多效蒸发最佳效数选择分析
- 格式:pdf
- 大小:154.55 KB
- 文档页数:3
多效蒸发流程及效数的确定1.进料:进料是多效蒸发流程的第一步,通过控制入口阀门使进料流入蒸发器。
进料常常是通过预处理步骤,如澄清、过滤或浸泡,以去除杂质和固体颗粒,避免对蒸发器产生不利影响。
2.预热:进料在多效蒸发过程中需要进行预热,以达到最佳蒸发条件。
预热目的是提高进料的温度,减少对热源的需求。
预热可以通过传热表面的配置进行,常见的形式包括蒸汽加热、热交换和热回收等。
3.蒸发:预热后的进料进入蒸发器,经过加热和汽化,以脱除其中的溶质和水分。
蒸发器的设计通常采用多级蒸发器,如单效蒸发器、双效蒸发器、多效蒸发器等。
它们之间通过热交换进行热量转移,以提高蒸发效率。
4.再生:在蒸发过程中形成的蒸汽会进入再生器进行再生,以收集其中的溶质和水分。
再生器通常是将蒸汽直接送入浓液中,通过传热而产生的气-液循环和溶质的分离。
再生器的效果直接影响多效蒸发的性能。
5.冷却:蒸发器中产生的蒸汽被再生后,需要经过冷凝器进行冷却,以转化为可回收的水分和回收热量。
冷却可以通过空气冷凝或水冷凝等方式进行。
冷凝后的液体通过管道排出,回到外部系统中进行进一步利用。
6.产品收集:多效蒸发过程中产生的浓缩产物通过汇集系统进行收集。
浓缩产物可以是溶液、浆糊或晶体物质,可以根据需要进行分离、干燥或回收利用。
效数的确定在多效蒸发中至关重要,它反映了蒸发器的性能和能源利用效率。
效数是通过多效蒸发器的设计参数和实际运行情况来确定的。
常用的效数包括汽-液分布效数、传热效数和蒸发效数等。
1.汽-液分布效数:汽-液分布效数是描述蒸发器内不同气液相间传质和传热的均匀程度的指标。
通过设计合理的流路结构和控制流体分布,可以提高汽-液分布效数,减少气液相间的传质阻力和传热阻力。
2.传热效数:传热效数是描述多效蒸发器内传热能力的指标。
传热效数的高低决定了蒸发器的传热速率和传热量。
提高传热效数可采取增加传热表面积、增加传热介质流速、改变传热介质的物理状态和调节传热介质的温度等方式。
附录A (标准的附录)水的密度和焓值表 A1 当工作压力≤1.0MPa时,水的密度和焓值应采用表A1。
表A1 P=0.6000MPa,温度为1 ℃ —150 ℃ 时水的密度和焓值表温度(℃)密度(kg/ m3 )焓(kJ/kg)温度(℃)密度(kg/ m3 )焓(kJ/kg)温度(℃)密度(kg/ m3 )焓(kJ/kg)1 1000.2 4.7841 51 987.80 214.03 101 957.86 423.762 1000.2 8.9963 52 987.33 218.21 102 957.14 427.973 1000.2 13.206 53 986.87 222.39 103 956.41 432.194 1000.2 17.412 54 986.39 226.57 104 955.67 436.415 1000.2 21.616 55 985.91 230.75 105 954.93 440.636 1000.2 25.818 56 985.42 234.94 106 954.19 444.857 1000.1 30.018 57 984.93 239.12 107 953.44 449.078 1000.1 34.215 58 984.43 243.30 108 952.69 453.309 1000.0 38.411 59 983.93 247.48 109 951.93 457.5210 999.94 42.605 60 983.41 251.67 110 951.17 461.7511 999.84 46.798 61 982.90 255.85 111 950.40 465.9812 999.74 50.989 62 982.37 260.04 112 949.63 470.2013 999.61 55.178 63 981.84 264.22 113 948.86 474.4414 999.48 59.367 64 981.31 268.41 114 948.08 478.6715 999.34 63.554 65 980.77 272.59 115 947.29 482.9016 999.18 67.740 66 980.22 276.78 116 946.51 487.1417 999.01 71.926 67 979.67 280.97 117 945.71 491.3718 998.83 76.110 68 979.12 285.15 118 944.92 495.6119 998.64 80.294 69 978.55 289.34 119 944.11 499.8520 998.44 84.476 70 977.98 293.53 120 943.31 504.0921 998.22 88.659 71 977.41 297.72 121 942.50 508.3422 998.00 92.840 72 976.83 301.91 122 941.68 512.5823 997.77 97.021 73 976.25 306.10 123 940.86 516.8324 997.52 101.20 74 975.66 310.29 124 940.04 521.0825 997.27 105.38 75 975.06 314.48 125 939.21 525.3326 997.01 109.56 76 974.46 318.68 126 938.38 529.5827 996.74 113.74 77 973.86 322.87 127 937.54 533.8328 996.46 117.92 78 973.25 327.06 128 936.70 538.0929 996.17 122.10 79 972.63 331.26 129 935.86 542.3530 995.87 126.28 80 972.01 335.45 130 935.01 546.6131 995.56 130.46 81 971.39 339.65 131 934.15 550.8732 995.25 134.63 82 970.76 343.85 132 933.29 555.1333 994.93 138.81 83 970.12 348.04 133 932.43 559.4034 994.59 142.99 84 969.48 352.24 134 931.56 563.6735 994.25 147.17 85 968.84 356.44 135 930.69 567.93 续表A136 993.91 151.35 86 968.19 360.64 136 929.81 572.2137 993.55 155.52 87 967.53 364.84 137 928.93 576.4838 993.19 159.70 88 966.87 369.04 138 928.05 580.7639 992.81 163.88 89 966.21 373.25 139 927.16 585.0440 992.44 168.06 90 965.54 377.45 140 926.26 589.3241 992.05 172.24 91 964.86 381.65 141 925.37 593.6042 991.65 176.41 92 964.18 385.86 142 924.46 597.8843 991.25 180.59 93 963.50 390.07 143 923.56 602.1744 990.85 184.77 94 962.81 394.27 144 922.64 606.4645 990.43 188.95 95 962.12 398.48 145 921.73 610.7646 990.01 193.13 96 961.42 402.69 146 920.81 615.0547 989.58 197.31 97 960.72 406.90 147 919.88 619.3548 989.14 201.49 98 960.01 411.11 148 918.95 623.6549 988.70 205.67 99 959.30 415.33 149 918.02 627.9550 988.25 209.85 100 958.58 419.54 150 917.08 632.26 A2 当工作压力>1.0MPa,且≤2.5MPa时,水的密度和焓值应采用表A2。
蒸发工艺流程与操作条件的选择一、单效蒸发图5-13是典型的单效真空蒸发流程图,单效蒸发操作的主体设备蒸发器,它的下部分是由若干加热管组成的加热室1,加热蒸汽在管间(壳方)被冷凝,它所释放出来的冷凝潜热通过管壁传给被加热的料液,使溶液沸腾汽化。
在沸腾汽化过程中,夹带的一部分液体在蒸发器的上部的分离室2分离,并在其出口处装有除沫装置,以便将夹带的液体分离开。
蒸汽进入冷凝器4内,被冷却水冷凝后排出。
在加热室管内的溶液中,随着溶剂的汽化,溶液浓度得到提高,浓缩以后的完成液从蒸发器的底部出料口排出。
在单效蒸发过程中,由于所产生的二次蒸汽直接被冷凝而除去,使其携带的能量没有被充分利用,因此能量消耗大,它只在小批量生产或间歇生产的场合下使用。
图5-13 单效真空蒸发流程1.加热室;2.分离室;3.二次分离器;4.混合冷凝器;5.汽液分离器;6.缓冲罐;7.真空泵;8.冷凝水排除器二、多效蒸发(一)多效蒸发的原理在生产中,蒸发大量水分时,势必需要消耗大量的加热蒸汽。
为减少加热蒸汽的消耗量,可采用多效蒸发。
即将若干个蒸发器串联起来协同操作,利用减压的方法,使后一个蒸发器的操作压力和溶液沸点比前一个低。
把前一个蒸发器产生的二次蒸汽引入后一个蒸发器的加热室作为热源,后一个蒸发器的加热室作为前一个蒸发器的冷凝室,最后一个蒸发器的二次蒸汽送去被冷凝。
在多效蒸发中,每一个蒸发器称为一效,通入加热蒸汽的蒸发器称为第一效。
用第一效的二次蒸汽作为加热蒸汽的蒸发器称为第二效,依次类推。
相同的生产能力下,串联若干单效设备,可提高热能利用的经济性,但也提高了设备的投资费用。
(二)多效蒸发的流程根据原料液加入方法的不同,多效蒸发操作有四种流程,即顺流法、逆流法、平流法和混流法。
1.顺流流程也称并流法,为最常用的一种加料流程。
如图5-14所示,蒸汽和料液的流动方向一致,依效序从第一效到末效。
顺流操作的优点是:蒸发室压强依效序递减,料液在效间流动不需要泵。
第三节多效蒸发一、多效蒸发的原理原理:利用减压的方法使后一效蒸发器的操作压力和溶液的沸点均较前一效蒸发器的低,使前一效蒸发器引出的二次蒸汽作为后一效蒸发器的加热蒸汽,且后一效蒸发器的加热室成为前一效蒸发器的冷却器。
二、多效蒸发的流程常用的多效蒸发流程有以下几种。
1.并流法(又称顺流法)如图6-2所示优点:(1)溶液的输送可以利用各效间的压力差,自动的从前一效进入后一效,因而各效间可省去输送泵;(2)前效的操作压力和温度高于后效,料液从前效进入后效时因过热而自蒸发,在各效间不必设预热器;(3)辅助设备少,流程紧凑;因而热量损失少,操作方便,工艺条件稳定。
缺点:后效温度更低而溶液浓度更高,故溶液的黏度逐效增大,降低了传热系数,往往需要更多的传热面积。
因此,黏度随浓度增加很快的料液不宜采用此法。
2.逆流法如图6-3所示优点:(1)蒸发的温度随溶液浓度的增大而增高,这样各效的黏度相差很小,传热系数大致相同;(2)完成液排出温度较高,可以在减压下进一步闪蒸增浓。
缺点:(1)辅助设备多,各效间须设料液泵;(2)各效均在低于沸点温度下进料,须设预热器(否则二次蒸汽量减少),故能量消耗增大。
3.平流法如图6-4所示料液同时加入到各效,完成液同时从各效引出,蒸汽从第一效依次流至末效,此法用于蒸发过程中有结晶析出的场合;还可用于同时浓缩两种以上不同的料液,除此之外一般很少使用。
三、多效蒸发效数的限定多效蒸发的效数的限定原则:当增加一效的设备费不能与所节省的加热蒸汽的收益相抵时,就没有必要再增加效数了。
第四节蒸发器一、蒸发器的结构蒸发器的构成:加热室和蒸发室(分离室)。
二、蒸发器的类型1.自然循环型蒸发器溶液因受热程度不同而产生密度的差异,因此形成自然循环。
(1)标准蒸发器(又称中央循环管式蒸发器)其结构如图6-5所示。
由于中央循环管与管束内的溶液受热情况不同,产生密度差异。
于是溶液在中央循环管内下降,由管束沸腾上升而不断地做循环运动,提高了传热效果。
多效蒸发器中效数的选择问题从操作角度看,多效蒸发的效数也是有限制的,蒸发装置中效数越多,温差损失越大,当效数达到谋值时可能会出现温度差损失等于或大于蒸发器两端点温度差,此时蒸发操作就无法进行,所以从操作角度分析,多效蒸发的效数也应有限制。
通常,工业中的多效蒸发操作的效数并不是很多。
对于电解质溶液,例如氢氧化钠、硝酸铵等水溶液,由于沸点升高较大,故取2-3效;对于非电解质溶液,如有机溶液等,其沸点升高较小,所用效数可取4-6级;海水淡化的温度差损失为零,故蒸发装置的效数达20-30之多。
石家庄博特环保王工:180三儿齐齐零三六八
日期:2015-08-20。