误差反传算法及BP网络
- 格式:pptx
- 大小:762.09 KB
- 文档页数:66
bp反向传播算法的原理
反向传播算法是一种用于训练人工神经网络的方法,它通过计
算网络输出与实际输出之间的误差,并将误差反向传播到网络的每
一层,以调整网络中的权重和偏置,从而最小化误差。
下面我将从
多个角度来解释反向传播算法的原理。
首先,让我们考虑一个简单的多层前馈神经网络,它由输入层、隐藏层和输出层组成。
反向传播算法的目标是调整网络中的权重和
偏置,使得网络的输出尽可能接近实际输出。
算法的核心思想是利
用梯度下降法来最小化损失函数,而梯度是损失函数对于权重和偏
置的偏导数。
在反向传播算法中,首先通过前向传播计算出网络的输出,并
计算出实际输出与期望输出之间的误差。
然后,通过反向传播,将
误差从输出层传播回隐藏层,再传播回输入层,同时计算每一层的
权重和偏置的梯度。
接着,利用梯度下降法来更新权重和偏置,使
得损失函数逐渐减小,直到达到收敛的状态。
在计算梯度的过程中,反向传播算法利用链式法则来计算每一
层的梯度,将误差从输出层一直传播到输入层。
这样,每一层的权
重和偏置都可以根据其对误差的贡献来进行调整,从而使整个网络逐渐学习到正确的表示和预测能力。
此外,反向传播算法还涉及到一些细节问题,比如选择合适的激活函数、初始化权重和偏置、设置学习率等。
这些都会影响算法的收敛速度和性能。
总的来说,反向传播算法通过计算网络输出与实际输出之间的误差,并将误差反向传播到网络的每一层,利用梯度下降法来调整权重和偏置,从而使网络逐渐学习到正确的表示和预测能力。
这就是反向传播算法的原理。
简要阐明bp反向传播算法的原理反向传播(Back Propagation,BP)是一种常用于神经网络训练的算法,其主要目的是通过计算误差的梯度来更新网络的权重,以使网络能够更好地逼近目标函数。
以下是BP算法的简要原理。
1.前向传播:假设我们有一个神经网络,包含多个输入层、隐藏层和输出层。
在前向传播阶段,我们通过计算输入层数据的加权和,并使用激活函数将其转化为隐藏层节点的输出。
然后,将隐藏层节点的输出进行相同的加权和和激活函数处理,得到输出层的输出。
这个过程一直持续到输出层。
2.计算误差:我们将神经网络的输出与目标值进行比较,计算输出的误差。
常见的误差函数包括均方误差(MSE)和交叉熵误差(Cross-Entropy Error)等。
3.反向传播:在反向传播阶段,我们将误差从输出层向隐藏层进行反向传播。
首先,计算输出层上每个节点的误差梯度。
然后,将这些梯度通过链式法则传递到隐藏层节点,并计算隐藏层节点的误差梯度。
这个过程一直持续到输入层。
4.权重更新:通过计算每个权重上的梯度,可以得到网络的误差关于权重的导数。
然后,使用梯度下降法或其他优化算法来更新每个权重的值。
常见的优化算法包括随机梯度下降法(Stochastic Gradient Descent,SGD)和动量法(Momentum)等。
总结:反向传播算法通过前向传播计算网络的输出,然后计算误差,并通过反向传播计算误差梯度。
再根据梯度更新网络的权重,不断迭代,直到达到训练的终止条件。
这个过程使得神经网络能够学习到与目标函数相关的输入和输出之间的关联关系,从而在给定新输入时能够产生准确的预测。
尽管BP算法存在一些缺点,如容易陷入局部极小值等,但在实践中仍然是一种广泛使用的训练算法。
基本介绍含有隐层的多层前馈网络能大大提高神经网络的分类能力,但长期以来没有提出解决权值调整问题的游戏算法。
1986年Rumelhart (鲁梅尔哈特)和McCelland (麦克勒兰德)等人提出并行分布处理(PDP )的理论,同时提出了多层网络的误差反向传播学习算法,简称BP 算法。
这种算法根据学习的误差大小,把学习的结果反馈到中间层次的隐单元,改变它的权系数矩阵,从而达到预期的学习目的,解决了多层网络的学习问题。
BP 算法从实践上证明神经网络的运算能力很强,可以完成许多学习任务,解决许多具体问题。
BP 网络是迄今为止最常用、最普通的网络。
BP 算法也称误差反向传播(Error Back Propagation, BP )算法。
BP 算法实质是求均方误差函数的最小值问题,这种算法采用非线性规划中的最速下降法,按误差函数的负梯度方向修改权系数。
网络结构o 1 … o k … o lW 1○ W k ○ W l ○y 1○ y 2○ … ○ y j … ○y mV 1 V m○ ○ ○ ○ ○x 1 x 2 … x i … x n-1 x nBP 网络结构模型的数学表达式输入向量: T n i x x x x X ),...,,...,,(21=隐层输出向量: T m j y y y y Y ),...,,...,,(21=输出层输出向量: T l k o o o o O ),...,,...,,(21=期望输出向量:T l k d d d d d ),...,,...,,(21=输入层到隐层之间的权值矩阵:),...,,...,,(21m J V V V V V =隐层到输出层之间的权值矩阵:),...,,...,,(21l k W W W W W =算法基本思想核心思想:将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号。
学习过程由信号的正向传播与误差的反向传播两个过程组成。
1 反向传播算法和BP网络简介
误差反向传播算法简称反向传播算法(即BP算法)。
使用反向传播算法的多层感知器又称为BP神经网络。
BP算法是一个迭代算法,它的基本思想为:(1)先计算每一层的状态和激活值,直到最后一层(即信号是前向传播的);(2)计算每一层的误差,误差的计算过程是从最后一层向前推进的(这就是反向传播算法名字的由来);(3)更新参数(目标是误差变小)。
迭代前面两个步骤,直到满足停止准则(比如相邻两次迭代的误差的差别很小)。
本文的记号说明:
下面以三层感知器(即只含有一个隐藏层的多层感知器)为例介绍“反向传播算法(BP 算法)”。
2 信息前向传播
3 误差反向传播
3.1 输出层的权重参数更新
3.2 隐藏层的权重参数更新
3.3输出层和隐藏层的偏置参数更新
3.4 BP算法四个核心公式
3.5 BP 算法计算某个训练数据的代价函数对参数的偏导数
3.6 BP 算法总结:用“批量梯度下降”算法更新参数
4 梯度消失问题及其解决办法
5 加快 BP 网络训练速度:Rprop 算法。
bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。
它可以用于分类、回归和其他许多任务。
BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。
BP神经网络的基本结构包括输入层、隐藏层和输出层。
每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。
神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。
通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。
BP神经网络的训练包括两个关键步骤:前向传播和反向传播。
前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。
反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。
在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。
误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。
利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。
通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。
然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。
为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。
总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。
通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。
bp算法原理BP算法原理BP算法是神经网络中应用最广泛的一种学习算法,它的全称是“反向传播算法”,用于训练多层前馈神经网络。
BP算法基于误差反向传播原理,即先通过前向传播计算网络输出值,再通过反向传播来调整各个神经元的权重,使误差函数最小化。
BP算法的步骤如下:1. 初始化:随机初始化网络每个神经元的权重,包括输入层、隐藏层和输出层的神经元的权重。
2. 前向传播:将训练样本输送到输入层,通过乘积和运算得到每个隐藏层神经元的输出,再通过激活函数得到隐藏层神经元的实际输出值。
然后,将隐藏层的输出值输送到输出层,按照同样的方法计算输出层神经元的输出值。
3. 反向传播:通过误差函数计算输出层神经元的误差值,然后反向传播计算隐藏层神经元的误差值。
4. 权值调整:按照梯度下降法,计算误差对每个神经元的权重的偏导数,根据偏导数的大小来调整各个神经元的权重,使误差逐渐减小。
5. 重复步骤2~4,直到误差小到一定程度或者训练次数达到预定值。
其中,误差函数可以选择MSE(Mean Squared Error)函数,也可以选择交叉熵函数等其他函数,不同的函数对应不同的优化目标。
BP算法原理的理解需要理解以下几个方面:1. 神经元的输入和输出:神经元的输入是由上一层神经元的输出和它们之间的权重乘积的和,加上神经元的偏置值(常数)。
神经元的输出是通过激活函数把输入值转化为输出值。
2. 前向传播和反向传播:前向传播是按照输入层到输出层的顺序计算神经元的输出值。
反向传播是一种误差反向传播的过程,它把误差从输出层往回传递,计算出每个神经元的误差,然后调整各个神经元的权重来使误差逐渐减小。
3. 梯度下降法:梯度下降法是一种优化算法,根据误差函数的梯度方向来寻找误差最小的点。
BP算法就是基于梯度下降法来优化误差函数的值,使神经网络的输出结果逼近实际值。
综上所述,BP算法是一种常用的神经网络学习算法,它利用前向传播和反向传播的过程来调整神经元的权重,不断优化误差函数的值,从而使神经网络的输出结果更加准确。
【机器学习】误差逆传播算法(反向传播算法)误差逆传播算法(error BackPropagation,BP)是神经⽹络中常⽤的传播算法。
BP算法不仅可以应⽤于多层前馈神经⽹络,还可以应⽤于其他类型的神经⽹络,如训练递归神经⽹络。
通常所说的“BP⽹络”⼀般是指⽤BP算法训练的多层前馈神经⽹络。
给定训练集 $ D=\left \{ (x_{1},y_{1}),(x_{2},y_{2}),..., (x_{m},y_{m})\right \},x_{i}\in \mathbb{R}^{d},y_{i}\in \mathbb{R}^{l} $ ,即输⼊由 $ d $ 个属性描述,输出 $ l $ 维实值向量。
为便于讨论,给出有 $ d $ 个神经元、 $ l $ 个输出神经元、 $ q $ 个隐层神经元的多层前馈⽹络结构,其中输出层第 $ j $ 个神经元的阈值⽤ $ \theta _{j} $ 表⽰,隐层第 $ h $ 个神经元的阈值⽤ $ \gamma _{h} $ 表⽰。
输⼊层第 $ i $ 个神经元与隐层第 $ h $ 个神经元之间的连接权重为 $ v_{ih} $ ,隐层第 $ h $ 个神经元与输出层第 $ j $ 个神经元之间的连接权重为 $ w_{ih} $ 。
记隐层第 $ h $ 个神经元接收到的输⼊为$$\begin{align}\alpha _{h}=\sum_{i=1}^{d}v_{ih}x_{i}\nonumber\end{align}$$输出层第 $ j $ 个神经元接收到的出⼊为$$\begin{align}\beta _{j}=\sum_{h=1}^{q}w_{hj}b_{h}\nonumber\end{align}$$其中 $ b_{h} $ 为隐层第 $ h $ 个神经元的输出。
假设隐层和输出层的激活函数为Sigmoid函数。
对训练集 $ (x_{k}, y_{k}) $ ,假定神经⽹络的输出为$$\begin{align}\hat y_{k}=\left (\hat y_{1}^{k}, \hat y_{2}^{k}, ..., \hat y_{l}^{k} \right )\nonumber\end{align}$$即$$\begin{align}\hat y_{l}^{k}=f\left ( \beta _{j}-\theta _{j} \right )\end{align}$$则⽹络在 $ (x_{k}, y_{k}) $ 上的均⽅误差为$$\begin{align}E_{k}=\frac{1}{2}\sum_{j=1}^{l}\left ( \hat y_{j}^{k}- y_{j}^{k} \right )^{2}\end{align}$$⽹络中需要更新的参数个数为 $ \left ( d+l+1 \right )q+l $ 个:输⼊层到隐层的 $ d\times q $ 个权值、隐层到输出层的 $ q\times l $ 个权值、 $ q $ 个隐层神经元的阈值, $ l $ 个输出层神经元的阈值。
BP算法及其优缺点BP算法,即反向传播算法(Backpropagation algorithm),是一种在人工神经网络中被广泛应用的训练算法。
它通过将误差从网络的输出层反向传播到输入层,来调整网络中的连接权值,以达到学习和逼近目标函数的目的。
BP算法的步骤如下:1.初始化网络的连接权值2.将输入样本送入网络,通过前向传播计算得到输出结果3.计算输出层的误差,并将误差反向传播到隐藏层和输入层4.根据误差调整连接权值5.重复步骤2-4,直到达到停止条件(如误差小于一些阈值或达到最大迭代次数)BP算法的优点包括:1.强大的拟合能力:BP算法适用于解决非线性问题,能够学习和逼近各种复杂的函数关系。
2.广泛适用性:BP算法可以应用于多种不同的学习任务,包括分类、回归、聚类等。
3.支持并行计算:BP算法可以通过多个节点同时计算数据的梯度,从而加速训练过程。
然而,BP算法也存在一些缺点:1.容易陷入局部最优解:BP算法的目标是最小化误差函数,但是由于其基于梯度下降的策略,容易陷入局部最优解而无法收敛到全局最优解。
2.训练速度慢:BP算法通常需要大量的训练样本和迭代次数才能达到较好的学习效果,造成了训练速度较慢。
3.对初始权值敏感:BP算法的性能受到初始权值的影响,不同的初始权值可能导致不同的训练结果。
4.容易出现过拟合问题:BP算法在训练样本数量较少或网络结构过于复杂的情况下,容易出现过拟合现象。
针对这些缺点,研究者们提出了一些改进和优化的方法,如使用正则化技术来减小过拟合的风险、采用随机梯度下降来加速训练速度、引入动量项来增加学习的稳定性等。
综上所述,BP算法是一种经典的人工神经网络训练算法,具有强大的拟合能力和广泛的适用性。
但是它也存在一些缺点,如容易陷入局部最优解、训练速度慢、对初始权值敏感等。
在实际应用中,我们需要根据具体问题的特点和需求,综合考虑优缺点,在算法的改进和优化上进行进一步的研究和探索。
bp 和 ep 标准《BP和EP标准》一、引言BP(BackPropagation,反向传播)和EP(ErrorPropagation,误差传播)是两种常用的神经网络训练算法,广泛应用于各种机器学习和深度学习应用中。
本篇文章将介绍BP和EP标准的基本原理、实现方法和应用场景。
二、BP标准BP算法是一种通过反向传播误差来优化神经网络权重的算法。
在训练过程中,神经网络会根据输入数据输出相应的预测值,并与实际值进行比较,计算误差。
通过不断调整神经元之间的权重,减少误差,提高预测精度。
1.算法原理BP算法的核心是通过反向传播误差来更新神经网络的权重。
具体来说,在神经网络训练过程中,通过前向传播得到预测值和实际值,计算误差。
然后根据误差调整权重,再通过反向传播计算新的误差,不断迭代优化神经网络的性能。
2.实现方法实现BP算法需要以下步骤:(1)初始化权重和偏置;(2)前向传播:根据输入数据计算输出;(3)计算误差:将实际值与预测值进行比较,计算误差;(4)反向传播:根据误差调整权重和偏置;(5)重复步骤(2)-(4),直到达到预设的迭代次数或网络性能达到预期水平。
3.应用场景BP算法广泛应用于各种神经网络模型,如多层感知器、卷积神经网络和循环神经网络等。
在图像识别、自然语言处理、语音识别等领域,BP算法都取得了很好的效果。
三、EP标准EP算法是一种基于误差传播理论的优化算法,用于调整神经网络的权重和偏置。
该算法通过分析误差在神经网络中的传播过程,找到误差较大的区域,并针对性地调整权重和偏置,以提高神经网络的性能。
1.算法原理EP算法通过分析误差在神经网络中的传播过程,找到误差较大的区域,并利用这些信息调整权重和偏置。
具体来说,在神经网络训练过程中,计算输入数据的预测值和实际值之间的误差,并通过分析误差在神经网络中的传播过程,找到误差较大的区域,进而调整权重和偏置。
2.实现方法实现EP算法需要以下步骤:(1)初始化权重和偏置;(2)定义误差函数:将实际值与预测值进行比较,计算误差;(3)定义传播矩阵:根据神经网络的拓扑结构,定义误差在神经网络中的传播矩阵;(4)误差传播:根据误差函数和传播矩阵,计算误差在每个神经元上的大小;(5)反向传播误差:根据误差大小调整权重和偏置;(6)重复步骤(4)-(6),直到达到预设的迭代次数或网络性能达到预期水平。