高中数学公式大全由易到难
- 格式:doc
- 大小:36.00 KB
- 文档页数:7
高中数学公式大全表1. 代数公式:方程的根:设方程ax² + bx + c = 0的根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁ × x₂ = c/a二次方程的解:对于方程ax² + bx + c = 0,解可以用以下公式表示:x = (-b ± √(b² - 4ac)) / 2a二次函数的顶点坐标:设二次函数的表达式为y = ax² + bx + c,顶点坐标可以通过以下公式计算:x = -b / 2ay = c - b² / 4a二次函数的平移变换:设原二次函数的表达式为y = ax² + bx + c,经过平移变换后的函数的表达式为y = a(x - h)² + k。
其中(h, k)为平移的距离,代表二次函数的顶点坐标。
2. 几何公式:三角函数:常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
它们的定义如下:sinθ = 对边 / 斜边cosθ = 邻边 / 斜边tanθ = 对边 / 邻边勾股定理:对于一直角三角形,较长的边称为斜边,其余两边称为直角边。
勾股定理可以表示为:斜边² = 直角边₁² + 直角边₂²正弦定理:对于任意三角形ABC,边长的比值与角度的正弦的比值之间有以下关系:a / sinA =b / sinB =c / sinC余弦定理:对于任意三角形ABC,边长的平方与另外两条边长的乘积和它们的夹角的余弦的乘积之间有以下关系:a² = b² + c² - 2bc cosA3. 概率公式:事件概率的计算:对于一个随机试验,事件A发生的概率可以用以下公式表示:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的次数,n(S)表示随机试验的总次数。
加法原理:如果A和B是两个互不相容的事件,即A和B不能同时发生,那么A或B发生的概率可以用以下公式计算:P(A或B) = P(A) + P(B)乘法原理:如果A和B是两个相互独立的事件,即事件A发生与否不会影响事件B发生的概率,那么A和B同时发生的概率可以用以下公式计算:P(A和B) = P(A) × P(B|A)条件概率:对于事件A和B,条件概率可以表示为:P(B|A) = P(A和B) / P(A)4. 统计学公式:均值:一组数据的均值可以用以下公式计算:mean = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂、...、xn为每个数据点的值,n为数据点的个数。
高中数学公式大全高中数学公式大全数学是一门重要的学科,它在高中阶段占据着重要的位置。
数学公式是数学知识的核心,因此掌握数学公式对于学习和应用数学都具有重要意义。
下面是高中数学公式的大全,希望对大家的学习有所帮助。
1. 代数公式- 二次方程的求根公式:对于方程ax^2+bx+c=0,其中a≠0,其根可以通过公式x=(-b±√(b^2-4ac))/(2a)来求得。
- 平方差公式:(a-b)^2=a^2-2ab+b^2,(a+b)^2=a^2+2ab+b^2。
- 二次平均不等式:对于任意的正实数a和b,有(a+b)/2 ≥ √(ab)。
- 三角函数基本关系式:sin^2θ+cos^2θ=1,1+tan^2θ=sec^2θ,1+cot^2θ=csc^2θ。
2. 几何公式- 三角形面积公式:对于已知三角形的底和高,其面积可以通过公式A=(1/2)bh来计算。
- 三角形周长公式:对于已知三角形的三边长度a、b、c,其周长可以通过公式P=a+b+c来计算。
- 圆的周长和面积公式:对于给定半径r的圆,其周长可以通过公式C=2πr来计算,面积可以通过公式A=πr^2来计算。
- 直线与平面的关系:对于平面Ax+By+Cz+D=0和直线的方程lx+my+nz=0,两者垂直的条件是A·l + B·m + C·n = 0。
3. 微积分公式- 函数导数的四则运算:如果f(x)和g(x)都是可导函数,那么导数的和差法则为(d/f+g)(x)=f'(x)+g'(x),导数的常数倍法则为(d/c·f)(x)=c·f'(x)。
- 链式法则:对于复合函数f(g(x)),其导数可以通过链式法则求解,即(d/dx)f(g(x))=f'(g(x))·g'(x)。
- 定积分计算公式:定积分可以通过牛顿-莱布尼茨公式计算,即∫[a,b]f(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数。
一、代数公式1. 平方差公式:(a+b)(a-b)=a^2-b^22. 完全平方公式:(a+b)^2=a^2+2ab+b^23. 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)4. 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)5. 二次方程求根公式:x1,2=[-b±sqrt(b^2-4ac)]/2a6. 二项式定理:(a+b)^n=Σ(nCk*ak*b^(n-k)),其中nCk表示组合数。
二、几何公式1. 直角三角形的斜边公式:c=sqrt(a^2+b^2)2. 圆的周长公式:C=2πr3. 圆的面积公式:A=πr^24. 矩形的面积公式:A=lw5. 矩形的周长公式:P=2(l+w)6. 平行四边形的面积公式:A=bh7. 三角形的面积公式:A=1/2bh8. 球的体积公式:V=4/3πr^39. 球的表面积公式:A=4πr^2三、三角函数公式1. 正弦定理:a/sinA=b/sinB=c/sinC=2R2. 余弦定理:c^2=a^2+b^2-2abcosC3. 正切定理:tan(A+B)=(tanA+tanB)/(1-tanAtanB)4. 正弦函数:sin(α+β)=sinαcosβ+cosαsinβ5. 余弦函数:cos(α+β)=cosαcosβ-sinαsinβ6. 正切函数:tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)四、概率与统计公式1. 平均值:μ=Σx/N2. 方差:σ^2=Σ(x-μ)^2/N3. 标准差:σ=sqrt[Σ(x-μ)^2/N]4. 概率:P(A)=n(A)/n(S)以上是高中数学的一些基本公式,但并未包含所有公式,具体还需参考教材。
(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
高中数学所有公式大总结高中数学涉及的公式很多,不同的章节和知识点都有对应的公式,掌握这些公式是解题的基础。
下面将对高中数学中常用的各个章节的公式进行总结。
1. 代数基本公式:- 二次方程的根公式:对于二次方程ax^2+bx+c=0,根的公式为x=(-b±√(b^2-4ac))/(2a)。
- 一次方程求解公式:对于一次方程ax+b=0,解为x=-b/a。
- 直线的斜率公式:对于直线y=kx+b,其斜率为k。
- 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。
- 等比数列通项公式:对于等比数列an=a1*r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。
2. 平面几何公式:- 长方形面积公式:面积为长乘以宽,即A=lw。
- 正方形面积公式:面积为边长的平方,即A=s^2。
- 三角形面积公式:面积为底乘以高的一半,即A=1/2bh。
- 三角形海伦公式:对于已知三角形三边长a、b、c,其面积可以由海伦公式计算:A=√(s(s-a)(s-b)(s-c)),其中s为半周长(s=(a+b+c)/2)。
- 直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。
3. 解析几何公式:- 两点之间的距离公式:对于平面上两点的坐标分别为(x1, y1)和(x2, y2),两点之间的距离为d=√((x2-x1)^2+(y2-y1)^2)。
- 点到直线的距离公式:对于直线Ax+By+C=0和平面上的点P(x0, y0),点P 到直线的距离为d=|Ax0+By0+C|/√(A^2+B^2)。
- 两直线夹角的余弦公式:对于直线y=k1x+b1和直线y=k2x+b2,两直线夹角的余弦为cosθ=(k1k2+1)/√((k1^2+1)(k2^2+1))。
4. 概率与统计公式:- 事件的概率公式:对于事件A,其概率表示为P(A)。
高考数学基础知识点公式数学作为高考的一门重要科目,占据了很大的比重。
在备考高考数学时,熟练掌握基础知识点和公式是非常重要的。
本文将介绍一些高考数学中常用的基础知识点和公式,供广大考生参考。
一、代数与函数部分1. 二次函数的顶点坐标公式对于一般的二次函数y = ax² + bx + c,它的顶点坐标可以通过以下公式求解:x = -b/2ay = -(b²-4ac)/4a2. 因式分解公式(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b) = a² - b²3. 二次根式化简公式√(a+b) = √a + √b (a≥0, b≥0)√(a-b) = √a - √b (a≥0, b≥0)(√a + √b)(√a - √b) = a - b4. 倍角公式sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θtan2θ = (2tanθ)/(1-tan²θ)二、几何部分1. 面积公式三角形的面积公式:S = (1/2)bh矩形的面积公式:S = lw平行四边形的面积公式:S = bh梯形的面积公式:S = (a+b)h/2圆的面积公式:S = πr²2. 三角形的正弦定理与余弦定理对于三角形ABC,边长分别为a,b,c,对应的角度分别为A,B,C:正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosC3. 圆的相关公式圆的周长公式:C = 2πr圆的弧长公式:L = 2πr(θ/360°) (其中θ为圆心角的度数) 圆的扇形面积公式:S = (πr²θ)/360°三、概率与统计部分1. 排列组合公式排列公式:An = n!组合公式:Cn = n!/(m!(n-m)!)2. 期望公式离散型随机变量X的期望:E(X) = ∑(xi*P(xi))连续型随机变量X的期望:E(X) = ∫(xf(x)dx)3. 方差公式离散型随机变量X的方差:D(X) = ∑(xi-E(X))²P(xi)连续型随机变量X的方差:D(X) = ∫(x-E(X))²f(x)dx四、数列与数学归纳法部分1. 等差数列的通项公式第n项:an = a1 + (n-1)d前n项和:Sn = (n/2)(a1 + an)2. 等比数列的通项公式第n项:an = a1 * r^(n-1)前n项和(无穷项和):Sn = (a1 * (r^n - 1))/(r - 1) (当|r| < 1)3. 斐波那契数列的通项公式Fn = F(n-1) + F(n-2) (n ≥ 3, F1 = 1, F2 = 1)以上仅是高考数学中的部分基础知识点和公式,掌握这些公式并熟练运用,对于考试会起到事半功倍的效果。
高中数学全部公式高中数学是一门非常重要的学科,其中有很多公式是必须掌握的。
下面是一些高中数学中常用的重要公式:1.代数运算公式:- 二次方程求根公式: 对于一般的二次方程ax^2 + bx + c = 0, 其根可以通过公式x = (-b ± √(b^2-4ac))/(2a) 来求解。
- 因式分解公式: 对于二次三项式ax^2 + bx + c, 可以通过因式分解得到(x-h)(x-k)的形式。
-求和公式:1+2+3+...+n=n(n+1)/2,其中n为正整数。
-指数运算法则:a^m*a^n=a^(m+n)。
- 对数运算法则: log(ab) = log(a) + log(b)。
2.几何公式:-勾股定理:在一个直角三角形中,直角边的平方等于两直角边平方和,即a^2+b^2=c^2-相似三角形的边比公式:如果两个三角形相似,则对应边的比例相等,即a/b=c/d。
-平行线截断定理:若一直线与两个平行线相交,它们分别截取的线段成比例,则这两个线段所在的直线与平行线平行。
- 三角形面积公式: S = 1/2 * a * b * sin(C),其中a、b为两边长,C为夹角。
3.微积分公式:- 导数的基本公式: d(x^n)/dx = n*x^(n-1),其中n为常数。
- 基本微分法则: d(uv)/dx = u * dv/dx + v * du/dx。
- 积分的基本公式: ∫(k * f(x))dx = k * ∫f(x)dx,其中k为常数。
4.概率统计公式:-加法原理:P(A∪B)=P(A)+P(B)-P(A∩B)。
-条件概率公式:P(A,B)=P(A∩B)/P(B),其中A、B为两个事件。
-二项分布公式:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中X为成功的次数,n为试验次数,p为单次试验成功的概率。
5.三角函数公式:- 三角函数和差化积公式: sin(A±B) = sin(A)cos(B) ±cos(A)sin(B),cos(A±B) = cos(A)cos(B) ∓ sin(A)sin(B)。
高中数学公式及知识点总结大全数学是一门基础学科,对于高中学生来说,掌握好数学公式和知识点至关重要。
以下是高中数学公式及知识点的全面总结,希望对学生们有所帮助。
一、代数1.1 一元一次方程(ax+b=0)- 方程求根公式:x=-b/a- 解方程步骤:去括号、合并同类项、移项、化简、求解1.2 二元一次方程组(ax+by=c,dx+ey=f)- 解方程步骤:消元法、代入法、等系数法、加减消法、图解法1.3 一元二次方程(ax^2+bx+c=0)- 二次根公式:x=(-b±√(b^2-4ac))/(2a)- 判别式:Δ=b^2-4ac,当Δ>0时有两个不相等实根,当Δ=0时有两个相等实根,当Δ<0时无实根1.4 二次函数- 标准式:y=ax^2+bx+c- 最值判定:当a>0时,函数的最小值为f(x)=-Δ/(4a),当a<0时,函数的最大值为f(x)=-Δ/(4a)1.5 不等式- 一元一次不等式:大于(<)、小于(>)、大于等于(≤)、小于等于(≥)- 一元二次不等式:大于、小于、大于等于、小于等于二、平面几何2.1 三角形- 三角形内角和定理:三角形内角和为180度- 三角形外角定理:三角形的外角等于相对内角的补角- 等边三角形:三条边相等,每个内角为60度2.2 圆- 弧度制:一周对应的弧度为2π- 弧长公式:L=θr- 扇形面积公式:S=θr^2/2- 圆的面积公式:S=πr^22.3 直线与坐标- 斜率公式:m=(y2-y1)/(x2-x1)- 点斜式:y-y1=m(x-x1)- 两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)三、立体几何3.1 体积与表面积- 立方体:体积V=a^3,表面积S=6a^2- 圆柱体:体积V=πr^2h,侧面积S=2πrh,表面积S=2πrh+2πr^2 - 球体:体积V=4/3πr^3,表面积S=4πr^2- 锥体:体积V=1/3πr^2h,侧面积S=πrl,底面积S=πr^2,表面积S=πr(r+l)3.2 三视图与投影- 正交投影:俯视图、正视图、左视图、右视图、前视图、后视图- 等轴投影:正等轴投影、侧等轴投影、俯等轴投影四、概率与统计4.1 概率- 事件概率:P(A)=n(A)/n(S)- 加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)- 乘法公式:P(A∩B)=P(A)P(B|A)4.2 统计- 平均数:算术平均数、几何平均数、调和平均数- 中位数:数据中间的数值- 众数:出现频率最高的数值五、函数与导数5.1 常见函数- 幂函数:y=x^n- 指数函数:y=a^x,其中a>0且a≠1- 对数函数:y=loga(x),其中a>0且a≠1- 三角函数:正弦函数、余弦函数、正切函数5.2 导数- 导数定义:f'(x)=lim(h→0)(f(x+h)-f(x))/h- 导数的性质:和法则、差法则、积法则、商法则、链式法则以上是高中数学公式及知识点的全面总结,包括代数、平面几何、立体几何、概率与统计、函数与导数等内容。
高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。
解为 x = b/a。
2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。
解为 x =[b ± sqrt(b^2 4ac)] / 2a。
3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。
解为x = [b ± sqrt(b^2 3ac)] / 3a。
4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。
解为x = [b ± sqrt(b^2 4ac)] / 2a。
5. 分式方程:分子和分母均为多项式。
解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。
6. 二元一次方程组:由两个一元一次方程组成的方程组。
解法为消元法或代入法。
7. 二元二次方程组:由两个一元二次方程组成的方程组。
解法为消元法或代入法。
8. 三元一次方程组:由三个一元一次方程组成的方程组。
解法为消元法或代入法。
9. 等差数列:首项为 a1,公差为 d。
第 n 项为 an = a1 + (n 1)d。
前 n 项和为 Sn = n/2(a1 + an)。
10. 等比数列:首项为 a1,公比为 q。
第 n 项为 an = a1q^(n 1)。
前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。
二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。
(2)圆:圆心为 (a, b),半径为 r。
圆的方程为 (x a)^2 +(y b)^2 = r^2。
(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。
椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。
(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。
高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。
高中数学公式大全总结高中数学公式是学生们在学习数学过程中经常使用的一些重要公式。
这些公式覆盖了数学的各个分支,包括代数、几何、三角学等。
本文将对高中数学公式进行总结,希望能帮助学生们深入理解数学知识。
一、代数公式1. 二次方程公式:对于一元二次方程ax²+bx+c=0,求根公式为x = (-b±√(b²-4ac))/(2a)。
2. 因式分解公式:要求将一个多项式拆解为乘积形式,如(x+y)²=x²+2xy+y²。
3. 二项式展开公式:要求将一个二项式展开为多项式形式,如(a+b)ⁿ的展开式可以用二项式定理求得。
4. 三角函数的和差化积公式:如sin(x+y)=sin(x)cos(y)+cos(x)sin(y)。
5. 对数公式:包括对数的定义及其常用的计算公式,如ln(a×b)=ln(a)+ln(b)。
二、几何公式1. 勾股定理:直角三角形斜边的平方等于两直角边平方和,即a²+b²=c²。
2. 正弦定理:三角形中,任意角的正弦值与相应边长之间成比例关系,即a/sinA=b/sinB=c/sinC。
3. 余弦定理:三角形中,任意两边平方和减去相应夹角的两倍余弦的积,等于第三边的平方,即c²=a²+b²-2abcosC。
4. 相似三角形的性质:包括边比例、角度相等等。
5. 圆的面积和周长公式:圆的面积公式为A=πr²,周长公式为C=2πr。
三、导数公式1. 基本导数公式:包括常数函数导数、幂函数导数、指数函数导数、对数函数导数等。
2. 基本运算法则:包括导数的四则运算法则、乘积法则、商法则、复合函数法则等。
3. 高阶导数:求导函数的导数。
四、概率公式1. 排列组合公式:包括排列数、组合数等的计算公式。
2. 事件独立性及概率公式:包括事件独立的判定条件、求联合概率与条件概率等。
所有高中数学公式总结归纳高中数学作为一门重要的科目,涵盖了广泛的知识内容和丰富的数学公式。
这些公式对于学生来说是必备的工具,在解题和理解数学概念中起到关键作用。
为了帮助高中学生更好地掌握数学知识,本文将对高中数学中常用的公式进行总结归纳。
以下是各个数学领域中常见的公式。
一、代数公式总结1. 一次方程:ax + b = 0解的公式:x = -b/a2. 二次方程:ax² + bx + c = 0解的公式:x = (-b ± √(b² - 4ac))/(2a)3. 二次函数的顶点坐标公式:x = -b/2ay = f(x) = c - b²/4a4. 配方法:若 x² - px + q = 0,且有实数解,其中 p² - 4q ≥ 0,则 x₁ + x₂ = p,x₁ * x₂ = q5. 平方差公式:a² - b² = (a + b)(a - b)三角函数的平方差公式:sin²θ - cos²θ = 16. 二次和公式:(a + b)² = a² + 2ab + b²三角函数的二次和公式:sin(A ± B) = sinAcosB ± cosAsinB 7. 一元二次不等式:ax² + bx + c > 0 (a > 0) 的解集为 x ∈ R | x < x₁或 x > x₂其中 x₁, x₂分别为二次方程 ax² + bx + c = 0 的两个根8. 等差数列的通项公式:an = a₁ + (n - 1)d等差数列的前 n 项和公式:Sn = (n/2)(a₁ + an)9. 等比数列的通项公式:an = a₁ * q^(n - 1)等比数列的前 n 项和公式:Sn = a₁(1 - q^n)/(1 - q)二、几何公式总结1. 三角形的面积公式:S = (1/2)bh2. 三角形的海伦公式:S = √[p(p-a)(p-b)(p-c)],其中 p 为半周长3. 三角形的余弦定理:c² = a² + b² - 2abcosC4. 三角形的正弦定理:a/sinA = b/sinB = c/sinC5. 四边形的面积公式:平行四边形:S = bh长方形:S = lw正方形:S = a²梯形:S = (上底 + 下底)h/26. 圆的面积公式:S = πr²7. 圆的周长公式:C = 2πr三、微积分公式总结1. 导数的基本公式:常数函数导数:(k)' = 0幂函数导数:(x^n)' = nx^(n-1)指数函数导数:(e^x)' = e^x对数函数导数:(logₐx)' = 1/(xlna)三角函数导数:(sinx)' = cosx,(cosx)' = -sinx2. 积分的基本公式:常数函数积分:∫kdx = kx + C幂函数积分:∫xⁿdx = (x^(n+1))/(n+1) + C指数函数积分:∫e^xdx = e^x + C对数函数积分:∫(1/x)dx = ln|x| + C三角函数积分:∫sinxdx = -cosx + C,∫cosxdx = sinx + C四、概率与统计公式总结1. 排列公式:An = n!2. 组合公式:Cnr = n!/(r!(n-r)!)3. 期望公式:E(x) = ∑[xP(x)]4. 方差公式:Var(x) = E((x-E(x))²) = E(x²) - (E(x))²5. 标准差公式:σ = √Var(x)以上是对高中数学中常见的数学公式进行的总结归纳。
高中所有数学公式大全数学公式是数学中的重要工具,帮助我们理解和解决各种数学问题。
下面是高中数学中常见的一些数学公式。
1. 代数公式:- 二次方程的解公式:对于二次方程ax^2+bx+c=0,解为x=(-b±√(b^2-4ac))/(2a)。
- 因式分解公式:如a^2-b^2=(a-b)(a+b)。
- 完全平方公式:如(a+b)^2=a^2+2ab+b^2。
- 二次根式的运算公式:如√(a^2)+√(b^2)=a+b。
2. 几何公式:- 三角形的面积公式:如三角形的面积S=1/2 * 底边 * 高。
- 圆的面积公式:如圆的面积S=πr^2,其中r为半径。
- 球体的表面积公式:如球体的表面积S=4πr^2,其中r为半径。
- 球体的体积公式:如球体的体积V=4/3 * πr^3,其中r为半径。
3. 概率公式:- 基本概率公式:如事件A发生的概率为P(A)=事件A发生的次数/总次数。
- 条件概率公式:如事件A在事件B已经发生的条件下发生的概率为P(A|B)=P(A∩B)/P(B)。
- 乘法公式:如两个独立事件A和B同时发生的概率为P(A∩B)=P(A) * P(B)。
- 加法公式:如两个互斥事件A和B发生的概率为P(A∪B)=P(A)+P(B)。
4. 线性代数公式:- 向量的点乘公式:如向量A·向量B=|A| |B| cosθ,其中|A|和|B|表示向量A和向量B的模,θ表示两者夹角。
- 矩阵乘法公式:如矩阵A与矩阵B相乘得到矩阵C,C_ij=∑(k=1 to n) A_ik * B_kj,其中n表示矩阵的维度。
- 矩阵的转置公式:如矩阵A的转置记为A^T,A^T_ij=A_ji,即转置后的矩阵A的行和列交换。
- 矩阵的逆公式:如矩阵A的逆记为A^-1,满足A * A^-1=I,其中I为单位矩阵。
上述仅列举了一部分高中数学中常见的公式,还有很多其他公式未包括在内。
当需要使用特定的数学公式时,可以参考教材、课堂讲义或数学参考书籍,以便更好地理解和应用公式。
高中数学公式总结大全最全面、最易懂高中数学公式总结大全最全面、最易懂高中数学是一门非常重要的学科,它是后续学科的基础。
数学是一门理性的学科,但也需要掌握一些必要的公式来解决问题。
在准备数学考试时,熟练掌握公式是非常重要的。
本文将为大家总结最重要的高中数学公式,以帮助大家更好地备考。
1. 代数公式1.1 二次方程的解对于一元二次方程ax^2+bx+c=0,其解为x = {-b±√(b^2-4ac)} / 2a1.2 因式分解公式(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b) = a^2 - b^21.3 平均数公式平均数=$\frac{\sum_{i=1}^{n}x_i}{n}$1.4 概率公式事件A发生的概率为P(A)=$\frac{A出现的次数}{总次数}$事件A和事件B同时发生的概率为P(A∩B)=P(A)×P(B|A)事件A和事件B至少发生一个的概率为P(A∪B)=P(A)+P(B)-P(A∩B)1.5 对数公式以a为底数的对数,log(a^n)=nlog(a)以e为底数的对数,ln(a)=log(e^a)1.6 复合函数的求导公式设f(x)和g(x)都可以求导,则(f(g(x)))' = f'(g(x))g'(x)1.7 三角函数公式sin(a+b)=sinacosb+cosasinbcos(a+b)=cosacosb-sinasinbtan(a+b)= $\frac{tana + tanb}{1-tanatanb}$sin2a=2sinacosbcos2a=cos^2a-sin^2atan2a= $\frac{2tana}{1-tan^2a}$2. 几何公式2.1 三角形的面积公式设三角形的三条边分别为a,b和c,p为半周长,则S= $\sqrt{p(p-a)(p-b)(p-c)}$2.2 勾股定理勾股定理:a^2+b^2=c^2其中,a和b为直角三角形斜边两侧的直角边,c为斜边。
200条⾼中数学公式总结⼤全(⾮常详细)数学公式,是表征⾃然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从⼀种事物到达另⼀种事物的依据,使我们更好的理解事物的本质和内涵。
如⼀些基本公式抛物线:y = ax *+ bx + c就是y等于ax 的平⽅加上 bx再加上 ca > 0时开⼝向上a < 0时开⼝向下="">c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平⽅+k-h是顶点坐标的xk是顶点坐标的y⼀般⽤于求最⼤值与最⼩值抛物线标准⽅程:y^2=2px它表⽰抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线⽅程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准⽅程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)⾯积=(pi)(r^2)周长=2(pi)r圆的标准⽅程 (x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0⾼中学习帮的⼩程序开通啦(⼀)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(⼆)椭圆⾯积计算公式椭圆⾯积公式: S=πab椭圆⾯积定理:椭圆的⾯积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、⾯积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变⽽来。
常数为体,公式为⽤。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*⾼三⾓函数:两⾓和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍⾓公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍⾓公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍⾓公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍⾓公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍⾓公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)⼋倍⾓公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍⾓公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)⼗倍⾓公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半⾓公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1) (2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表⽰三⾓形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:⾓B是边a和边c的夹⾓乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三⾓不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|⼀元⼆次⽅程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:⽅程有相等的两实根b2-4ac>0 注:⽅程有两个不相等的个实根b2-4ac<0 注:⽅程有共轭复数根="">公式分类公式表达式圆的标准⽅程 (x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准⽅程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧⾯积 S=c*h 斜棱柱侧⾯积 S=c'*h正棱锥侧⾯积 S=1/2c*h' 正棱台侧⾯积 S=1/2(c+c')h'圆台侧⾯积 S=1/2(c+c')l=pi(R+r)l 球的表⾯积 S=4pi*r2圆柱侧⾯积 S=c*h=2pi*h 圆锥侧⾯积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆⼼⾓的弧度数r >0 扇形⾯积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截⾯⾯积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长⾯积体积公式长⽅形的周长=(长+宽)×2正⽅形的周长=边长×4长⽅形的⾯积=长×宽正⽅形的⾯积=边长×边长三⾓形的⾯积已知三⾓形底a,⾼h,则S=ah/2已知三⾓形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三⾓形两边a,b,这两边夹⾓C,则S=absinC/2设三⾓形三边分别为a、b、c,内切圆半径为r则三⾓形⾯积=(a+b+c)r/2设三⾓形三边分别为a、b、c,外接圆半径为r则三⾓形⾯积=abc/4r已知三⾓形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶) | a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶⾏列式,此三⾓形ABC在平⾯直⾓坐标系内A(a,b),B(c,d), C(e,f),这⾥ABC| e f 1 |选区取最好按逆时针顺序从右上⾓开始取,因为这样取得出的结果⼀般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三⾓形⾯积的⼤⼩!】秦九韶三⾓形中线⾯积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三⾓形的中线长.平⾏四边形的⾯积=底×⾼梯形的⾯积=(上底+下底)×⾼÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的⾯积=圆周率×半径×半径长⽅体的表⾯积=(长×宽+长×⾼+宽×⾼)×2长⽅体的体积 =长×宽×⾼正⽅体的表⾯积=棱长×棱长×6正⽅体的体积=棱长×棱长×棱长圆柱的侧⾯积=底⾯圆的周长×⾼圆柱的表⾯积=上下底⾯⾯积+侧⾯积圆柱的体积=底⾯积×⾼圆锥的体积=底⾯积×⾼÷3长⽅体(正⽅体、圆柱体)的体积=底⾯积×⾼平⾯图形名称符号周长C和⾯积S正⽅形 a—边长 C=4aS=a2长⽅形 a和b-边长 C=2(a+b)S=ab三⾓形 a,b,c-三边长h-a边上的⾼s-周长的⼀半A,B,C-内⾓其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有⼀条直线2 两点之间线段最短3 同⾓或等⾓的补⾓相等4 同⾓或等⾓的余⾓相等5 过⼀点有且只有⼀条直线和已知直线垂直6 直线外⼀点与直线上各点连接的所有线段中,垂线段最短7 平⾏公理经过直线外⼀点,有且只有⼀条直线与这条直线平⾏8 如果两条直线都和第三条直线平⾏,这两条直线也互相平⾏9 同位⾓相等,两直线平⾏10 内错⾓相等,两直线平⾏11 同旁内⾓互补,两直线平⾏12两直线平⾏,同位⾓相等13 两直线平⾏,内错⾓相等14 两直线平⾏,同旁内⾓互补15 定理三⾓形两边的和⼤于第三边16 推论三⾓形两边的差⼩于第三边17 三⾓形内⾓和定理三⾓形三个内⾓的和等于180°18 推论1 直⾓三⾓形的两个锐⾓互余19 推论2 三⾓形的⼀个外⾓等于和它不相邻的两个内⾓的和20 推论3 三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓21 全等三⾓形的对应边、对应⾓相等22边⾓边公理(sas) 有两边和它们的夹⾓对应相等的两个三⾓形全等23 ⾓边⾓公理( asa)有两⾓和它们的夹边对应相等的两个三⾓形全等24 推论(aas) 有两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等25 边边边公理(sss) 有三边对应相等的两个三⾓形全等26 斜边、直⾓边公理(hl) 有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等27 定理1 在⾓的平分线上的点到这个⾓的两边的距离相等28 定理2 到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上29 ⾓的平分线是到⾓的两边距离相等的所有点的集合30 等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等 (即等边对等⾓)31 推论1 等腰三⾓形顶⾓的平分线平分底边并且垂直于底边32 等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合33 推论3 等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°34 等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边)35 推论1 三个⾓都相等的三⾓形是等边三⾓形36 推论 2 有⼀个⾓等于60°的等腰三⾓形是等边三⾓形37 在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半38 直⾓三⾓形斜边上的中线等于斜边上的⼀半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a^2+b^2=c^247勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三⾓形是直⾓三⾓形48定理四边形的内⾓和等于360°49四边形的外⾓和等于360°50多边形内⾓和定理 n边形的内⾓的和等于(n-2)×180°51推论任意多边的外⾓和等于360°52平⾏四边形性质定理1 平⾏四边形的对⾓相等53平⾏四边形性质定理2 平⾏四边形的对边相等54推论夹在两条平⾏线间的平⾏线段相等55平⾏四边形性质定理3 平⾏四边形的对⾓线互相平分56平⾏四边形判定定理1 两组对⾓分别相等的四边形是平⾏四边形57平⾏四边形判定定理2 两组对边分别相等的四边形是平⾏四边形58平⾏四边形判定定理3 对⾓线互相平分的四边形是平⾏四边形59平⾏四边形判定定理4 ⼀组对边平⾏相等的四边形是平⾏四边形60矩形性质定理1 矩形的四个⾓都是直⾓61矩形性质定理2 矩形的对⾓线相等62矩形判定定理1 有三个⾓是直⾓的四边形是矩形63矩形判定定理2 对⾓线相等的平⾏四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓66菱形⾯积=对⾓线乘积的⼀半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对⾓线互相垂直的平⾏四边形是菱形69正⽅形性质定理1 正⽅形的四个⾓都是直⾓,四条边都相等70正⽅形性质定理2正⽅形的两条对⾓线相等,并且互相垂直平分,每条对⾓线平分⼀组对⾓71定理1 关于中⼼对称的两个图形是全等的72定理2 关于中⼼对称的两个图形,对称点连线都经过对称中⼼,并且被对称中⼼平分73逆定理如果两个图形的对应点连线都经过某⼀点,并且被这⼀点平分,那么这两个图形关于这⼀点对称74等腰梯形性质定理等腰梯形在同⼀底上的两个⾓相等75等腰梯形的两条对⾓线相等76等腰梯形判定定理在同⼀底上的两个⾓相等的梯形是等腰梯形77对⾓线相等的梯形是等腰梯形78平⾏线等分线段定理如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形⼀腰的中点与底平⾏的直线,必平分另⼀腰80 推论2 经过三⾓形⼀边的中点与另⼀边平⾏的直线,必平分第三边81 三⾓形中位线定理三⾓形的中位线平⾏于第三边,并且等于它的⼀半82 梯形中位线定理梯形的中位线平⾏于两底,并且等于两底和的⼀半 l=(a+b)÷2 s=l×h83 (1)⽐例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合⽐性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等⽐性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平⾏线分线段成⽐例定理三条平⾏线截两条直线,所得的对应线段成⽐例87 推论平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线),所得的对应线段成⽐例88 定理如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边89 平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例90 定理平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似91 相似三⾓形判定定理1 两⾓对应相等,两三⾓形相似(asa)92 直⾓三⾓形被斜边上的⾼分成的两个直⾓三⾓形和原三⾓形相似93 判定定理2 两边对应成⽐例且夹⾓相等,两三⾓形相似(sas)94 判定定理3 三边对应成⽐例,两三⾓形相似(sss)95 定理如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似96 性质定理1 相似三⾓形对应⾼的⽐,对应中线的⽐与对应⾓平分线的⽐都等于相似⽐97 性质定理2 相似三⾓形周长的⽐等于相似⽐98 性质定理3 相似三⾓形⾯积的⽐等于相似⽐的平⽅99 任意锐⾓的正弦值等于它的余⾓的余弦值,任意锐⾓的余弦值等于它的余⾓的正弦值100任意锐⾓的正切值等于它的余⾓的余切值,任意锐⾓的余切值等于它的余⾓的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆⼼的距离⼩于半径的点的集合103圆的外部可以看作是圆⼼的距离⼤于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知⾓的两边距离相等的点的轨迹,是这个⾓的平分线108到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线109定理不在同⼀直线上的三点确定⼀个圆。
高中数学公式大全表引言概述:数学是一门基础学科,也是高中阶段学习的重要科目之一。
在数学学习中,数学公式是解题的重要工具,它们帮助我们理解和解决各种数学问题。
本文将介绍一份高中数学公式大全表,旨在帮助学生更好地掌握数学知识和应用公式解题。
正文内容:1. 代数公式1.1 一次方程和二次方程的求解公式1.2 因式分解公式1.3 二项式定理1.4 三角恒等式1.5 指数与对数公式2. 几何公式2.1 基本几何公式(周长、面积等)2.2 直角三角形的三边关系2.3 圆的周长和面积公式2.4 三角形的面积公式2.5 三角形的正弦、余弦和正切公式3. 概率与统计公式3.1 排列组合公式3.2 概率计算公式3.3 统计学中的均值、方差和标准差公式3.4 正态分布公式3.5 抽样调查中的抽样误差公式4. 数列公式4.1 等差数列的通项公式和求和公式4.2 等比数列的通项公式和求和公式4.3 斐波那契数列的通项公式和求和公式4.4 等差数列与等比数列的应用5. 导数与微积分公式5.1 基本导数公式5.2 高阶导数公式5.3 微分中值定理5.4 积分基本公式5.5 微积分的应用公式6. 矩阵与行列式公式6.1 矩阵的基本运算公式6.2 矩阵的逆与转置公式6.3 行列式的性质和计算公式6.4 线性方程组的解法与矩阵表示6.5 矩阵与行列式在几何变换中的应用总结:通过本文的介绍,我们可以看到高中数学公式大全表中包含了代数、几何、概率与统计、数列、导数与微积分、矩阵与行列式等各个方面的公式。
这些公式是高中数学学习的基础,掌握它们对于理解和解决数学问题至关重要。
希望学生们能够利用这份公式大全表,加强对数学公式的掌握,提高数学解题能力。
同时,也要注意公式的应用,理解公式背后的数学原理,灵活运用于实际问题中。
通过不断的练习和应用,相信数学学习会变得更加轻松和有趣。
高中数学公式表一、代数公式1. 四则运算公式:- 加法公式:a + b = b + a- 减法公式:a - b ≠ b - a- 乘法公式:a × b = b × a- 除法公式:a ÷ b ≠ b ÷ a2. 幂运算公式:- 正整数幂公式:aⁿ × aᵐ= aⁿ⁺ᵐ- 负整数幂公式:a⁻ⁿ = 1/aⁿ- 幂的乘法公式:(aⁿ)ᵐ= aⁿᵐ- 幂的除法公式:(aⁿ)÷(aᵐ) = aⁿ⁻ᵐ3. 因式分解公式:- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)² - 平方和公式:a² + 2ab + b² = (a + b)²4. 根式公式:- 同底数幂相乘取根公式:√(aⁿ × bⁿ) = √(aⁿ) × √(bⁿ) = a√(b) - 同底数幂相除取根公式:√(aⁿ÷ bⁿ) = √(aⁿ) ÷ √(bⁿ) = aⁿ√(b)二、几何公式1. 平面图形公式:- 长方形的面积公式:A = l × w- 正方形的面积公式:A = a²- 三角形的面积公式:A = 1/2 × b × h- 圆的面积公式:A = πr²2. 空间图形公式:- 立方体的体积公式:V = l × w × h- 正方体的体积公式:V = a³- 圆柱体的体积公式:V = πr²h- 圆锥体的体积公式:V = 1/3 × πr²h三、三角函数公式1. 基本三角函数公式:- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边2. 三角函数的基本关系:- 正弦函数与余弦函数的关系:sin²θ + cos²θ = 1- 正切函数与余切函数的关系:tanθ = 1/cotθ3. 三角函数的和差公式:- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ - 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβ- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓tanαtanβ)四、概率与统计公式1. 概率公式:- 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)- 乘法法则:P(A ∩ B) = P(A) × P(B|A) = P(B) × P(A|B)2. 统计公式:- 平均值公式:平均值 = (数据之和) ÷ (数据的个数)- 方差公式:方差 = [(每个数据与平均值之差的平方之和) ÷ (数据的个数)]五、数列与数学归纳法公式1. 等差数列公式:- 第n项公式:aₙ = a₁ + (n-1)d- 前n项和公式:Sₙ = n/2(a₁ + aₙ)2. 等比数列公式:- 第n项公式:bₙ = b₁ × rⁿ⁻¹- 前n项和公式:Sₙ = b₁ × (1 - rⁿ)/(1 - r)以上是高中数学公式表的一部分,这些公式涵盖了代数、几何、三角函数、概率与统计、数列与数学归纳法等各个方面。
高一至高三数学公式数学是一门有着众多公式的学科,不同的公式可以解决不同的数学问题。
在中学数学学习中,从高一到高三,我们会遇到不同的数学公式,今天我们将以“高一至高三数学公式”为题,来介绍一些常用数学公式。
高一数学公式有:1、抛物线公式:y = ax2 + bx + c;2、椭圆公式:x2/a2 + y2/b2 = 1;3、关于矩形的公式:周长= 2(长+宽);面积=长乘以宽;4、关于圆的公式:周长=2πr;面积=πr2;5、关于三角形的公式:三角形面积=(底乘以高)/2;6、关于等比数列的公式:an=a1(q)n-1;7、关于等差数列的公式:Sn=n(a1+an)/2;高二数学公式有:1、关于几何体的公式:体积=长乘以宽乘以高;2、关于立体角的公式:tanα/2=√(1/a2-1/b2);3、关于矩形平面图形的角度公式:∠ACB=90°;4、关于矩形投影的公式:CD=AH*cosα;5、关于双曲线的公式:x2/a2-y2/b2=1;6、关于椭圆投影的公式:YE=AH*sinα;7、关于椭圆的面积公式:S=πa*b;高三数学公式有:1、关于可积函数的公式:F(x)=∫a(x)dx;2、关于概率的公式:P(A)=m/n;3、关于函数的公式:f(x)=ax3+bx2+CX+d;4、关于二次函数的公式:f(x)=ax2+bx+c;5、关于对数函数的公式:f(x)=logaX;6、关于正弦函数的公式:y=a sin(ωx+φ);7、关于极限的公式:limx→a+f(x)=lf(a);上述就是高一到高三数学学习中的常用数学公式,准确的使用这些公式就能够解决各种数学问题,并了解数学的规律。
在学习数学公式的同时,还要考虑到公式在具体应用中的道德因素。
有时候,在数学推理中,我们可能会犯不当之处,这时我们就需要时刻注意道德与法律,尊重把握界限,不要滥用数学来解决现实生活中的问题。
总之,学习数学公式不仅要掌握公式本身,更要注意其道德与法律方面的考量。
高中数学所有公式归纳
高中数学公式归纳
一、数列:
1、等差数列:若一个数列的首项为a,公差为d,则该数列的通项公式为an=a1+(n-1)d
2、等比数列: 若一个数列的首项为a,公比为q,则该数列的通项公式为an=a1q n-1
二、立体几何:
1、直角三角形斜边长:c2=a2+b2
2、平行四边形面积:S=ab
3、球的表面积:S=4πr2
4、球体体积:V=4/3πr3
三、几何转换:
1、极坐标转换为直角坐标:x=rcosθ,y=rsinθ
2、直角坐标转换为极坐标:r=√x2+y2,θ=tan-1(y/x)
四、圆的几何:
1、圆的圆心角:θ=2πr/C
2、极半径:r=√(a2+b2+2abcosC/2)
五、三角函数:
1、正弦定理:a/sinA=b/sinB=c/sinC
2、余弦定理:a2=b2+c2-2bc cosA
3、正切定理:tanA/a=tanB/b=tanC/c
六、向量:
1、两向量的叉积:A×B=|A| |B| Sinα
2、向量的模:|A|=√a12+a22+a32
3、向量的点积:A·B=|A| |B|cosα
七、二次函数:
1、二元一次方程的解: ax2 + bx + c = 0 的解为 x=(-b ± √b2 - 4ac)/2a
2、二元二次函数的最值:若二元二次函数为:y=ax2 +bx+c,则最值为y=ax2 +bx+c + d(a不等于0),其中d为函数最值。
八、概率论:
1、加法原理:P(A与B事件有联系)=P(A)+P(B)-P(A与B同时发生)
2、乘法原理:P(A与B同时发生)=P(A)*P(B|A)。
乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2 -2+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等--------------------------------------------------------------------------------2 高中数学公式23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形--------------------------------------------------------------------------------3 高中数学公式77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕ ?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2 -2+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等--------------------------------------------------------------------------------2 高中数学公式23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形--------------------------------------------------------------------------------3 高中数学公式77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕ ?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。