T型搅拌器数值模拟研究_牟童
- 格式:pdf
- 大小:1.36 MB
- 文档页数:7
33总174期 2023.12 混凝土世界引言混凝土是一种广泛应用于工程结构中的复合材料,其在动态荷载作用下的力学性能与静态荷载作用下的力学性能有显著差异,因此研究混凝土的动态本构关系对于理解和预测混凝土结构在冲击、爆炸等极端条件下的响应和破坏具有重要意义。
为描述混凝土在高应变率下的非线性、各向异性、损伤和孔隙压实等特征,许多学者提出了不同的动态本构模型,如HJC模型、RHT模型、TCK模型等。
其中,RHT模型是由Riedel、Hiermaier和Thoma提出的一种基于损伤力学和孔隙压实理论的混凝土本构模型,其具有形式简单、参数少、适用范围广等优点[1]。
钢渣是一种由高炉冶炼铁或转炉精炼钢时产生的副产品,其主要成分为氧化铁、氧化硅、氧化铝、氧化钙等[2],具有良好的物理力学性能和耐久性能,可作为混凝土中骨料或水泥的替代材料使用,从而提高混凝土的强度、耐久性和抗渗性,实现钢渣的资源化利用,减少环境污染[3-6]。
然而,目前对钢渣混凝土在动态荷载作用下的力学性能和本构关系的研究还较少,尚缺乏适用于钢渣混凝土的RHT动态本构模型。
因此,本文首先通过力学试验获得不同掺量钢渣混凝土的静态力学性能参数,包括轴心抗压强度、弹性模收稿日期:2023-9-13第一作者:常银会,1997年生,硕士,主要从事固废混凝土的研究与应用相关工作,E-mail:****************项目信息:宁夏回族自治区重点研发计划“煤电与冶金多固废协同高效制备绿色高性能混凝土关键技术与规模化应用”(2022BDE02002)基于RHT本构模型的钢渣混凝土SHPB模拟研究常银会 楚京军 侯 荣 刘亚娟宁夏赛马科进混凝土有限公司 宁夏 银川 750000摘 要:本文采用试验和数值模拟相结合的方法,对钢渣混凝土的静力学性能和冲击动力学性能展开研究。
在试验部分,制备了四种不同钢渣掺量(0%、25%、35%、45%)的混凝土试件,并对其抗压强度和抗拉强度进行测试。
搅拌釜生物反应器中污泥絮凝曝气的CFD多相种群平衡耦合模型的联合仿真摘要:曝气搅拌槽生物反应器通常用于通过微生物环境转化有机物和去除营养物质。
基于气(气)固(泥)群体平衡模型(pbm)的多相流计算流体动力学CFD(Computational Fluid Dynamic CFD)在不同时间尺度上模拟复杂的多物理现象。
联合模拟耦合CFD-PBM 动力学模型,捕捉生物质生长动力学和反应器水力动力学对整个过程的影响。
絮体粒径分布是至关重要的,因为它决定了最终絮体结构的不同等级,分别用作商业好氧废水处理。
耦合群体平衡方程采用连续偏微分方程的非均相离散方法求解污泥絮体,气相采用标准矩法求解,二者同时求解同时求解,影响生物质动力学的增长。
此外,在全瞬态CFD分析中,还研究了搅拌器转速和空气流速对生物量动态增长的影响。
通过用户定义函数(UDF),模型中使用了生物量增长率的动力学,作为氧饱和度和空气/流量平衡的函数。
多相系统方法学中的多物理综合模拟(co-simulation)是研究生物反应器中生物量生长各个参数影响的一个有价值的工具。
引言:群体平衡模型(PBM)在生物制药、污水处理厂、食品加工、生物反应器、细菌生长培养等领域有着广泛的应用(Zhang,2009;ANSYS Theory guide,2015;Qian Li,2017)。
在生物化学工业中,种群平衡模型对颗粒或气泡尺寸分布(PSD)的确定起着重要作用。
(Ding和Biggs,2006)使用离散PBM模型检验了活性污泥絮凝,确定了剪切和颗粒大小对碰撞效率的破碎率系数影响。
平均流速梯度增大,絮体粒径减小。
过程是周期性的,絮体的大小随着时间的推移而变化,聚集和分解是唯一的过程机制。
在不假设悬浮液的流变依赖性与碎裂、异凝、异聚、颗粒吸附或核化现象之间的额外相互作用的情况下,简化了文献中的种群平衡模型的大小(Heath等人,2003;Oshinowo等人,2016;Chen等人,2004)。
工业搅拌与混合技术进展虞培清,周国忠(浙江长城减速机有限公司,温州325028)摘要:工业搅拌与混合技术在近些年来取得了很大的发展,本文综述了这方面的进展情况。
重点对新型搅拌与混合设备的开发、流场测试与计算流体力学以及搅拌设备选型与设计软件四个方面进行了综述与评价,并就国内的研究现状进行了简单概述。
关键词:搅拌,混合,搅拌器,流场测速,计算流体力学(CFD),专家系统搅拌与混合是化学、制药、食品、环保等工业中最常见的关键单元操作之一。
比如,一个合成纤维厂中,作为核心设备的聚合反应器仅两台,而与之配套的配料槽、溶解槽、稀释槽、缓冲槽等辅助搅拌设备则多达30台。
在高分子材料生产中,作为核心设备的聚合反应器85%是搅拌设备。
在制药发酵生产过程中,从种子培养到关键的发酵过程,几乎全部是搅拌设备。
鉴于搅拌设备的广泛应用,随着近年来工业技术的发展,流体混合技术在上世纪60到80年代期间得到了迅猛发展,其重点主要是对于常规搅拌桨在低粘和高粘非牛顿均相体系、固液悬浮和气液分散等非均相体系中的搅拌功耗、混合时间等宏观量进行实验研究。
长期以来,虽然有大量设计经验和关联式可用于分析和预测混合体系,但将搅拌反应器从实验室规模直接放大到工业规模,仍是十分危险的,至今仍然需要通过逐级放大来达到搅拌设备所要求的传质、传热和混合。
这种方法不但耗费巨额的资金和大量的人力物力,而且设计周期很长。
据统计,在工业高度发达的美国,化学工业由于搅拌反应器设计不合理所造成的损失每年约为10—100亿美元。
因此,从更微观更本质的角度,例如采用先进的测试手段和建立合理的数学模型,获取搅拌槽中的速度场、温度场和浓度场,不仅对开发新型搅拌设备,而且对搅拌设备的优化设计具有十分重要的经济意义,对放大和混合的基础研究具有现实的理论意义。
近些年来,工业搅拌与混合设备的一些新进展主要集中在以下几个方面。
1.新型搅拌与混合设备的开发在很多情况下,搅拌设备是作为一种辅助设备使用的,其操作条件比较简单,搅拌的目的多是以混合和固-液悬浮为主,其搅拌器常用轴流式搅拌器或开启涡轮。
工业装备合成橡胶工业,2008-05-15,31(3):174~178CH I NASYNTHET I CRUBBERI NDUSTRY搅拌器内两相流动及混合过程的数值分析黄 思,郑茂溪,王宏君(华南理工大学工业装备与控制工程学院,广东广州510640)摘要:以油和水2种液体作为模拟实例,搅拌器采用宽桨和窄桨2种叶轮的组合方式,应用计算流体力学技术对搅拌器中两相介质的混合过程进行模拟分析。
结果表明,搅拌的开始阶段,两相流体无论是流场分布或是流动范围均有较大的区别,随着搅拌时间的延长,叶轮抽吸结果使搅拌轴中心产生低压区;重相液体因叶轮离心力的作用一般集中在容器边壁;轻相液体则在上层叶轮的作用下首先向搅拌轴中心聚集,然后沿着搅拌轴向下移动,到达容器底部后在下层叶轮的作用下扩散到搅拌槽四周,最后两相流体的流场分布、流动范围逐渐趋近一致,达到均匀状态;下层叶轮的转矩及轴功率是上层叶轮的2倍以上,选取高效的下层叶轮对于提高搅拌装置的效率十分重要。
关键词:搅拌器;两相流动;混合过程;数值模拟中图分类号:TQ 05117 文献标识码:B 文章编号:1000-1255(2008)03-0174-05搅拌设备广泛用于化工、食品、医药、能源及环保等领域,主要涉及固液、液液、气液的混合及分散、强化传热传质等多相流动问题。
多相流动现象的复杂性,使得搅拌设备设计成为一项耗时费力、依赖经验的工作。
近年来迅速发展的计算流体力学技术(CFD)与理论、实验相辅相成,逐渐成为研究流体工程的重要手段。
采用CFD 模拟预测搅拌设备的内部流动及外部混合特性并指导产品设计,是流体混合技术的发展趋势。
由于计算模型、计算机硬件技术的限制,目前大多数搅拌器的流动分析研究还仅限于单相体系[1-4],有关多相介质尤其是分散相浓度较高体系的研究工作鲜有报道。
本工作应用流动分析软件F l u ent 建立了搅拌器的几何模型和计算模型,模拟计算了搅拌器中两相介质混合过程的现象和机理,为搅拌设备的优化设计提供理论依据。
挤出机T型机头三维有限元模拟
麻向军;彭响方;孙树秋;童玉宝;赵军
【期刊名称】《广东塑料》
【年(卷),期】2006(000)005
【摘要】利用Polyflow软件对一种T型机头内的熔体流动现象进行了三维有限元数值模拟,结果表明,模拟计算得到的流动均匀性指数与解析解十分接近.并对熔体在机头中的速度场和压力场进行了分析.
【总页数】3页(P61-63)
【作者】麻向军;彭响方;孙树秋;童玉宝;赵军
【作者单位】华南理工大学工业装备与控制工程学院,广州,510640;华南理工大学工业装备与控制工程学院,广州,510640;华南理工大学工业装备与控制工程学院,广州,510640;华南理工大学工业装备与控制工程学院,广州,510640;华南理工大学工业装备与控制工程学院,广州,510640
【正文语种】中文
【中图分类】TQ32
【相关文献】
1.异向双螺杆挤出机机头模具内三维流场的数值模拟 [J], 王晓瑾;李志敏
2.用Solidworks 2001Plus制作挤出机机头三维模型 [J], 田军涛
3.L形片材挤出机头流道压力分布三维有限元分析 [J], 宿果英;杨卫民;丁玉梅
4.胎面双复合挤出机机头流道压力分布三维有限元分析 [J], 夏巍;贺建芸;程源
5.L型片材挤出机头流道速度分布三维有限元分析 [J], 宿果英;杨卫民;丁玉梅
因版权原因,仅展示原文概要,查看原文内容请购买。
2021.17科学技术创新基于D P M 模型的T 型管颗粒运动轨迹模拟仿真吴辉刘婷*阳勇唐汇军殷旺(湖南交通工程学院机电工程学院,湖南衡阳421001)T 型管应用领域十分广泛,日常生活中大量应用T 型管进行流体的分流,在化工实验中常用T 型管来排除水蒸气导管中的冷却水,此外,医学上也应用柔软无刺激的T 型管进行引流、支撑和吸引。
[1-3]以天然气输送为例,天然气在管道输送过程中高速流动,因此天然气含有的高速固体碎屑和颗粒(金属微屑和灰尘颗粒)等会对管道壁面及接口形成冲击磨损,最终给天然气输送管线及其特殊的管道构件带来极大的安全隐患,而D M P 模型在研究上述的能源、排污等领域颗粒冲蚀问题都有很好的结果。
针对上述问题,前人进行了一系列相关研究,探究产生冲蚀的机理和影响冲蚀的因素。
针对天然气管道弯头处的冲蚀情况进行研究,利用CFD 模拟研究弯头的冲蚀失效机理,并通过分析弯头处的速度场和压力场指出弯头大弧面处为危险截面。
通过建立天然气管道气固两相的流动方程,利用数值模拟的方法来分析求解气固混合物冲蚀能量,利用能量的变化规律来分析冲蚀的机理。
从前人研究的结果可以发现影响管道冲蚀的因素有很多,其中管道的结构特点是影响管道冲蚀的一个非常关键的因素。
目前针对天然气管道中T 型管件冲蚀的研究还不太多。
为此,利用FLU EN T 模拟T 型管内的颗粒运动,通过模拟结果来分析冲蚀与颗粒运动的关系,为生产中消除相应的安全隐患提供参考依据。
[4-7]1D P M 理论1.1力平衡平衡通过对直角坐标系下粒子的作用力微分方程进行积分来求解离散粒子(液滴或固体粒子)运动轨道。
粒子作用力(作用在粒子表面及体积上的各种力)平衡微分方程的笛卡尔坐标系形式为:(1)其中,粒子质量力F D 为(2)u 为流体流动速度,u p 为粒子运动速度,μ为流体的动力粘度,ρ为流体的单位密度,ρp 为粒子单位密度,d p 为粒子的平均直径,R e 为粒子的相对雷诺数,其大小为(3)拉力系数C 大小为:(4)对球形粒子,当雷诺数在一定范围内,C D 采用如下表达式:(5)1.2D PM 模型边界条件当粒子与管道壁面进行碰撞时,将可能发生以下几种情况之一:(1)粒子发生非弹性的或弹性的碰撞反射。