中学高中数学必修1集合概念公式定理汇总
- 格式:doc
- 大小:295.50 KB
- 文档页数:9
高一数学集合知识点总结_高三数学知识点总结
一、基本概念
1.集合的定义:集合就是一堆元素
2.元素:组成集合的基本对象
3.空集:不包含任何元素的集合
4.子集:若A的所有元素都在B中出现,则称A是B的子集
5.真子集:A是B的子集且A不等于B,则称A是B的真子集
6.并集:若x是A或B中的元素,称x是集合A和B的并集,记为A∪B
8.差集:对于任何集合A,定义对A的补集A',A'称为A的差集
二、集合的运算
1.交换律:A∪B=B∪A;A∩B=B∩A
3.分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
三、应用
1.按照题意选择合适的运算进行操作
2.注意各个集合的定义及要求
3.在解决实际问题时,可以将问题中的各个部分转化为集合的形式,再进行运算
4.需要注意的是,在进行求交集、求并集、求差集时,要注意元素的重复出现
5.应适当掌握分类讨论、逆向思维等方法,提高解题的效率
四、注意事项
1.在进行集合运算时,要注意运算的优先级,可使用括号来改变优先级
2.求子集时,要注意空集是任何集合的子集,且每个集合都是其本身的子集
3.在使用德摩根定理时,要注意要求补集存在
4.在解决问题时,应注意判断问题是否存在歧义,应根据问题的要求确定集合的定义、元素及运算方式
五、小结
集合是高中数学中基础的概念之一,应当掌握集合的基本概念、运算法则等内容。
在解决实际问题时,可以通过将问题转化为集合的形式,再运用集合的基本运算法则来解决问题,提高解题的效率。
在学习和应用集合时,需要注意方法的正确性及严谨性,避免出现错误。
第一章 集合与常用逻辑用语(公式、定理、结论图表)1.集合的有关概念(1)集合元素的三大特性:确定性、无序性、互异性. (2)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (3)集合的三种表示方法:列举法、描述法、图示法. (4)五个特定的集合2.3.集合的基本运算集合的并集 集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合表示{x |x ∈A ,或x ∈B }{x |x ∈A ,且x ∈B }{x |x ∈U ,且x ∉A }4.集合的运算性质(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A .(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A . 5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅; ②空集是任何集合的子集(即∅⊆A ); 空集是任何非空集合的真子集(若A ≠∅,则∅A ).(2)子集个数:若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空真子集有22n -个.典例1:已知集合{}2,4,8A =,{}2,3,4,6B =,则A B ⋂的子集的个数为( ) A .3 B .4 C .7 D .8【答案】B【详解】因为集合{}2,4,8A =,{}2,3,4,6B =,所以{}2,4A B =, 所以A B ⋂的子集的个数为224=个.故选B.典例2:已知集合{}2N230A x x x =∈--≤∣,则集合A 的真子集的个数为( ) A .32 B .31 C .16 D .15【答案】D【详解】由题意得{}{}{}2N230N 130,1,2,3A x x x x x =∈--≤=∈-≤≤=∣∣, 其真子集有42115-=个.故选D.(3)A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .(4)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ) . 6.充分条件、必要条件与充要条件的概念若p ⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p ⇒q且q ⇏pp是q的必要不充分条件p ⇏q且q ⇒pp是q的充要条件p ⇔qp是q的既不充分也不必要条件p ⇏q且q ⇏p7.充分、必要条件与集合的关系设p,q成立的对象构成的集合分别为A,B.(1)p是q的充分条件⇔A⊆B,p是q的充分不必要条件⇔A B;(2)p是q的必要条件⇔B⊆A,p是q的必要不充分条件⇔B A;(3)p是q的充要条件⇔A=B.8.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃9.全称命题和特称命题名称全称命题特称命题形式语言表示对M中任意一个x,有p(x)成立M中存在元素x0,使p(x0)成立符号表示∀x∈M,p(x)∃x0∈M,p(x0)10.全称命题与特称命题的否定<知识记忆小口诀>集合平时很常用,数学概念有不同,理解集合并不难,三个要素是关键,元素确定和互译,还有无序要牢记,空集不论空不空,总有子集在其中,集合用图很方便,子交并补很明显.<解题方法与技巧>集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.充要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.。
集合数学知识点高一公式高一数学公式集合一、集合的基本概念在数学中,集合是指由若干个元素组成的事物的总体。
集合中的元素可以是具体的数、点、线,也可以是抽象的概念、命题等。
以下是一些高一数学常见的集合相关的基本概念和符号:1.1 集合的表示方式一般来说,集合可以通过列举元素、描述特性或使用图形等方式进行表示。
例如,集合A={1, 2, 3, 4}表示集合A中包含元素1, 2, 3, 4。
1.2 集合的关系运算集合之间常见的关系运算有并集、交集、差集和补集。
假设集合A={1, 2, 3, 4},集合B={3, 4, 5, 6},则它们的关系运算如下所示:- 并集:A∪B={1, 2, 3, 4, 5, 6}- 交集:A∩B={3, 4}- 差集:A-B={1, 2}- 补集:A'={(所有不属于A的元素)}1.3 集合的基数与空集以集合A为例,A中元素的个数称为集合A的基数,用符号|A|表示。
若集合A中没有任何元素,则称集合A为空集,用符号Ø表示。
例如,集合A={1, 2, 3}的基数为3,而空集的基数为0。
二、集合的运算法则在集合论中,有一些常见的运算法则,包括交换律、结合律、分配律等。
2.1 交换律对于并集和交集运算来说,交换律成立。
也就是说,对于任意的集合A和B,有A∪B=B∪A,A∩B=B∩A。
2.2 结合律对于并集和交集运算来说,结合律成立。
也就是说,对于任意的集合A、B和C,有(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
2.3 分配律对于并集和交集运算来说,分配律成立。
也就是说,对于任意的集合A、B和C,有A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。
三、常用的集合相关公式除了集合的基本概念和运算法则外,高一数学中还有一些常用的集合相关公式,包括排列组合公式、二项式定理等。
3.1 排列公式排列是从n个不同的元素中取出m个元素按照一定的顺序排列的方法数。
新高一数学集合知识点归纳在高一的数学学习中,集合是一个非常重要的概念。
集合论是数学的一个分支,研究的是元素的集合以及它们之间的关系。
在学习集合的过程中,我们会遇到一些基本的概念和定理。
本文将对新高一数学集合知识点进行归纳总结。
一、集合的基本概念集合是由一些确定的、互不相同的对象组成的整体。
我们可以用大括号来表示一个集合,其中的元素用逗号分隔开。
例如,集合A={1,2,3,4,5}表示A包含了元素1、2、3、4和5。
集合之间的关系有:相等、包含和相交。
如果两个集合的元素完全相同,则这两个集合相等。
例如,如果A={1,2,3},B={1,2,3},则A=B。
一个集合A包含于另一个集合B,当且仅当A中的所有元素也都属于B。
如果A={1,2,3,4,5},B={1,2,3},则A包含于B。
两个集合A和B的交集,是由同时属于A和B的元素组成的集合。
二、集合的运算在集合论中,我们有并、交、差、补等基本的集合运算。
并集运算表示将两个集合中的所有元素组成一个集合。
如果A={1,2,3},B={3,4,5},则A和B的并集A∪B={1,2,3,4,5}。
交集运算表示集合A和B同时具有的元素所组成的集合。
如果A={1,2,3},B={3,4,5},则A和B的交集A∩B={3}。
差集运算表示除去集合B中包含的元素在集合A中的元素所组成的集合。
如果A={1,2,3},B={3,4,5},则A和B的差集A-B={1,2}。
补集运算表示相对于全集而言,除去一个集合中的元素所得到的集合。
例如,如果全集为U={1,2,3,4,5},A={1,2,3},则A的补集为A'={4,5}。
三、集合的排列组合在数学中,排列和组合是集合论的重要应用之一。
排列是指从一组元素中选取若干个元素按照一定的顺序进行排列的方式。
组合是指从一组元素中选取若干个元素不考虑顺序排列的方式。
对于n个元素中取出m个元素进行排列,可以表示为P(n, m)。
高一数学常用公式及结论必修1:一、集合1、含义与表示:〔1〕集合中元素的特征:确定性,互异性,无序性〔2〕集合的分类;有限集,无限集〔3〕集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意xA,都有x B,那么称A是B的子集。
记作A B真子集:假设A是B的子集,且在B中至少存在一个元素不属于A,那么A是B的真子集,记作AB 集合相等:假设:A B,B A,那么A B3.元素与集合的关系:属于不属于:空集:4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为AUB交集:由集合A和集合B中的公共元素组成的集合叫交集,记为AI B补集:在全集U中,由所有不属于集合A的元素组成的集合叫补集,记为C U A5.集合{a1,a2,L,a n}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n–1个;6.常用数集:自然数集:N正整数集:N*整数集:Z有理数集:Q实数集:R二、函数的奇偶性1、定义:奇函数<=>f(–x)=–f(x),偶函数<=>f(–x)=f(x)〔注意定义域〕2、性质:〔1〕奇函数的图象关于原点成中心对称图形;2〕偶函数的图象关于y轴成轴对称图形;3〕如果一个函数的图象关于原点对称,那么这个函数是奇函数;4〕如果一个函数的图象关于y轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D的函数f(x),假设任意的x1,x2∈D,且x1<x2①f(x1)<f(x2)<=>f(x1)–f(x2)<0<=>f(x)是增函数②f(x1)>f(x2)<=>f(x1)–f(x2)>0<=>f(x)是减函数2、复合函数的单调性:同增异减三、二次函数y=ax2+bx+c〔a0〕的性质1、顶点坐标公式:b4acb2,对称轴:xb4acb2 2a,4a,最大〔小〕值:2a4a二次函数的解析式的三种形式(1 )一般式f(x)ax2bxc(a0);(2)顶点式f(x)a(xh)2k(a0);(3 )两根式f(x)a(x x1)(xx2)(a0).四、指数与指数函数1、幂的运算法那么:〔1〕a m?a n=a m+n,〔2〕amanamn,〔〕(am)n=amn〔4〕(ab)n=a n?b n3a n a n1n n1〔5〕〔6〕a0=1(a≠0)〔7〕a n〔8〕a m m a n〔9〕a mb b n a n m a n2、根式的性质〔1〕(n a)n a.〔〕当n为奇数时,nana;nan|a|a,a0.2当n为偶数时,a,a0 4、指数函数y=a x(a>0且a≠1)的性质:〔1〕定域:R ;域:(0,+ ∞) 〔2〕象定点〔 0,1〕YYa >10<a <111XX5.指数式与数式的互化:log a Nba b N(a0,a1,N0).五、数与数函数数的运算法:〔1〕a b =N<=>b=log aN 〔2〕log a 1=0〔3〕logaa =1〔4〕log a ab =b 〔5〕a logaN =N〔6〕loga(MN)=logaM+logaN〔7〕log a (M)=logaM--log a NN〔8〕logaN b =blogaN〔9〕底公式:logaN = log b Nlog b a〔10〕推log a mb nnlog a b ( a 0 ,且a1,m,n 0,且m1,n1, N0).m〔11〕logaN =1〔12〕常用数:lgN=log10N 〔13〕自然数:lnA=logeA 〔其中e=log N a⋯〕2、数函数y =logax(a >0且a ≠1)的性:〔1〕定域:(0,+∞) ;域:R〔2〕象定点〔 1,0〕Ya >1Ya <10<0 1 X1X六、函数y=xa的象:〔1〕根据a 的取画出函数在第一象限的.a>10<a<1a<011例如:y=x2yxx 2yx 1x七.象平移:假设将函数y f(x)的象右移a 、上移b 个位,得到函数yf(xa) b 的象; 律:左加右减,上加下减八.平均增率的如果原来的基数,平均增率p ,于x 的y ,有 yN (1p )xN.九、函数的零点:1.定:于yf(x),把使f(x)0 的X 叫y f(x)的零点。
高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。
以下是对这些知识点的详细总结。
一、集合1、集合的概念集合是由某些确定的对象所组成的整体。
这些对象称为集合的元素。
2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。
(2)描述法:用确定的条件表示某些对象是否属于这个集合。
3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。
(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。
(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。
4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。
(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。
(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。
二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。
2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。
(2)值域:函数值的集合。
(3)对应关系:函数的表达式或法则。
3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。
(2)图象法:用图象表示函数关系。
(3)列表法:列出表格来表示两个变量之间的对应关系。
三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。
高中必修1公式及知识要点大全(完整版) 高中数学《必修1》常用公式及结论一、集合1、含义与表示:集合中的元素具有确定性、互异性和无序性。
集合可以分为有限集、无限集和空集(记作φ)。
集合可以用列举法、描述法和图示法表示。
2、集合间的关系:如果对于任意的x∈A,都有x∈B,则称A是B的子集,记作A⊆B;如果A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集,记作A⊂B或A⊊B;如果XXX且B⊆A,则称A和B相等,记作A=B。
3.元素与集合的关系:元素属于集合用符号∈表示,不属于用符号∉表示。
4、集合的运算:1)交集:由集合A和集合B中的公共元素组成的集合叫做交集,记为A∩B。
2)并集:由属于集合A或属于集合B的元素组成的集合叫做并集,记为A∪B。
3)补集:在全集U中,由所有不属于集合A的元素组成的集合叫做补集,记为A的补集为C。
5、集合A={a1,a2,…,an}中有n个元素:A的子集个数共有2n个;真子集有2n-1个;非空子集有2n-1个;非空真子集有2n-2个。
6、常用数集:自然数集N、正整数集N*、整数集Z、有理数集Q、实数集R、复数集C。
7、集合的运算性质:1)包含关系:A∩B⊆A,A⊆A∪B;A∩B⊆B,B⊆A∪B。
A∪B=A⇔B⊆A。
2)吸收率:A∩B=A⇔A⊆B。
3)空集:A∪φ=A。
4)反身性:A∩A=A,A∩φ=φ,A∩U=A,A∪U=U(U是全集)。
A∪A=A,C(=AU)。
5)交换律:A∩B=B∩A。
6)结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
A∪B)∩C=(A∪B)∩(A∪C)。
7)分配率:(A∩B)∪C=(A∪C)∩(B∪C)。
8)德摩根律:C∪(A∪B)=C∪A∩C∪B;C∩(A∩B)=C∩A∪C∩B。
8、常用结论:1)空集是任意集合的子集,非空集合的真子集。
2)空集与{0}不相等,{0}不属于空集,但空集属于{A,φ}。
3){A}是只有一个元素的集合,与A不同。
第一章 集合与简易逻辑1 集合的概念与运算 1.1 集合的有关概念(1)定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。
(2)元素的三要素:集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。
(3)集合的表示法:列举法、描述法、图示法; (4)集合的分类:有限集、无限集和空集,空集记作φ; (5)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ; (6)常用数集:自然数集:N ;正整数集:*N 或N +;整数集:Z ;有理数集:Q ;实数集:R 。
*N N Z Q R ⊂⊂⊂⊂1.2 子集(1)定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B ,注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)性质:①A A A ⊆⊆φ,;②若C B B A ⊆⊆,,则C A ⊆;③若A B B A ⊆⊆,则A =B ; 1.3 真子集(1)定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)性质:①,A A φφ≠⊂;②若,A B B C ⊂⊂,则A C ⊂; 1.4 补集:(1)定义:记作:},|{A x U x x A C U ∉∈=且;(2)性质:A A C C U A C A A C A U U U U ===)(,, φ; 1.5 交集与并集 (1)交集:{|,且}AB x x A x B =∈∈性质:①φφ== A A A A , ②若B B A = ,则A B ⊆ (2)并集:{|,或}AB x x A x B =∈∈性质:①A A A A A ==φ , ②若B B A = ,则B A ⊆ 1.6 集合运算中常用结论 (1)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==.(2)U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=(3)含n 个元素的集合的所有子集有n2个2 一元二次不等式的解法 2.1 一元一次不等式的解法通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则bx a>;若0a <,则bx a<;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈∅。
高中数学知识点与公式大全(按照教学顺序)必修一第一章集合与函数概念1.集合1.1集合的概念及其表示⑴.集合中元素的三个特征:①.确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.②.互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.③.无序性:即集合中的元素无顺序,可以任意排列、调换。
⑵.元素与集合的关系有且只有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).⑶.集合常用的表示方法有三种:列举法、Venn 图、描述法.(4).常见的数集及其表示符号名称自然数集正整数集整数集有理数集实数集表示符号N*N 或+N ZQR1.2集合间的基本关系性质符号表示空集空集是任何集合的子集A⊆∅空集是任何非空集合的真子集)(∅≠⊄∅A A 相等集合A 与集合B 所有元素相同A=B子集集合A 中的任何一个元素均是集合B 中的元素BA ⊆真子集集合A 中的任何一个元素均是集合B 中的元素,且B 中至少有一个元素在A 中没有1.3集合之间的基本运算符号表示集合表示并集B A ⋃}{B A x x ∈∈x |或交集B A ⋂}{B x A x x ∈∈且|补集AC U }{A U x x ∉∈x |且【重要提醒】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UU A B A B U ⇔=∅⇔=.3.奇数集:{}{}{}21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z .4.德▪摩根定律:①并集的补集等于补集的交集,即()=()()UUU A B A B ;②交集的补集等于补集的并集,即()=()()UUU A B A B .2.函数及其表示2.1函数与映射的相关概念函数映射两个集合A 、B设A 、B 是两个非空数集设A 、B 是两个非空集合对应关系按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称称f :A →B 为从集合A 到集合B 的一个函数称f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈Af :A →B注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(3)构成函数的三要素:函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法.解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征;图象法:注意定义域对图象的影响.2.2函数的三要素(1).函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R .(4)y =x 0的定义域是{x |x ≠0}.(2).函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.(3).函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y =kx +b (k 为常数且k ≠0)的值域为R .(2)反比例函数ky x=(k 为常数且k ≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0),当a >0时,二次函数的值域为24[,)4ac b a -+∞;当a <0时,二次函数的值域为24(,]4ac b a--∞.求二次函数的值域时,应掌握配方法:2224()24b ac b y ax bx c a x a a-=++=++.2.3分段函数分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.3.函数基本性质3.1函数的单调性单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足条件(1)对于任意的x I ∈,都()f x M ≤;(2)存在0x I ∈,使得()0f x M=(3)对于任意的x I ∈,都()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论M 为最大值M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值.函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数;(2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 单调性相反;(3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反;(4)函数()()()0y f x f x =≥在公共定义域内与y =的单调性相同;(5)一些重要函数的单调性:①1y x x=+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减;②by ax x =+(0a >,0b >)的单调性:在,⎛-∞ ⎝和⎫+∞⎪⎪⎭上单调递增,在⎛⎫ ⎪ ⎪⎝⎭和⎛ ⎝上单调递减.3.2函数的奇偶性(1).函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 是偶函数图象关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数图象关于原点对称注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).(2).函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)()f x ,()g x 在它们的公共定义域上有下面的结论:()f x ()g x ()()f xg x +()()f xg x -()()f xg x (())f g x 偶函数偶函数偶函数偶函数偶函数偶函数偶函数奇函数不能确定不能确定奇函数偶函数奇函数偶函数不能确定不能确定奇函数偶函数奇函数奇函数奇函数奇函数偶函数奇函数(3)若奇函数的定义域包括0,则()00f =.(4)若函数()f x 是偶函数,则()()()f x f x fx -==.(5)定义在(),-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.重难点复合函数的单调性①奇函数+奇函数=奇函数,偶函数+偶函数=偶函数;②奇函数×奇函数=偶函数,奇函数×偶函数=奇函数,偶函数×偶函数=偶函数;第二章基本初等函数2.1指数与指数函数(1)根式概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.性质:(na )n=a (a 使na 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |,a ≥0,a ,a <0.(2)分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q.(3)指数函数及其性质概念:函数y =a x (a >0且a ≠1)叫做指数函数,x 是自变量,函数的定义域是R ,a 是底数.指数函数的图象与性质a >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数2.2对数与对数函数(1)对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做对数的底数,N 叫做真数.(2)对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1).(2)对数的运算法则;如果a >0且a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=;②N M N Ma a alog log log -=;③M n M a na log log =(n ∈R);④b nm b a ma n log log =.(3)换底公式:abb c c a log log log =(a ,b 均大于零且不等于1).(3)对数函数及其性质(1)概念:y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,定义域是(0,+∞).(2)对数函数的图象与性质a >10<a <1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数2.3幂函数(1)幂函数的定义:一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.第三章函数的应用1.函数零点的定义一般地,如果函数()y f x =在实数α处的值等于零,即()0f α=,则α叫做这个函数的零点.重点强调:零点不是点,是一个实数;2.零点存在性定理如果函数()y f x =在区间[a ,b ]上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(a ,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c也就是方程0)(=x f 的根.3.二分法二分法求零点:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下:(1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε;(2)求区间a (,)b 的中点1x ;(3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈);③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈);(4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4.注意:二分法的条件)(a f ·)(b f 0<表明用二分法求函数的近似零点都是指变号零点.必修四第一章三角函数1.角的概念1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的分类按旋转方向不同分类正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z}.2.弧度制及应用1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.2.弧度制下的有关公式3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记sinαx叫做α的余弦,记cosαyx叫做α的正切,记tanα各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线4.同角三角函数的基本关系1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tanα=sinαcosα2.同角三角函数基本关系式的应用技巧5.三角函数的诱导公式组数一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sinα-sin_α-sin_αsin_αcos_αcos_α余弦cosα-cos_αcos_α-cos_αsin_α-sin_α正切tanαtan_α-tan_α-tan_α6.正弦、余弦、正切函数的图象与性质6.函数y=A sin(ωx+φ)的图象1.用五点法作正弦函数和余弦函数的简图(1)“五点法”作图原理:正弦函数y =sin x ,x ∈[0,2π]的图象上,五点是:(0,0)(π,0)(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五点是:(0,1)(π,-1)(2π,1).(2)五点法作图的三步骤:列表、描点、连线(注意光滑).2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)振幅周期频率相位初相(A >0,ω>0)AT =2πωf =1T =ω2πωx +φφ3.用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:x -φωπ2ω-φωπ-φω3π2ω-φω2π-φωωx +φ0π2π3π22πy =A sin(ωx +φ)A-A第二章平面向量1.向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量记作0,其方向是任意的单位向量长度等于1个单位的向量非零向量a 的单位向量为±a|a |平行向量方向相同或相反的非零向量(又叫做共线向量)0与任一向量平行或共线相等向量长度相等且方向相同的向量两向量只有相等或不相等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a +b =b +a ;(2)结合律:(a +b)+c =a +(b+c)平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a 与b的差三角形法则a -b =a +(-b)数乘求实数λ与向量a 的积的运算|λa|=|λ||a|,当λ>0时,λa的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa)=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b)=λa +λb 3.平面向量的坐标运算运算坐标表示和(差)a =(x 1,y 1),b =(x 2,y 2),a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2)数乘已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)4.向量的夹角定义图示范围共线与垂直已知两个非零向量a 和b ,作OA ―→=a ,OB ―→=b ,则∠AOB 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是0°≤θ≤180°θ=0°或θ=180°⇔a ∥b ,θ=90°⇔a ⊥b5.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a||b|cos θ叫做a 与b 的数量积,记作a·b投影|a|cos θ叫做向量a 在b 方向上的投影,|b|cos θ叫做向量b 在a 方向上的投影几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积6.向量数量积的运算律交换律a ·b =b ·a 分配律(a +b)·c =a ·c +b ·c 数乘结合律(λa)·b =λ(a ·b)=a ·(λb)第三章三角恒等变换1、同角三角函数的基本关系式:①22sin cos 1θθ+=,②tan θ=θθcos sin ,2、正弦、余弦的诱导公式(奇变偶不变,符号看象限)3、和角与差角公式sin()sin cos cos sin αβαβαβ±=±cos()cos cos sin sin αβαβαβ±= tan tan tan()1tan tan αβαβαβ±±= .ααααcos sin 21)cos (sin 2±=±4、二倍角公式及降幂公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-221cos 21cos 2sin ,cos 22αααα-+==必修五第一章解三角形【正弦定理】2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径).【正弦定理的变形】①2sin ,2sin ,2sin a R A b R B c R C===②2sin sin sin sin sin sin a b c a b c R A B C A B C++====++【三角形常用结论】(1)B A B A B A b a cos cos sin sin <⇔>⇔>⇔>(2)在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.(3)面积公式:①111222a b c S ah bh ch ===,②111sin sin sin 222S ab C bc A ca B ===.第二章数列2.1等差数列(1).等差数列的定义--------(证明或判断等差数列)①1(n n a a d d +-=为常数)或②11(2)n n n n a a a a n +--=-≥(2).等差数列的通项公式:1(1)n a a n d =+-或()n m a a n m d=+-①当0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;(3).等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+①前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(4)、等差中项:⑴若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
数学必修1常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A Î,都有 x B Î,则称A 是B 的子集。
记作A B Í 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ¹ÌB 集合相等:若:,A B B A ÍÍ,则A B =3. 元素与集合的关系:属于Î 不属于:Ï 空集:f4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}na a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x ( x)(注意定义域) 2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的,若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 1 ) < f ( x ( x 2 ) <=> f ( x 1 1 ) – f ( x ( x 2 2 ) < 0 <=> f ( x )是增函数是增函数 ② f ( x 1 1 ) > f ( x ( x 2 ) <=> f ( x 1 1 ) – f ( x ( x 2 2 ) > 0 <=> f ( x )是减函数是减函数 2、复合函数的单调性: 同增异减三、二次函数y = a x ax 2 +bx + c (0a ¹)的性质1、顶点坐标公式:÷÷øöççèæ--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442- 2.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++¹; (2)顶点式2()()(0)f x a x h k a =-+¹;(3)两根式12()()()(0)f x a x x x x a =--¹.四、指数与指数函数 1、幂的运算法则: (1)a m • a n = am + n,(2)nm nma a a -=¸,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n n b a b a =÷øöçèæ(6)a 0 = 1 ( a ≠0)(7)n n aa 1=- (8)m n mn a a =(9)m n m na a 1=- 2、根式的性质(1)()n n a a =.(2)当n 为奇数时,nna a =; 当n 为偶数时,,0||,0nna a a a a a ³ì==í-<î.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化:log ba Nb a N =Û=(0,1,0)a a N >¹>五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N (6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log aN b = b log a N (9)换底公式:log a N = a Nb b log log(10)推论 loglog mnaan b bm=(0a >,且1a >,,0m n >,且1m ¹,1n ¹, 0N >). (11)log aN = aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…)…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a的图象:(1) 根据 a 的取值画出函数在第一象限的简图 . 例如: y = x 221x x y ==11-==x xy七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题Y 0 X 1 a > 1 0 Y X 1 0 < a < 1 0 Y X 1 a >1 X 0 Y 1 0 < a < 1 a > 1 0 < a < 1 a < 0 如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.。
必修1集合
解集合题首先想到Φ=方程无解
一,数学思想应用
1、数形结合思想在解集合题中的具体应用:
数轴法, 文氏图法, 几何图形法数几文
2、函数与方程思想在解集合题中具体应用:
函数法方程法判别式法构造法
3、分类讨论思想在解集合题中具体应用:
列举法补集法空集的运用数学结合
4、化归与转化思想在解集合题中具体应用:
列方程补集法文氏图法
二,集合的含义与表示方法
1、一般地,我们把研究对象统称为元素
把一些元素组成的总体叫做集合
2、集合元素三特性
1.确定性;
2.互异性;
3.无序性
3、a是集合A的元素,a∈A a不属于集合A 记作 a∉A
立体几何中体现为点与直线/ 点与面的关系
元素与集合之间的关系
4、非负整数集(自然数集)记作:N 含0
正整数集N*或 N+ 不含0
整数集Z 有理数集Q 实数集R
3、集合表示方法:列举法描述法韦恩图
4、列举法:把集合中的元素一一列举出来,用大括号括上。
描述法:将集合中元素的共同特征描述出来,写在大括号内表用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:{不是直角三角形的三角形}
②数学式子描述法:不等式x-3>2的解集是
{x∈R| x-3>2} Y {x| x-3>2}
集合的分类:有限集无限集空集
三、集合间的基本关系
A⊆有两种可能
“包含”关系—子集B
立体几何中体现为直线与面关系(a)A是B的一部分
(b)A与B是同一集合。
反之: A⊆/B Y B⊇/A
A⊆⇔C U B⊆C U A
(c)A∩B=A ⇔B
A⊆⇔ C U B⊆C U A
(d)A∪B=B ⇔B
B⊆⇔C U A⊆C U B
(e)A
2.“相等”关系(5≥5,且5≤5⇒5=5)
①任何一个集合是它本身的子集。
A⊆A
②真子集:如果 A⊆B且A≠ B ⇔ A B或B A
③A⊆B, B⊆C ⇔ A⊆C
④ A⊆B 且B⊆A ⇔A=B B
⇔
Y
A=
=I
A
B
A
B
我们把不含任何元素的集合叫做空集,Φ
规定: 空集是任何集合的子集,Φ⊆A
空集是空集的子集Φ⊆Φ
空集是任何集合的子集⇒该集合可为空集,必考虑Φ空集是任何非空集合的真子集
ΦA∩B⇔A∩B集合一定非空⇔方程有解
四、集合的运算
1.A ∩B={x|x ∈A ,且x ∈B}.
2、A ∪B={x|x ∈A ,或x ∈B}.且 与 或 是区分交与并的关键
3、交集与并集的性质:
A ∩A = A A ∩φ= φ A ∩
B = B ∩A
A ∪A = A A ∪φ= A A ∪
B = B ∪A
4、全集与补集
(1)补集: C S A ={x | x ∈S 且 x ∉A}
(2)全集:含各个集合的全部元素U
(3)性质: C U (C U A)=A C U U=Φ C U Φ=U
(C U A)∩A=Φ (C U A)∪A=U
C U A ∪B=U ⇔B A ⊆ C U A ∩B=Φ⇔
B ⊆ A
已知集合A 、B ,当∅=⋂B A 时,你是否注意到“极端”情况: ∅=A ∪ ∅=B ∪ ∅=A ∩∅=B ; 求集合的子集时不能忘记∅
S C s A
A
1、对于含有n 个元素的有限集合M, 其子集个数,n 2 真子集,12-n 非空子集,12-n 非空真子集为.22-n
① 交换律:A B B A Y Y =; A B B A I I =;
② 结合律:)()(C B A C B A Y Y Y Y =; )()(C B A C B A I I I I
=
③ 分配律:)()()(C A B A C B A Y I Y I Y =; )()()(C A B A C B A I Y I Y I =
④ )(B A A Y ⊆ A B A ⊆)(I
)()(B A B A Y I ⊆ A B B ⊆⇔=B A I B )(⊇B A Y )(B B A I ⊇ )()(B A B A I Y ⊇ B A A B A ⊆⇔=I
A B A B A ⊆⇔=Y ; B A U B A C U ⊆⇔=Y )(; A B B A C U ⊆⇔Φ=I )(;
⑤ 反演律: B C A C B A C I I I ⋂=⋃)(, 并补补交 B C A C B A C I I I ⋃=⋂)( 交补补并 )()()(B A C B C A C U U U Y I
=; 补交并补
)()()(B A C B C A C U U U I Y = 补并交补
B A Y 中元素的个数的计算公式为:
)()(B A Card CardB CardA B A Card I Y -+= 二并和减交
)()(B A Card CardB CardA B A Card Y I -+= 二交和减并
()()
card A B C cardA cardB cardC card A B =++-U U I ()()()()card A B card B C card C A card A B C ---+I I I I I 三并和减交加交
(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.
A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U
注意:讨论的时候不要遗忘了φ=A 的情况.
3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R }二、四象限的点集. ③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集.
②点集与数集的交集是φ.
例:A ={(x ,y )| y =x +1} B={y |y =x 2
+1} 则A ∩B =∅ 包含关系:
,,,,
,;,;,.
U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇I I U U C
等价关系:U A B A B A A B B A B U
⊆⇔=⇔=⇔=I U U C
分配律:.)()()();()()(C A B A C B A C A B A C B A Y I Y I Y I Y I Y I
==
,,,A A A U A A U A U Φ=ΦΦ===I U I U
.,A A A A A A ==Y I
求补律:A ∩C U A =φ A ∪C U A =U
包含关系
A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U
定理1 集合的性质:对任意集合A ,B ,C ,有: (1));()()(C A B A C B A I Y I Y I
= (2))()()(C A B A C B A Y I Y I Y =;
(3));(111B A C B C A C I Y = (4)).(111B A C B C A C Y I =
【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若)(C B A x Y I ∈,
则A x ∈,且B x ∈或C x ∈,所以)(B A x I ∈或)(C A x I ∈,即)()(C A B A x I Y I
∈;反之,)()(C A B A x I Y I ∈,则)(B A x I ∈或)(C A x I ∈,
即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x Y ∈,即).(C B A x Y I
∈
(3)若B C A C x 11Y ∈,则A C x 1∈或B C x 1∈,所以A x ∉或B x ∉,所以
)(B A x I ∉,又I x ∈,所以)(1B A C x I ∈,即)(111B A C B C A C I Y ⊆,反之也有
.)(111B C A C B A C Y I ⊆
分配律
1 (A ∩B)∪C = C ∪(A ∩B) = (A ∪C)∩(B ∪C)
(A ∪C)∩(B ∪C)= C ∪(A ∩B)= (A ∩B)∪C
2 (A ∪B)∩C = C ∩(A ∪B) = (A ∩C)∪(B ∩C) (A ∩C)∪(B ∩C) = C ∩(A ∪B) = (A ∪B)∩C
吸收律A∪(A∩B) = A A∩(A∪B) = A
传递性:A⊂B且B⊂C ⇒ A⊂C;
A⊆C,B⊆C ⇒ A∪B⊆C A⊆A∪B
C⊆A,C⊆B ⇒ C⊆A∩B A∩B⊆A
A⊆B ⇒ A∪B=B A⊆B⇒A∩B= A
若A∪B = U且A∩B= Ø 则B = A C。
Ø ⊆A⊆S A⊆A∪B 若A⊆C 且B⊆C 则A∪B⊆C A∩B⊆ A 若C⊆A且C⊆B则C⊆A∩B
A-B-C =A-(B+C)=A∩C U(B∪C) 减交补。