法1:如图,连接AC,所以四边形被分为两个三角形,证法2:如图,在CD边上任取一点E,连接AE,DE,所以该四边形被分成三个三角形,证法3:如图,在四边形ABCD内部取一点E,连接AE,BE,CE,DE,把四边形分成四个三角形,证法4:如图,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形.方法总结:这四种方法都运用了转化思想,把四边形分割成三角形,转化到已经学了的三角形内角和求解.(2)从五边形的一个顶点出发可以引______条对角线,它们将五边形分成_______个三角形,那么五边形的内角和等于多少度?(3)从n边形的一个顶点出发可以引几条对角线?它们将n边形分成几个三角形?那么n边形的内角和等于多少度?多边形的图形分割出的三角形个数多边形的内角和边数456……………………n要点归纳:n边形的内角和等于____________________.例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.要点归纳:如果四边形的一组对角互补,那么另外一组对角也____________. 【变式题】如图,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE∥DF,求证:△DCF为直角三角形.方法总结:由四边形的一组对角互补,知另外一组对角也互补,再结合角平分线、平行线的性质,运用整体思想即可求解.例2 一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?1. 若一个多边形的内角和等于720,则这个多边形的边数是________.2.五边形的内角和为 ,十边形的内角和为 .3.下列度数中,不可能是某个多边形的内角和的是( )A.180B.270C.2700D.720°探究点2:多边形的外角和如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.问题1:任意一个外角和它相邻的内角有什么关系?问题2:五个外角加上它们分别相邻的五个内角和是多少?问题3:这五个平角和与五边形的内角和、外角和有什么关系?解:五边形外角和=5个平角-五边形内角和问题4:在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和.n边形的外角和又是多少呢?要点归纳:n边形的外角和等于360°.与边数无关.问题5:回想正多边形的性质,正多边形的每个内角是_______度,每个外角是______.例3 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数. 例4如图,在正五边形ABCDE中,连接BE,求∠BED的度数.1.若一个正多边形的内角是120 °,那么这是正____边形.2.已知多边形的每个外角都是45°,则这个多边形是______边形.1.判断.(1)当多边形边数增加时,它的内角和也随着增加.( )(2)当多边形边数增加时,它的外角和也随着增加.( )(3)三角形的外角和与八边形的外角和相等. ( )2.一个正多边形的内角和为720°,则这个正多边形的每一个内角等于______.3.如图所示,小华从点A出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地点A时,走的路程一共是_____米.4.一个多边形的内角和不可能是()A.1800°B.540 °C.720 °D.810 °5.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360°B.540 °C.720 °D.900 °6. 一个多边形的内角和为1800°,截去一个角后,求得到的多边形的内角和.拓展提升7.如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.《11.3.2 多边形的内角和》导学案学习目标1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些较简单的问题2、能推导出多边形内角和计算公式学习重点:多边形的内角和以及外角和学习难点:用分割多边形法推导多边形的内角和与外角和学习过程一、学前准备1.你三角形的内角和是多少度吗?三角形的内角和等于2.长方形的内角和等于,正方形的内角和等于二、合作探究1. 探索四边形的内角和你有什么办法?能否利用对角线将四边形分割成三角形的方法探索?(下面是备用图)结论:四边形的内角和等于2. 探索五边形的内角和 你有什么办法?能否利用对角线将五边形分割成三角形的方法探索?(下面是备用图)结论:五边形的内角和等于3、探索多边形内角和你能用刚才类似的方法计算出n边形的内角和吗?结论:多边形内角和等于 三、新知应用例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?ABCD例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?结论:多边形的外角和等于 .四、巩固练习 1.教材24页练习12.教材24页练习23.教材24页练习3五、课堂小结1.通过本节课的学习,你有什么收获?2.你还有什么疑问?六、当堂清1.七边形的内角和是( )A.360°B.720°C.900°D.1 260° 2. 内角和与外角和相等的多边形一定是( ) A.八边形 B.六边形 C.五边形 D.四边形1234A BCDEF563. 正十二边形的每一个外角等于_________.4.如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=____________.5.一个多边形的每一个外角等于36°,则该多边形的内角和等于__________.6.在四边形ABCD中,∠A=90°,∠B∶∠C∶∠D=1∶2∶3,则∠B=_________,∠C=_________,∠D=__________.7.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值.8.如图所示,四边形ABCD中,∠B=∠D=90°,CF平分∠BCD.若AE∥CF,由公式判定AE是否平分∠BAD.说明理由.参考答案:1.C 2.D 3. 30° 4,. 6 5. 1 440° 6. 45° 90° 135°7.根据题意有:3×90+2n=(5-2)×180,得n=135.8.AE平分∠BAD,理由如下:因为AE∥CF,所以∠DEA=∠DCF,∠CFB=∠EAB,又∠DCF=∠BCF,∠BCF+∠BFC=90°,∠DEA+∠DAE=90°,所以∠DAE=∠BFC=∠EAB.所以AE平分∠BAD.《11.3.2 多边形的内角和》导学案▲导学卡一、学习目标:1、了解多边形的外角及外角和;探索多边形的外角和公式,并会利用多边形的内角和与外角和进行有关计算.2、学习重点:多边形的外角和定理及其应用;学习难点:多边形的外角和定理的推导.二、学习任务:(一)新课导入:1、三角形中与所组成的角叫三角形的外角.三角形中与一个内角相邻的有个外角,它们.三角形的外角和是°.2、如图,一只甲虫从点A 出发,沿A-B-C-D-E-A-B的线段爬行,最后爬到点B,这只甲虫在爬行中转过的角的度数总和是多少?这个度数总和与五边形ABCDE的关系如何?相信通过今天的学习你就能就解决.(二)感悟新知:1、与多边形的每个内角相邻的外角分别有两个,这两个外角是对顶角.从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和.如图右图所示,+++就是四边形ABCD的外角和.2、根据n边形的每一个内角与它的相邻的外角都,可以求得n边形的外角和.为了求得n边形的外角和,请将数据填入下表.因此,任意多边形的外角和都为________.(三)合作交流:3、交流上面的1、2两题.4、请你试着解决新课导入的第2个问题.▲训练卡:大显身手:1、根据右图填空:(1)∠1=∠C+___________,∠2=∠B+______________;(2)∠A+∠B+∠C+∠D+∠E=_________+∠1+∠2=_________.想一想,这个结论对任意的五角星是否都成立.2、一个多边形的外角和是内角和的27,求这个多边形的边数.3、求下列多边形的内角和的度数:(1)五边形;(2)八边形;(3)十二边形.4、已知多边形的内角和的度数分别如下,求相应的多边形的边数:(1)900°;(2)1980°;(3)2700°.百尺竿头:5、已知在一个十边形中,九个内角的和的度数是1290°,求这个十边形的另一个内角的度数.6、正八边形的每一个外角是多少度?7、如果一个正多边形的每个外角是24°,那么这个多边形有多少条边?《11.3.2 多边形的内角和》同步练习一、选择题1.七边形内角和的度数是()A.1 080°B.1 260°C.1 620°D.900°2.下列多边形中,内角和与外角和相等的是( ) A . 四边形 B . 五边形 C . 六边形 D . 八边形3.一个多边形的每个外角都等于72°,则这个多边形的边数为( ) A . 5 B . 6 C . 7 D . 84.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( ) A . 120°B . 180°C . 240°D . 300°5.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( ) A . 5B . 5或6C . 5或7D . 5或6或76.已知正n 边形的一个内角为135°,则边数n 的值是( ) A . 6B . 7C . 8D . 107.如图,过正五边形ABCDE 的顶点A 作直线l∥BE,则∠1的度数为( ) A . 30°B . 36°C . 38°D . 45°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是( ) A . 3 B . 4C . 5D . 6二、填空题9.从n 边形的一个顶点出发,可以引____条对角线,它们将n 边形分为____个三角形, n 边形的内角和是 ,外角和是。
多边形内角和教案一、教学目标:1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、推理、归纳等方法探究多边形内角和的计算公式。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 多边形内角和的概念。
2. 多边形内角和的计算公式。
三、教学重点与难点:1. 教学重点:多边形内角和的概念,多边形内角和的计算公式的推导与应用。
2. 教学难点:多边形内角和的计算公式的推导过程。
四、教学方法:1. 采用问题驱动法,引导学生观察、思考、推理、归纳。
2. 利用图形演示,帮助学生直观理解多边形内角和的概念。
3. 小组合作探究,培养学生合作学习的能力。
五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角。
2. 新课导入:介绍多边形内角和的概念,引导学生理解多边形内角和的意义。
3. 教学活动:a. 让学生观察多边形,尝试计算多边形的内角和。
b. 引导学生通过实际操作,发现多边形内角和的计算规律。
c. 组织学生进行小组讨论,总结多边形内角和的计算公式。
4. 知识拓展:引导学生运用多边形内角和的计算公式解决实际问题。
5. 课堂小结:总结本节课所学内容,强调多边形内角和的概念及计算公式的应用。
6. 作业布置:布置一些有关多边形内角和的练习题,巩固所学知识。
7. 课后反思:对本节课的教学过程进行总结,反思教学方法的运用,为下一步教学做好准备。
六、教学评价:1. 通过课堂提问、练习和小测验,评估学生对多边形内角和概念的理解程度。
2. 观察学生在小组合作探究中的表现,评估其合作能力和问题解决能力。
3. 收集学生完成的作业,评估其对多边形内角和计算公式的掌握及应用能力。
七、教学资源:1. 多边形内角和的概念介绍PPT。
2. 多边形图形示例和练习题。
3. 计算器或纸笔计算工具。
4. 小组讨论活动所需材料。
八、教学进度安排:1. 第一课时:介绍多边形内角和的概念,引导学生观察和思考。
2. 第二课时:学生通过实际操作和小组讨论,发现多边形内角和的计算规律。
八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。
我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。
八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。
教学重、难点:教学重点:1、多边形内角和公式。
2、计算多边形的内角和及依据内角和确定多边形边数。
教学难点:多边形内角和公式的推导。
一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。
(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。
)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。
5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。
(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。
)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。
多边形的内角和教学教案多边形的内角和教案篇一一、教学目标知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。
情感态度与价值观目标:养成实事求是的科学态度。
二、教学重难点教学重点:多边形的内角和公式教学难点:多边形内角和公式三、教学方法讲解法、练习法、分小组讨论法四、教学过程结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、生成新知、深化新知、巩固新知、小结作业。
1. 导入新知首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。
通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。
2. 生成新知接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。
由此生成我们的新知识:多边形的内角和公式180*(n-2)。
验证:七边形验证在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。
3. 深化新知再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。
这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。
11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。
(2)能对多边形的内角和公式进行应用,解决实际问题。
(3)掌握多边形的外角和定理,并能运用。
2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。
(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。
二、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。
难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
三、教法:启发式、探索式四、学法:自主探索、合作交流五、前置作业:1、做一个不规则四边形学具;2、用尽可能多的方法探究多边形的内角和。
(目的:一是让学生结合自己已有的生活经验,尝试应用更多的方法来探究多边形的内角和。
二是制作一个学具,通过操作学具来触发学生的思考,为重难点的突破打好基础。
)六、教学过程:(一)创设问题情境,导入新课课件出示一组生活中的图片问题1:看完这组图片,你能抽象出哪些几何图形问题2:生活中有如此多几何图形,你对它们有多少了解?设置意图:学生能说出发现了三角形、四边形、五边形、六边形、八边形…进而指出什么是多边形。
老师指出三角形是最简单的多边形,三角形的内角和是180度,那多边形的内角和是多少呢?从而顺利引入新课。
过渡语:我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么四边形、五边形、六边形呢?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。
”(板书课题)二、合作交流、探究新知活动一:探究“任意四边形的内角和”问题1:任意四边形的内角和是多少度?你是怎样得到的?你能找到几种方法?活动任务:用用尽可能多的方法探索四边形的内角和活动要求:1.先自己想,再小组交流。
《多边形的内角和》数学教案标题:《多边形的内角和》数学教案一、教学目标:1. 知识与技能:让学生理解并掌握多边形的内角和定理,能够熟练地运用公式求解多边形的内角和。
2. 过程与方法:通过探究、观察、归纳等活动,培养学生的分析问题和解决问题的能力,提高他们的逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、敢于质疑的精神。
二、教学重点与难点:1. 重点:理解和掌握多边形的内角和定理,能熟练运用公式进行计算。
2. 难点:引导学生从特殊到一般,通过观察、思考、归纳出多边形的内角和公式。
三、教学过程:(一)导入新课教师出示一组图形(三角形、四边形、五边形等),提问:“这些图形的内角有什么关系?”引发学生思考,并引入本节课的主题——多边形的内角和。
(二)新知讲解1. 引导学生观察三角形的内角和,发现其内角和为180度。
然后引导学生尝试找出四边形、五边形的内角和,从而引出多边形的内角和公式:n边形的内角和=(n-2)*180度。
2. 教师讲解多边形的内角和公式的推导过程,强调这是从特殊到一般的推理过程。
(三)实践应用设计一系列的练习题,让学生运用多边形的内角和公式解决实际问题,巩固所学知识。
(四)课堂小结师生共同回顾本节课的内容,总结多边形的内角和公式及其推导过程,强化学生的记忆。
(五)作业布置布置一些有关多边形的内角和的习题,供学生在课后自我检测和复习。
四、教学反思:在教学过程中,要注重引导学生自主探究,让他们在实践中发现问题、提出问题、解决问题。
同时,也要注意培养学生的逻辑思维能力和创新精神,使他们在学习中体验到成功的喜悦,增强学习数学的信心和兴趣。
多边形内角和——小学数学教案一、教学目的1. 理解多边形的概念,认识多边形的性质。
2. 掌握三角形、四边形、五边形等多边形的内角和公式及其证明方法。
3. 认识多边形内角和规律,深化对角度的理解。
4. 培养学生的数学思维能力和计算能力。
二、重点难点1. 多边形内角和公式及其证明方法。
2. 多边形内角和规律的理解和运用。
三、教学过程1. 导入新知识通过投影、拼图、游戏等方式引导学生认识多边形,引导学生猜想、探究多边形的性质。
2. 提出问题通过示意图引导学生思考:不同的多边形,它们的内角和是否相同?如何计算多边形的内角和?并对不同的多边形进行讨论。
3. 引入多边形内角和公式及其证明引入三角形内角和公式及其证明:画一条线段AB,两条边分别与AB相交,得到3个角,三个角之和为180°;如此画线段得到n-2个角,则n边形内角和为(n-2)×180°。
再引入四边形内角和公式:利用四边形内角和等于两个三角形内角和之和,即四边形ABCD的内角和为A、B、C、D四个角的内角和相加,再减去心形角的度数,即360度减去两个对角线的夹角。
引入五边形(六边形)的内角和的计算方法,通过类似的方法,建立多边形内角和计算公式。
4. 练习巩固让学生根据公式计算五边形、六边形的内角和,及相应的三角形、四边形的内角和。
利用小组竞赛、抢答等形式,增强学生的计算和思维能力。
5. 综合应用引导学生应用所学内角和的知识,根据图形的特征判断其类型,并计算其内角和。
引导学生应用所学外角和内角和的关系,进一步加深学生对角度的理解和认识。
6. 课后作业布置相应的练习题,巩固所学知识。
可以自主调研及学习相关经典定理和证明方法。
四、教学后记1. 在引入公式及其证明过程中,可以采用举例、示意图、演算等多种方式,让学生更清晰地理解公式的含义。
2. 在练习环节中,可以用游戏化的方式进行,增加趣味性,激发学生的学习兴趣。
3. 通过引导学生综合应用,可以使学生更好地把所学知识融会贯通,掌握其应用方法,取得更好的教学效果。
《多边形的内角和》优秀教学设计《多边形的内角和》优秀教学设计作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。
我们该怎么去写教学设计呢?以下是店铺整理的《多边形的内角和》优秀教学设计,希望对大家有所帮助。
学情分析:学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。
针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。
教学目标:1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。
2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。
3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。
教学重点:多边形的内角和公式。
教学难点:探索多边形的内角和定理的推导教学过程:一、创设情境,导入新课1、请看:我身后的建筑物是什么?─水立方。
我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)这节课咱们一起来探究《多边形的内角和》。
二、合作交流,探究新知1、多边形的内角和问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。
如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?预设回答:三角形的内角和360°。
四边形的内角和360°知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?预设回答:能,可以引对角线,将多边形分成几个三角形。
多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。
情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]教学重点:多边形的内角和。
的应用。
教学难点:探索多边形的内角和与外角和公式过程。
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。
[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。
n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。
)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。
五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。
多边形的内角和教学设计及说课稿这是多边形的内角和教学设计及说课稿,是优秀的数学教案文章,供老师家长们参考学习。
多边形的内角和教学设计及说课稿第1篇一、教学任务分析1、教学目标定位根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。
因此,确定如下教学目标:(1).知识技能目标让学生掌握多边形的内角和的公式并熟练应用。
(2).过程和方法目标让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。
(3).情感目标激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。
2、教学重、难点定位教学重点是多边形的内角和的得出和应用。
教学难点是探索和归纳多边形内角和的过程。
二、教学内容分析1、教材的地位与作用本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。
本节课作为第七章第三节,起着承上启下的作用。
在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。
2、联系及应用本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。
因此多边形的边、内角、内角和等等都可以同三角形类比。
通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。
而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。
三、教学诊断分析学生对三角形的知识都已经掌握。
让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。
由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。
.多边形的内角和学习目标.理解并掌握多边形的内角、外角等观点;.能经过不一样方法研究多边形的内角和与外角和公式,并会应用它们进行有关计算. (要点、难点 )教课过程一、情境导入察看以下图片,你能找出哪些我们熟习的图形?今日我们给图形取了一个一致的名字——多边形,那么什么是多边形?怎样定义多边形呢?二、合作研究研究点一:多边形内角和【种类一】多边形的观点一个长方形剪去一个角,则它有可能是边形.分析:如下图:沿对角线剪去时,可获取三角形;沿一个极点和另一边上的一点剪时,可获取四边形;当沿相邻两边上的随意两点(不包括两头点 ) 剪时,可获取五边形.故填:三或四或五.方法总结:掌握多边形的观点是解决此类问题的要点,但注意分类议论不要遗漏.变式训练:见《学练优》本课时练习“课后稳固提高”第题【种类二】多边形的内角和与外角和若一个多边形的内角和是其外角和的倍,求这个多边形的边数.分析:任何多边形的外角和都是°,即这个多边形的内角和是× °,边形的内角和是(- ) ·°,假如已知多边形的边数,就能够获取一个对于边数的方程,解方程就能够求出多边形的边数.解:设多边形的边数为,依据题意,得(- ) ·=×,解得=.则这个多边形的边数是.方法总结:已知多边形的内角和求边数,能够转变为方程的问题来解决.变式训练:见《学练优》本课时练习“课后稳固提高”第题【种类三】多边形的对角线若一个多五边形中,从极点最多可引条对角线,能够把这个五边形分红个三角形.边形的边数为,则从一个极点最多可引条对角线.分析:不相邻的两个极点之间的连线就是对角线,边形中,与一个极点不相邻的极点有( -)个,因此对角线有( -)条.这 (-)条对角线能够把这个边形分红( -)个三角形.据此即可求解.五边形中,从极点最多可引条对角线,能够把这个五边形分红个三角形.若一个多边形的边数为,则从一个极点最多可引(- )条对角线.故答案是:,, (- ).方法总结:此题考察的是多边形的对角线的有关知识,熟记对角线确实定方法是解答此题的要点.变式训练:见《学练优》本课时练习“课后稳固提高”第题【种类四】正多边形一个正多边形的每个外角都等于与它相邻的内角的,求这个正多边形的边数.分析:正多边形的每个内角都相等,每个外角也都相等,能够依据正多边形的内角和、外角和与边数的关系求解.也能够依据相邻的内角和外角的互补关系求解.解:解法: (直接设元法 )正多边形的边数为,则它的每个外角为,每个内角为,那么=×,解得= .答:这个正多边形的边数是.解法: (间接设元法 ) 设这个正多边形的每个内角为°,则每个外角为 ()° .由题意,得+=,解得=,=×= .∴每个外角是 ()°,∴这个正多边形的边数为÷= .答:这个正多边形的边数为.方法总结: () 正多边形的每一个内角都相等,每一个外角也都相等;()正边形的每一个内角都等于;()正边形的每一个外角都等于;() 多边形的每个内角与其相邻的外角都互补.变式训练:见《学练优》本课时练习“讲堂达标训练”第题研究点二:多边形的不稳固性以下图形中拥有稳固性的是()分析:三角形拥有稳固性,其余多边形不拥有稳固性,把多边形切割成三角形则多边形的形状就不会改变,因此拥有稳固性的是.应选 .方法总结:此题考察三角形稳固性的实质应用,三角形的稳固性在实质生活中有着宽泛的应用,如钢架桥、房子架梁等.所以要使一些图形拥有稳固的构造,常常经过连结协助线转变为三角形而获取.变式训练:见《学练优》本课时练习“讲堂达标训练”第题教课反省本节课主要研究多边形的内角和公式.内角和是化归为三角形将问题解决,而外角和则关注内角与外角的关系,将外角和化归为内角和,化归思想是数学中的重要思想方法,应付学生进行训练和加强.经过例题的一题多解,拓展学生的思路,四边形的不稳固性的应用让学生再次感觉数学根源于实践,能够激发学生学习数学的兴趣学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。
多边形的内角和教学设计【优秀15篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!多边形的内角和教学设计【优秀15篇】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
多边形内角和教案一、教学目标1. 让学生理解多边形的内角和的概念。
2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。
3. 培养学生的观察能力、思考能力和动手实践能力。
4. 让学生掌握多边形内角和的计算方法,并能应用于实际问题。
二、教学内容1. 多边形内角和的概念。
2. 多边形内角和的计算规律。
3. 多边形内角和的计算方法。
三、教学重点与难点1. 教学重点:多边形内角和的概念,多边形内角和的计算方法。
2. 教学难点:多边形内角和的计算规律的发现和证明。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究,发现多边形内角和的计算规律。
2. 使用多媒体辅助教学,展示多边形的内角和计算过程。
3. 组织学生进行小组讨论和实践,培养学生的合作意识和动手实践能力。
五、教学过程1. 导入:通过展示一些多边形的图片,引导学生关注多边形的内角和。
2. 新课导入:介绍多边形内角和的概念,引导学生理解多边形内角和的意义。
3. 探究活动:让学生通过观察、思考、探究,发现多边形内角和的计算规律。
4. 讲解:讲解多边形内角和的计算方法,并示例讲解。
5. 实践环节:组织学生进行小组讨论和实践,让学生自己动手计算多边形的内角和。
6. 总结:对本节课的内容进行总结,巩固学生对多边形内角和的理解。
7. 作业布置:布置一些有关多边形内角和的练习题,让学生巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对多边形内角和概念的理解程度,以及学生对多边形内角和计算方法的掌握情况。
2. 小组讨论:观察学生在小组讨论中的参与程度,以及他们的合作意识和解决问题的能力。
3. 作业批改:通过批改学生的练习题,了解学生对多边形内角和计算方法的掌握情况,以及他们在实际问题中的应用能力。
七、教学反思在课后,教师应认真反思本节课的教学效果,包括学生的学习兴趣、参与程度、知识掌握情况等。
教师还应根据学生的反馈,调整教学方法和策略,以提高教学效果。
《多边形的内角和》教案(通用7篇)《多边形的内角和》篇1一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.讲解新课1.四边形的外角与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.2.外角和定理例1 已知:如图4-11,四边形abcd的四个内角分别为,每一个顶点处有一个外角,设它们分别为 .求 .(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).(2)教给学生一组外角的画法——同向法.即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.证得:360°外角和定理:四边形的外角和等于360°3.四边形的不稳定性①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的外形和大小,已知一边一夹角,作三角形你会吗?(学生回答)②若以为边作四边形abcd.提示画法:①画任意小于平角的 .②在的两边上截取 .③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d 点.④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.大家比较一下,所作出的图形的外形一样吗?这是为什么呢?因为的大小不固定,所以四边形的外形不确定.③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的外形改变了,这说明四边形没有稳定性.教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:①四边形改变外形时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的外形就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据.(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.总结、扩展1.小结:(1)四边形外角概念、外角和定理.(2)四边形不稳定性的应用和克服不稳定性的理论根据.2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积八、布置作业教材p128中4.九、板书设计十、随堂练习教材p124中1、2补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则度.(2)在四边形abcd中,若分别与相邻的外角的比是1:2:3:4,则度, 度, 度, 度(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.《多边形的内角和》教案篇2一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.2.通过推导四边形内角和定理,对学生渗透化归思想.3.会根据比较简单的条件画出指定的四边形.4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美.二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.第一课时七、教学步骤复习引入在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.引入新课用投影仪打出课前画好的教材中p119的图.师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).讲解新课1.四边形的有关概念结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:(1)要结合图形.(2)要与三角形类比.(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.2.四边形内角和定理教师问:(1)在图4-3中对角线ac把四边形abcd分成几个三角形?(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?(3)若在四边形abcd 如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形.我们知道,三角形内角和等于180°,那么四边形的内角和就等于:①2×180°=360°如图4—6;②4×180°-360°=360°如图4-7.例1 已知:如图4—8,直线于b、于c.求证:(1) ; (2) .本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出.总结、扩展1.四边形的有关概念.2.四边形对角线的作用.3.四边形内角和定理.八、布置作业教材p128中1(1)、2、 3.九、板书设计四边形(一)四边形有关概念四边形内角和例1十、随堂练习教材p122中1、2、3.《多边形的内角和》教案篇37.3.2 《多边形的内角和》教案教学任务分析教学目标知识目标了解多边形的内角和与外角和公式,进一步了解转化的数学思想能力目标1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。
教案:多边形内角和年级:四年级下册科目:数学版本:苏教版教学目标:1. 理解多边形的内角和概念,能够准确计算多边形的内角和。
2. 掌握多边形内角和的计算公式,能够运用公式解决相关问题。
3. 培养学生的观察能力、逻辑思维能力和团队合作能力。
教学重点:1. 多边形内角和的概念和计算公式。
2. 运用公式解决实际问题。
教学难点:1. 理解多边形内角和的计算原理。
2. 解决与多边形内角和相关的复杂问题。
教学准备:1. 教学课件或黑板。
2. 多边形模型或图片。
3. 练习题。
教学过程:一、导入1. 引导学生回顾已学的平面图形,如三角形、四边形等。
2. 提问:这些图形有哪些共同特点?引导学生发现它们都是由直线段围成的,称为多边形。
二、探究多边形内角和1. 引导学生观察多边形的内角,提问:多边形的内角和是多少?2. 分组讨论,每组尝试用不同的方法计算多边形的内角和。
3. 各组分享计算方法,引导学生总结出多边形内角和的计算公式。
三、讲解多边形内角和的计算公式1. 根据学生的讨论结果,给出多边形内角和的计算公式:(n-2)×180°,其中n为多边形的边数。
2. 通过实例演示,讲解如何运用公式计算多边形的内角和。
3. 强调公式中的n必须大于等于3,因为三角形是最简单的多边形。
四、练习与应用1. 出示一些多边形的图片或模型,让学生计算它们的内角和。
2. 让学生尝试解决一些与多边形内角和相关的实际问题,如计算房间内各个角落的角度和等。
3. 引导学生发现多边形内角和在日常生活中的应用,如建筑设计、地理测量等。
五、总结与拓展1. 让学生总结本节课所学的内容,包括多边形内角和的概念、计算公式和应用。
2. 提问:还有哪些与多边形内角和相关的有趣问题?引导学生进行拓展思考。
教学反思:本节课通过引导学生观察、讨论和总结,让学生掌握了多边形内角和的概念和计算方法。
在教学过程中,要注意让学生充分理解公式的推导过程,避免死记硬背。