初三数学下册,二次函数图像和性质 基础练习题
- 格式:doc
- 大小:279.93 KB
- 文档页数:6
26.2.2 二次函数y=ax2+bx+c的图象和性质一、单选题1.抛物线,,共有的性质是()A.开口方向相同B.开口大小相同C.当时,随的增大而增大D.对称轴相同2.下列四个二次函数:①y=x2,②y=﹣2x2,③,④y=3x2,其中抛物线开口从大到小的排列顺序是( )A.③①②④B.②③①④C.④②①③D.④①③②3.函数y=kx﹣k与y=kx2的图象大致是( )A.B.C.D.4.若抛物线的开口向下,则m的值为( )A.B.C.3D.﹣35.对于抛物线y=x2与y=﹣x2,下列命题中错误的是( )A.两条抛物线关于x轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点6.下列函数中,当x>0时,y值随x值增大而减小的是()A.y= x B.y=C.y=x-1D.y=x27.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<-1B.m<1C.m>-1D.m>-28.如图,分别过点P n(n,0)(n为正整数)作x轴的垂线,交二次函数(x>0)的图象于点A n,交直线(x>0)于点B n,则的值为()A.B.2C.D.二、填空题9.抛物线在y轴的左侧部分是________的.(填“上升”或“下降”)10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为_____.11.二次函数,点在函数图象上,当时,(填“﹥”或“﹤”).12.二次函数的图象开口方向是_____,对称轴是_____,顶点坐标是______.13.二次函数有最低点,则m=__________三、解答题14.若二次函数的图象开口向下,求m的值.晓丽的解题过程如下:(解)∵是二次函数,(第一步)∴,解得或.(第二步)请问晓丽的解题过程正确吗?如果不正确,从第几步开始出现错误,写出正确的解题过程.15.在如图所示的同一直角坐标系中,画出函数,,与的图象并回答下列问题:x…01………………………(1)抛物线的开口方向_____,对称轴是_____,顶点坐标是_____.抛物线的开口方向______,对称轴是______,顶点坐标是______;(2)抛物线与抛物线的图象关于______轴对称;(3)抛物线,当x______0时,抛物线上的点都在x轴上方;当x______0时,抛物线从左向右逐渐上升;它的顶点是最_______点.抛物线,当x_______0时,抛物线从左向右逐渐下降,它的顶点是最_______点.16.已知是关于x的二次函数.(1)求满足条件的k的值;(2)k为何值时,抛物线有最低点?求出这个最低点.当x为何值时,y的值随x值的增大而增大?(3)k为何值时,函数有最大值?最大值是多少?当x为何值时,y的值随x值的增大而减小?参考答案1.D解析:分别利用二次函数的性质判断开口方向,得出最值以及增减性,进而判断即可.∵抛物线,,中的>0,8>0,-5<0,不相等,故开口方向和大小不同,A,B错误;∵中,当时,随的增大而减小,故C错误;∵抛物线,,的对称轴都是轴,故D正确故选D.【点拨】此题主要考查了二次函数的性质,正确掌握二次函数的性质是解题关键.2.A解析:二次函数的解析式中a的绝对值越小,开口方向越大,根据以上特点得出即可.解:∵1<|﹣2|<3,∴抛物线开口从大到小的排列顺序是③①②④,故选:A.【点拨】本题考查了二次函数的性质,能熟记二次函数的性质是解此题的关键,注意:二次函数的解析式中,a的绝对值越小,开口方向越大.3.B解析:由选项中的二次函数图象可得k>0,可判定出一次函数的正确图象.解:由选项中的二次函数图象可得k>0,所以y=kx﹣k过一,三,四象限.故选:B.【点拨】本题主要考查了二次函数及一次函数的图象,解题的关键是熟记二次函数及一次函数的图象的特征.4.B解析:根据二次函数的二次项的系数小于零开口向下,二次项的次数为二,可得方程,根据解方程,可得答案.解:的开口向下,∴且,∴且m<﹣3,∴m=,故选:B.【点拨】本题考查了二次函数的性质,二次函数开口向下,可得二次项的系数小于0,指数是二次,注意把不符合条件的舍去.5.D解析:把抛物线y=x2沿x轴对称得到抛物线y=-x2;或把抛物线y=x2沿原点旋转180°得到抛物线y=-x2,则可对A.C进行判断;利用二次函数的性质对B.D进行判断.解:两个函数的顶点坐标都是(0,0),二次项的系数互为相反数,说明一个开口向上,一个开口向下.故两条抛物线的交点为原点,两条抛物线关于x轴对称且两条抛物线关于原点对称.故选:D.【点拨】本题主要考查二次函数的性质,掌握二次项系数决定抛物线的开口方向及大小是解题的关键,注意数形结合.6.B解析:根据题意x>0时,y值随x值增大而减小,选择合适的函数满足条件即可.A.、正比例函数y=的图象在一、三象限内,y随x的增大而增大;故本选项错误;B.反比例函数y=中的1>0,所以y随x的增大而减小;故本选项正确;C.一次函数y=x-1的图象,y随x的增大而增大;故本选项错误;D.二次函数y=x2的图象,开口向上,并向上无限延伸,在y轴右侧(x>0时),y随x的增大而增大;故本选项错误;故选B.【点拨】本题综合考查了二次函数、一次函数、正比例函数及反比例函数的性质.解答此题时,应牢记函数图象的单调性.7.A解析:∵原点是抛物线y=(m+1)x2的最高点,∴m+1<0,即m<-1.故选A.8.A解析:根据题意写出A n、B n的坐标,然后可得到,从而,然后进行计算即可.解:由题意可知A n、P n、B n的横坐标相同,∵P n(n,0),∴B n(n,),A n(n,),∴,,∴故选:A.本题考查了二次函数和一次函数图象上点的坐标,代数式的化简,得出是解题的关键.9.下降解析:根据的图象即可求解.∵a<0,开口向上∴抛物线在y轴的左侧部分是下降.故答案为下降.【点拨】此题主要考查二次函数的图象,解题的关键是熟知的图象特点.10.m>1.解析:直接利用二次函数的性质得出m-1的取值范围进而得出答案.∵抛物线y=(m-1)x2有最低点,∴m-1>0,解得:m>1.故答案为:m>1.【点拨】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键.11.<解析:根据二次函数确定抛物线对称轴,开口方向,增减性,再结合已知条件即可求解.解:由二次函数得,抛物线对称轴为y轴,开口向下,y轴左侧,y随x增大而增大,再y轴右侧,y随x增大而减小,∴当时,<.故答案为:<【点拨】本题考查了二次函数的性质,熟知特殊二次函数的性质是解题关键.12.开口向下y轴(0,0)根据二次函数的性质:当时,抛物线的开口向下,顶点式:,,是常数,,其中为顶点坐标,对称轴为:.解:函数中,∵,∴抛物线的开口向下,∵,∴对称轴是y轴,顶点坐标是(0,0),故答案为:开口向下,y轴,(0,0).【点拨】此题主要考查了二次函数的性质,熟悉相关性质是解题的关键.13.2解析:根据函数为二次函数求出m,再根据函数有最低点,确定m取值范围,进而求出m即可.解:∵函数是二次函数,∴,∴,∵二次函数有最低点,∴m>0,∴.故答案为:2【分析】本题考查了二次函数的概念和性质,熟知概念和性质是解题关键.14.晓丽的解题过程不正确,从第二步开始出现错误.正确的解题过程见解析.解析:根据二次函数的定义及开口方向进行求解判断即可.解:晓丽的解题过程不正确,从第二步开始出现错误.正确的解题过程如下:∵是二次函数,∴,解得或,∵抛物线图象开口向下,∴,解得,∴.【点拨】本题考查二次函数的定义与图象性质,熟练掌握定义及图象性质是解题的关键.15.列表、画图象,如图所示,见解析;(1)向上y轴向下y轴;(2)x;(3)≠> 低> 高.解析:根据画函数图象的步骤:列表,根据表中提示先填好表格的数,再描点,根据表中提供的对应数值作为点的坐标描点,最后用平滑的曲线连接各点可得函数的图象;(1)根据所画的与图象可得答案;(2)根据所画的与图象可得答案;(3)根据所画的与图象可得答案;列表如下:x…01……404……0……0……0…描点:将表中的数据作为点的坐标,在平面直角坐标系中描出各点.连线:用平滑的曲线连接,如图所示:(1)根据所画的函数与的图象可得:抛物线的开口方向向上,对称轴是轴,顶点坐标是.抛物线的开口方向向下,对称轴是y轴,顶点坐标是;故答案为:向上y轴向下y轴(2)由图象可得:抛物线与抛物线的图象关于轴对称;故答案为:x.(3)由图象可得:抛物线,当x≠ 0时,抛物线上的点都在x轴上方;当x>0时,抛物线从左向右逐渐上升;它的顶点是最低点.抛物线,当x>0时,抛物线从左向右逐渐下降,它的顶点是最高点.故答案为:≠> 低> 高.【点拨】本题考查的是画函数的图象,及根据图象总结函数的性质,掌握以上知识是解题的关键.16.(1)k=±2; (2) 见解析; (3)见解析.解析:(1)直接利用二次函数定义得出符合题意的k的值;(2)抛物线有最低点,所以开口向上,k+1大于0,再根据(1)中k的值即可确定满足条件的值,再根据二次函数性质,即可得最低点的坐标和函数的单调区间;(3)函数有最大值,可得抛物线的开口向下,k+1小于0,再根据(1)中k的值即可确定满足条件的值,然后根据二次函数性质可求得最大值和函数单调区间.(1) 根据二次函数的定义得解得k=±2.∴当k=±2时,原函数是二次函数.(2) 根据抛物线有最低点,可得抛物线的开口向上,∴k+1>0,即k>-1,根据第(1)问得:k=2.∴该抛物线的解析式为,∴抛物线的顶点为(0,0),当x>0时,y随x的增大而增大.(3) 根据二次函数有最大值,可得抛物线的开口向下,∴k+1<0,即k<-1,根据第(1)问得:k=-2.∴该抛物线的解析式为,顶点坐标为(0,0),∴当k=-2时,函数有最大值为0. 当x>0时,y随x的增大而减小.【点拨】此题主要考查了二次函数的性质以及二次函数的定义,正确掌握二次函数的性质是解题关键,是基础题型.。
二次函数的图像和性质基础知识测试题九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.y=(x-1)2+2的对称轴是直线()A.x=-1B.x=1C.y=-1D.y=13.抛物线y x221的顶点坐标是()A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)4.函数y=-x-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y mx2x m(m2)的图象经过原点,则m的值为()A.或2.B.0.C.2.D.无法确定6.函数y=2x-3x+4经过的象限是()A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限7.已知二次函数y ax2bx c(a)的图象如图5所示,有下列结论:①abc;②a+b+c>0③a-b+c<0.其中正确的结论有()A.1个D.4个8、已知二次函数y13x2、y2x2、y3x2,它们的图像开口由小到大的顺序是A、y1y2y3B、y3y2y1C、y1y3y2D、y2y3y19、与抛物线y=-1x2+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。
y = x2+3x-5 B。
y=-x2+2x C。
y =x2+3x-5 D。
y=x210.正比例函数y=kx的图象经过二、四象限,则抛物线y=kx2-2x+k2的大致图象是()删除了明显有问题的段落。
改写后的文章:九年级数学下册《二次函数的图像和性质》基础知识测验班级:_________姓名:___________得分:__________一、选择题(每小题3分,共45分):1、下列函数是二次函数的有()A、1个;B、2个;C、3个;D、4个2.抛物线y=(x-1)²+2的对称轴是直线()A.x=-1 B.x=1 C.y=-1 D.y=13.抛物线y=(x+2)²+1的顶点坐标是()A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)4.函数y=-x²-4x+3图象顶点坐标是()A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)5.已知二次函数y=mx²+x+m(m-2)的图象经过原点,则m的值为()A.2或-2 B.0 C.2 D.无法确定6.函数y=2x-3x²+4经过的象限是()A.一、二、四象限B.一、二象限C.三、四象限D.一、三、四象限7.已知二次函数y=ax²+bx+c(a≠0)的图象如图5所示,有下列结论:①abc>0;②a+b+c>0③a-b+c<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个8、已知二次函数y1=-3x²、y2=-x²、y3=x²,它们的图像开口由小到大的顺序是A、y1<y2<y3B、y3<y2<y1C、y1<y3<y2D、y2<y3<y19、与抛物线y=-x²+3x-5的形状、开口方向都相同,只有位置不同的抛物线是()A。
冀教版九年级数学下册《30.2二次函数的图像和性质》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.若函数y=ax+b的图象经过第一、二、三象限,则二次函数y=ax2+b的大致图象是()A.B.C.D.2.二次函数y=ax2+bx+c(a≠0)的图像如图所示,对称轴为x=1,给出下列结论:①abc>0②b2=4ac③4a+2b+c>0④3a+c>0其中正确的结论有()A.1个B.2个C.3个D.4个3.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x−1013y−1353下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小;(3)3是方程ax2+(b−1)x+c=0的一个根;(4)当−1<x<3时ax2+(b−1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个4.如图,将函数y=12(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A .y =12(x +3)2−2B .y =12(x +3)2+7C .y =12(x +3)2−5D .y =12(x +3)2+45.在同一平面直角坐标系中,一次函数y =ax +b 与二次函数y =ax 2+bx 的图象可能是( )A .B .C .D .6.将二次函数y =x 2图象向左平移1个单位,再向下平移2个单位后,所得图象的函数是( )A .y =(x +1)2+2B .y =(x −1)2−2C .y =(x +1)2−2D .y =(x −1)2+27.对于二次函数 y =3(x −1)2+2的性质,下列描述正确的是( )A .开口向下B .对称轴是直线x =−1C .顶点坐标是(2,1)D .抛物线可由y =3x 2+2向右平移1个单位得到8.把抛物线y =−x 2向左平移2个单位,再向下平移3个单位,所得抛物线解析式为( )A .y =−(x −2)2−3B .y =−(x −2)2+3C .y =−(x +2)2−3D .y =−(x +2)2+39.将抛物线y =ax 2+2ax +c(a <0)向右平移2个单位长度后得到一条新的抛物线,若点P(−1,y 1),Q(0,y 2),M(1,y 3),N(2,y 4)都在新抛物线上,则y 1,y 2,y 3,y 4的大小关系是( )A.y1<y2<y3<y4B.y1<y2=y4<y3C.y1<y2=y3<y4D.y1<y2<y3=y410.如图,平面直角坐标系中有一张透明纸片,透明纸片上有抛物线y=x2及一点P(2,4).若将此透明纸片向右、向上移动后,得抛物线的顶点为(7,2),则此时点P的坐标是()A.(9,4)B.(9,6)C.(10,4)D.(10,6)11.对于抛物线y=2x2−4x−6,按下列方式平移后仍不经过原点的是()A.向左平移1个单位长度,再向上平移8个单位长度B.向左平移4个单位长度,再向下平移10个单位长度C.向右平移2个单位长度,再向下平移10个单位长度D.向左平移5个单位长度,再向上平移3个单位长度12.已知二次函数y=ax2+4ax+5(a>0),将该二次函数的图象向右平移2个单位长度后得到一个新的二次函数图象,当−1≤x≤2时,平移后所得的新二次函数的最大值()A.3B.5C.7D.1013.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒二、填空题14.二次函数y=2x2−4的最小值为.15.已知点A(−3,y1)和点B(−23,y2)都在二次函数y=ax2−2ax+m(a>0)的图像上,那么y1−y20.(结果用>,<,=表示)16.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x−m)2+n的顶点在线段AB上运动.与x轴交于C、D两点(C在D的左侧)(1)n=;(2)若点C的横坐标最小值为−3,则点D的横坐标最大值为.17.二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图象经过点(−1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2−4ac<0;③8a+c<0;④9a+3b+2c<0;⑤点C(x1,y1)、D(x2,y2)是抛物线上的两点,若x1<x2,则y1<y2;⑥若抛物线经过点(−3,n),则关于x的一元二次方程ax2+bx+c−n=0(a≠0)的两根分别为x1=−3,x2=5.其中正确的有(填序号).三、解答题18.某学生为了描点作出函数y=ax2+bx+c(a≠0)的图象,取了自变量的7个值,x1<x2< (x7)x2﹣x1=x3﹣x2=…=x7﹣x6,分别算出对应的y的值,列出如表;X x1x2x3x4x5x6x7y51107185285407549717但由于粗心算出了其中一个y的值,请指出算错的是哪一个值?正确的值是多少?并说明理由.19.已知二次函数y=ax2+bx+c(a>0,b>0)的图象与y轴相交于点(0,1).(1)若a=1,b=4,求该二次函数的最小值;(2)若b=4a,点P(−3,y1),Q(3,y2)都在该函数的图象上,比较y1和y2的大小关系;(3)若点M(m,1),N(−m,m2+2)都在该二次函数图象上,分别求a,b的取值范围20.在平面直角坐标系中,已知平移抛物线y=13x2后得到的新抛物线经过A(0,−53)和B(5,0).(1)求平移后新抛物线的表达式;(2)直线x=m(m>0)与新抛物线交于点P,与原抛物线交于点Q.如果PQ小于3,求m的取值范围;21.济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123…滑行距离041224…y/m(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.参考答案1.A2.B3.B4.D5.B6.C7.D8.C9.B10.B11.D 12.B 13.B 14.−4 15.> 16.4;8 17.①③⑥18.解;x 6对应的y 值错误,正确的值是551理由是:通过表格可知,107﹣51=56 185﹣107=78 285﹣185=100 407﹣285=122 549﹣407=142 717﹣549=168而78﹣56=22,100﹣78=22,122﹣100=22,142﹣122=20 故x 6对应的y 值错误,正确的结果为:407+122+22=55119.(1)−3(2)y 1<y 2(3)a >1220.(1)y =13(x −2)2−3或y =13x 2−43x −53; (2)0<m <121.(1)20s ;(2)y =2(x +52)2−112。
练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。
12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。
127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。
28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。
专题2.8 二次函数y=ax2+k(a≠0)的图像与性质(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.8 二次函y=ax2+k(a≠0)的图像与性质(基础篇) (专项练习) 一、单选题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值1.抛物线y =x 2﹣3的顶点坐标、对称轴是( ) A .(0,3),x =3B .(0,﹣3),x =0C .(3,0),x =3D .(3,0),x =02.下列各点中,在抛物线24y x =-上的是( ) A .()1,3B .()1,3--C .()1,5-D .()1,5--3.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ). A .向下,(0,-4) B .向下,(0,4) C .向上,(0,4)D .向上,(0,-4)4.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4) C .它的图象对称轴是y 轴D .当0x =时,y 有最大值45.若在同一直角坐标系中,作23y x =,22y x =-,221y x =-+的图像,则它们( ) A .都关于y 轴对称 B .开口方向相同C .都经过原点D .互相可以通过平移得到知识点二、二次函数()20y ax k a =+≠图象的增减性6.在平面直角坐标系xOy 中,抛物线y =﹣x 2+2x .点D (n ,y 1),E (3,y 2)在抛物线上,若y 1<y 2,则n 的取值范围是( ) A .n >3或n <﹣1B .n >3C .n <1D .n >3或n <17.已知函数y=x 2﹣2,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <2B .x >0C .x >﹣2D .x <08.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y x 1=-+ B .2y x 1=-C .1y x=D .2y x 1=-+9.点11(0.5,)P y -,22(2.5,)Py ,33(5,)P y -均在二次函数22y x x =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知点()()()25,,521A m B m C m n --++,,,在同一个函数的图象上,这个函数可能是( ) A .2y x =+B .25y x =--C .25y x =+D .2y x=-知识点三、二次函数()20y ax k a =+≠的图象11.2y ax k =+的图象可能是( )A .B .C .D .12.已知函数21(1)2(1)x x y x x⎧+≥-⎪=⎨<-⎪⎩则下列图像正确的是( )A .B .C.D.13.在平面直角坐标系中,二次函数y=x2+2的大致图象可能是()A.B.C.D.14.二次函数y=-x2-1的图象大致是()A.B.C.D.15.二次函数22=--的图象大致是()y xA.B.C.D.知识点四、二次函数()20y ax k a =+≠的性质综合16.下列关于抛物线y =2x 2﹣3的说法,正确的是( ) A .抛物线的开口向下B .抛物线的对称轴是直线x =1C .抛物线与x 轴有两个交点D .抛物线y =2x 2﹣3向左平移两个单位长度可得抛物线y =2(x ﹣2)2﹣317.二次函数22y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .当0x =时,函数的最大值是2-C .抛物线的对称轴是直线2x =D .抛物线与x 轴有两个交点18.关于二次函数y =﹣2x 2+1,以下说法正确的是( ) A .开口方向向上B .顶点坐标是(﹣2,1)C .当x <0时,y 随x 的增大而增大D .当x =0时,y 有最大值﹣1219.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( ) A .抛物线开口向下B .抛物线经过点1,1C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点20.关于二次函数221y x =-+,则下列说法正确的是( ) A .开口方向向上 B .当x <0时,y 随x 的增大而增大 C .顶点坐标是(-2,1)D .当x =0时,y 有最小值1知识点五、二次函数()20y ax k a =+≠图形与其他函数图象的判定21.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的( )A .B .C .D .22.函数ay x=与20()y ax a a =--≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .23.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( )A .B .C .D .24.二次函数y =x 2+1的图象大致是( )A .B .C .D .25.二次函数y =x 2+1的图象大致是( )A .B .C .D .26.在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( )A .B .C .D .27.点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >二、填空题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值28.抛物线223y x =--的开口方向_______,对称轴是_____,顶点坐标是_______. 29.通过_______法画出221y x =+和221y x =-的图像:通过图像可知:221y x =+的开口方向________,对称轴_______,顶点坐标___________.221y x =-的开口方向________,对称轴_______,顶点坐标___________.30.写出顶点坐标为(0,-3),开口方向与抛物线2y x =-的方向相反,形状相同的抛物线解析式_________________________.31.抛物线2y ax k =+的图象相当于把抛物线2y ax =的图象______(k >0)或______(k <0)平移______个单位.32.一抛物线的形状,开口方向与23312y x x =-+相同,顶点在(-2,3),则此抛物线的解析式为_______.知识点二、二次函数()20y ax k a =+≠图象的增减性33.已知点P (﹣2,y 1)和点Q (﹣1,y 2)都在二次函数2y x c =-+的图象上,那么1y 与2y 的大小关系是_____.34.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是-5,最大值是_________. 35.当m=______时抛物线22(1)9m m y m x +=++开口向下,对称轴是________,在对称轴左侧部分是________的(填“上升”或“下降”).36.已知二次函数y =2x 2+bx ,当x >1时,y 随x 增大而增大,则b 的取值范围为______. 37.设点(﹣1,y 1),(2,y2),(3,y3)是抛物线y=﹣x 2+a 上的三点,则y 1、y2、y3的从小到大排列为__________. 三、解答题38.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点. 39.如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到;(4)当0y >时,求x 的取值范围. 40.已知二次函数2y x 4x =-+.()1求函数图象的对称轴和顶点坐标;()2求这个函数图象与x 轴的交点坐标.参考答案:1.B【分析】按照二次函数y =ax 2+k 顶点坐标(0,k ),对称轴y 轴即可求解. 【详解】解:∵y =x 2﹣3,∵抛物线的顶点坐标为(0,﹣3),对称轴为y 轴; 故选:B .【点睛】本题考查了二次函数的图像和性质,以及顶点坐标和对称轴,掌握二次函数的图像和性质是解题的关键. 2.B【分析】分别把x=±1代入抛物线解析式,计算对应的函数值,然后进行判断. 【详解】解:∵当x=-1时,y=x 2-4=-3; 当x=1时,y=x 2-4=-3;∵点(-1,-3)在抛物线上,点(1,3)、(1,-5)、(-1,-5)都不在抛物线上. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式. 3.B【分析】根据二次函数的性质分析,即可得到答案. 【详解】抛物线y =-3x 2+4 ∵30-<∵抛物线y =-3x 2+4开口向下当0x =时,y =-3x 2+4取最大值,即y =4 ∵顶点坐标为()0,4 故选:B .【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解. 4.D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断. 【详解】∵224y x =+,∵抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4, 故A 、B 、C 正确,D 错误; 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ). 5.A【分析】根据二次函数的图像和性质逐项分析即可.【详解】A.因为23y x =,22y x =-,221y x =-+这三个二次函数的图像对称轴为0x =,所以都关于y 轴对称,故选项A 正确,符合题意;B.抛物线23y x =,22y x =-的图象开口向上,抛物线221y x =-+的图象开口向下,故选项B 错误,不符合题意;C.抛物线22y x =-,221y x =-+的图象不经过原点,故选项C 错误,不符合题意;D.因为抛物线23y x =,22y x =-,221y x =-+的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误,不符合题意; 故选A .【点睛】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键. 6.A【分析】由抛物线的对称轴找到E 点的对称点,抛物线开口向下,y 1<y 2时结合图象求解; 【详解】解:∵抛物线y =﹣x 2+2x 的对称轴为x =1, E (3,y 2)关于对称轴对称的点(﹣1,y 2), ∵抛物线开口向下,∵y 1<y 2时,n >3或n <﹣1, 故选A .【点睛】本题考查二次函数图象的性质;找到E 点关于对称轴的对称点是解题的关键. 7.D【详解】解:∵y =x 2-2,∵抛物线开口向上,对称轴为y 轴,∵当x <0时,y 随x 的增大而减小,故选D .【点睛】本题主要考查二次函数的性质,掌握y =ax 2+c 的图象的开口方向、对称轴及增减性是解题的关键.8.B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图像在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k =1>0,分别在一、三象限里,每个象限内y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图像在对称轴右侧,y 随着x 的增大而减小,错误. 故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想是解答本题的关键.9.D【分析】求出二次函数的对称轴,再根据二次函数的对称性和增减性判断即可.【详解】解:∵()22211y x x x =-+=--+,∵抛物线对称轴为直线1x =,∵10a =-<,∵1x <时,y 随x 的增大而增大,∵()222.5,P y 的对称点为()20.5,y -,且50.51-<-<,∵123y y y =>.故选:D .【点睛】本题考查的是二次函数图像上点的坐标特征、二次函数的性质等知识点的理解和掌握,熟练运用二次函数的性质进行推理是解决本题的关键.10.B【分析】由点A (-5,m ),B (5,m )的坐标特点,于是排除选项A 、B ;再根据A (-5,m ),C (-2,m +n 2+1)的特点和二次函数的性质,可知抛物线的开口向下,即a <0,可得结果.【详解】解:∵A (-5,m ),B (5,m ),∵点A 与点B 关于y 轴对称;由于y =x +2不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、D 错误; ∵n 2>0,∵m +n 2+1>m ;由A (-5,m ),C (-2,m +n 2+1)可知,在对称轴的左侧,y 随x 的增大而增大, 对于二次函数只有a <0时,满足条件,∵B 选项正确,故选:B .【点睛】本题考查了反比例函数、一次函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11.D【分析】根据二次函数的对称轴进行判断即可.【详解】二次函数2y ax k =+的对称轴为0x =观察四个选项可知,只有选项D 的图象符合故选:D .【点睛】本题考查了二次函数的图象与性质(对称性),掌握二次函数的图象与性质是解题关键.12.C【分析】根据所给解析式判断出正确函数图象,注意自变量的取值范围.【详解】A 选项错误,两个函数图象都不符合自变量的取值范围;B 选项错误,反比例函数的图象不符合自变量的取值范围;C 选项正确;D 选项错误,当=1x -时,图象不应该是一条直线.故选:C .【点睛】本题考查二次函数和反比例函数的图象,解题的关键是掌握二次函数和反比例函数的图象.13.C【分析】根据函数解析式,二次项系数交点判别式小于0,所以排除A 、B 、D ,故选C .【详解】解:A选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,A=48b ac错误;B选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,B错误;=48b acC选项,由函数解析式,2=48-=-<0,所以函数图像与x轴无交点,C正确;b acD选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,D错误.=48b ac【点睛】本题考考察的是二次函数图像的基本性质,根据解析式,判断开口方向及交点个数,判断图像的形状.14.C【分析】根据二次函数的图像与性质即可求解.【详解】二次函数y=-x2-1的图象开口向下,且顶点坐标为(0,-1),故选项C符合题意.【点睛】此题主要考查二次函数的图像判断,解题的关键是熟知二次函数的图像与性质.15.D【分析】根据二次函数的图象的性质,开口方向,顶点坐标,对称轴即可判断.【详解】由题意可知:a=-1,所以开口向下,顶点坐标为(0,-2),故答案选D.【点睛】本题主要考查了二次函数的解析式来判断该函数的图象,解本题的要点在于熟知二次函数图象的基本性质.16.C【分析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∵抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∵对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∵抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.17.D【分析】根据二次函数22y x =-的图象和性质,逐一判断选项,即可.【详解】∵a=1>0,∵抛物线开口向上,故A 错误,∵当0x =时,函数的最小值是2-,∵B 错误,∵抛物线的对称轴是y 轴,∵C 错误,∵∆=224041(2)80b ac -=-⨯⨯-=>,∵抛物线与x 轴有两个交点,∵D 正确,故选D.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的系数的几何意义,是解题的关键.18.C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣2x 2+1,∵该函数图象开口向下,故选项A 错误;顶点坐标为(0,1),故选项B 错误;当x <0时,y 随x 的增大而增大,故选项C 正确;当x =0时,y 有最大值1,故选项D 错误;故选:C .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.19.D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a =2,则抛物线y =2x 2−1的开口向上,所以A 选项错误;B. 当x =1时,y =2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x =0,所以C 选项错误;D. 当y =0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.20.B【分析】根据二次函数的图像与性质逐项进行判断即可.【详解】因为20a =-<,所以二次函数图像开口向下,故A 选项错误;因为抛物线开口向下,对称轴为y 轴,所以当x <0时,y 随x 的增大而增大,故B 选项正确;二次函数221y x =-+的顶点为(0,1),故C 选项错误;因为二次函数开口向下,对称轴为y 轴,所以当x =0时,y 有最大值1,故D 选项错误. 故选B.【点睛】本题考查二次函数的图像与性质,熟练掌握图像与性质是解题的关键.21.A【详解】两图象与y 轴的交点相同,故排除了B 、D,若a>0,选A,C 中两个函数中的a 符号相反.22.B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x=的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x=的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.23.C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数,不论x 取何值,都有x 2+1≥1-x 2,所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C .【点睛】本题考查了二次函数的性质,熟练掌握二次函数图像的性质是解决此题的关键.24.C【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是C.故选C.25.B【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B .故选B .【点睛】此题考查二次函数的图象,掌握二次函数的性质,图象的开口方向和顶点坐标是解决问题的关键.26.A【分析】本题由一次函数y ax b =+图象得到字母系数的正负,再与二次函数2y ax b =+的图象相比较看是否一致.【详解】解:A 、由抛物线可知,a 0<,b 0<,由直线可知,a 0<,b 0<,故本选项正确; B 、由抛物线可知,a 0<,b 0>,由直线可知,a 0>,b 0>,故本选项错误; C 、由抛物线可知,a 0>,b 0<,由直线可知,a 0>,b 0>,故本选项错误; D 、由抛物线可知,a 0>,b 0>,由直线可知,a 0<,b 0>,故本选项错误. 故选A .【点睛】本题考查了一次函数和二次函数的图象.解答该题时,一定要熟记一次函数、二次函数的图象的性质.27.D【详解】解:由图象,根据二次函数的性质,有A .若12y y =,则12x x =±,原说法错误;B .若12x x =-,则12y y =,原说法错误;C .若120x x <<,则12y y <,原说法错误;D .若120x x <<,则12y y >,原说法正确.故选D .【点睛】本题考查二次函数的图象和性质.28. 下 y 轴 (0,-3)【解析】略29. 描点 向上 y 轴 ()0,1 向上 y 轴 ()0,1-【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可.【详解】解:通过描点法画出221y x =+和221y x =-的图像,通过图像可知:221y x =+的开口方向向上,对称轴为y 轴,顶点坐标为(0,1),221y x =-的开口方向向上,对称轴y 轴,顶点坐标(0,1)-,故答案为:描点;向上;y 轴;()0,1;向上;y 轴;()0,1-.【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键.30.23y x =-【分析】根据开口方向与抛物线2y x =-的方向相反,形状相同可得1a =,再利用顶点坐标即可写出解析式.【详解】∵抛物线与2y x =-的方向相反,形状相同,且顶点坐标(0,-3)∵设抛物线解析式为:2y x k =+,代入顶点坐标(0,-3)得:3k =-∵解析式为23y x =-故答案为23y x =-.【点睛】本题考查求抛物线解析式,熟记抛物线顶点式是解题的关键.31. 向上 向下 |k |【解析】略32.23(2)32y x =++ 【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)-∴可设此抛物线的解析式为2(2)3y a x =++ 又此抛物线的形状,开口方向与23312y x x =-+相同 32a ∴= 则此抛物线的解析式为23(2)32y x =++ 故答案为:23(2)32y x =++. 【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 33.12y y <.【分析】先判断抛物线的开口方向和对称轴,再根据二次函数的性质解答即可.【详解】∵二次函数2y x c =-+的开口向下,对称轴为y 轴,∵当0x <时,y 随x 的增大而增大,∵21-<-,∵12y y <,故答案为:12y y <.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,熟练掌握抛物线的性质是解题的关键.34.4.【分析】根据所给二次函数的解析式结合“自变量的取值范围”进行分析解答即可.【详解】∵在24y x =-+中:23x -≤≤,∵其图象开口向下,顶点坐标为(0,4),∵其最大值为4.故答案为:4.【点睛】熟记“二次函数2(0)y ax k a =+≠的图象的顶点坐标为(0)k ,”是解答本题的关键.35. 1- y 轴 上升【分析】根据二次函数的指数是2列出方程求出m 的值,再根据抛物线开口方向向下可得10+<m ,然后求解即可.【详解】解:由题意得,222m m +=且10+<m , 解得113m ,213m 且1m <-,∵1m =-对称轴是y 轴, ∵113130m∵在对称轴左侧部分是上升;故答案是:1-y 轴,上升.【点睛】本题考查了二次函数的性质,二次函数的定义,熟记性质和概念是解题的关键.36.b ≥﹣4【分析】先表示出二次函数的对称轴,再根据二次函数的增减性列出不等式求解即可.【详解】解:二次函数y =2x 2+bx 对称轴为直线x =﹣22⨯b =﹣4b , ∵a =2>0,x >1时,y 随x 增大而增大,∵﹣4b ≤1, 解得b ≥﹣4.故答案为:b ≥﹣4.【点睛】本题主要考查了二次函数图像的性质与二次函数的对称轴,解题的关键在于能够熟练掌握二次函数的增减性.37.y1>y2>y3【分析】由题意可得对称轴为y 轴,则(-1,y 1)关于y 轴的对称点为(1,y 1),根据二次函数的增减性可得函数值的大小关系.【详解】∵抛物线y=-x 2+a ,∵对称轴为y 轴,∵(-1,y 1)关于对称轴y 轴对称点为(1,y 1),∵a=-1<0,∵当x >0时,y 随x 的增大而减小,∵1<2<3,∵y 1>y 2>y 3,故答案为y 1>y 2>y 3.【点睛】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键.38.(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1); (2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.39.解:(1)(0,4);(2)见解析;(3)上,4;(4)22x -<<..【分析】(1)求出对称轴得到抛物线的顶点坐标;(2)先确定抛物线与y 轴的交点为(0,4),与x 轴交点为(-2,0)和(2,0),然后利用描点法画函数图像;(3)根据二次函数的平移规律“上加下减,左加右减”即可求解;(4)结合函数图像,写出函数图像上x 轴上方所对应的自变量的范围即可.【详解】(1)抛物线的对称轴为:x =-2b a=0 令x =0,y =4则顶点坐标为(0,4);(2)由(1)得,抛物线与y 轴的交点为(0,4),令y =0,x =±2,则抛物线与x 轴交点为(-2,0)和(2,0),画图得:(3)由上加下减的原则可得,y =-x 2向上平移4个单位可得出y =-x 2+4;(4)根据图像得,当y >0时,x 的取值范围为:-2<x <2.【点睛】本题考查抛物线与坐标轴的交点、二次函数的性质和抛物线的平移等知识,解题的关键是熟练掌握二次函数的性质.40.(1)对称轴为直线x=2,顶点坐标为(2,4)(2)图象与x轴的交点坐标是(0,0)和(4,0).【详解】试题分析:(1)可根据配方法的解题步骤,将一般式转化为顶点式,根据顶点式可确定对称轴及顶点坐标;(2)令y=0,解一元二次方程可求抛物线与x轴两交点的坐标.试题解析:(1)y=-(x2-4x)=-(x-2)2+4,对称轴为直线x=2,顶点坐标为(2,4)(2)当y=0时,-x2+4x=0,解得x=0或4,∵图象与x轴的交点坐标是(0,0)和(4,0).考点:1.二次函数的三种形式;2.二次函数的性质;3.抛物线与x轴的交点.。
新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题10分,共30分)1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为 【 】 (A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y2. 将抛物线()312+-=x y 向左平移1个单位,得到的抛物线与y 轴的交点坐标是 【 】(A )(0 , 2) (B )(0 , 3) (C )(0 , 4) (D )(0 , 7)3. 抛物线321532-⎪⎭⎫⎝⎛+-=x y 的顶点坐标是 【 】(A )⎪⎭⎫ ⎝⎛-3,21 (B )⎪⎭⎫ ⎝⎛--3,21 (C )⎪⎭⎫ ⎝⎛3,21 (D )⎪⎭⎫⎝⎛-3,214. 抛物线322++=x x y 的对称轴是 【 】 (A )直线1=x (B )直线1-=x (C )直线2-=x (D )直线2=x5. 在平面直角坐标系中,将抛物线221x y -=先向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式为 【 】(A )23212---=x x y (B )21212-+-=x x y (C )23212-+-=x x y (D )21212---=x x y6. 关于抛物线()212--=x y ,下列说法错误的是 【 】(A )顶点坐标为()2,1- (B )对称轴是直线1=x(C )开口向上 (D )当1>x 时,y 随x 的增大而减小7. 如图所示,把抛物线2x y =沿直线x y =向右平移2个单位后,其顶点在直线上的A 处,平移后的抛物线解析式是 【 】(A )()112-+=x y (B )()112++=x y(C )()112+-=x y (D )()112--=x y第 7 题图8. 关于二次函数1422-+=x x y ,下列说法正确的是 【 】 (A )图象与y 轴的交点坐标为(0 , 1) (B )图象的对称轴在y 轴的右侧 (C )当0<x 时,y 的值随x 值的增大而减小 (D )y 的最小值为3-9. 抛物线1822-+-=x x y 的顶点坐标为 【 】 (A )(7,2-) (B )(2 , 7) (C )(2 ,25-) (D )(2 ,9-)10. 已知二次函数()12+-=h x y ,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 【 】 (A )1或5- (B )1-或5 (C )1或3- (D )1或3 二、填空题(每小题3分,共30分)11. 抛物线()5232+-=x y 的顶点坐标为_________.12. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________.13. 用配方法将二次函数982--=x x y 化为()k h x a y +-=2的形式为________________.14. 抛物线132+-=x x y 的顶点坐标为_________. 15. 抛物线x x y 92+-=的最大值为_________.16. 将抛物线()2432+-=x y 向右平移1个单位,再向下平移3个单位,平移后抛物线的解析式是________________. 17. 已知点()1,4y A ,()2,2y B,()3,2y C -都在二次函数()122--=x y 的图象上,则321,,y y y 的大小关系是__________.18. 抛物线m x x y +-=22与x 轴只有一个交点,则m 的值为_________.19. 已知点()11,y x A ,()22,y x B 为函数()3122+--=x y 图象上的两点,若121>>x x ,则21,y y 的大小关系是__________.20. 如图,把抛物线221x y =平移得到抛物线m ,抛物线m 经过点()0,8-A 和原点O (0 , 0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为_________.三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式.22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标.23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.yxDC BA O25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标; (2)求出抛物线与x 轴、y 轴的交点坐标;(3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值.26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. (2 , 5) 12. ()522-+=x y 13. ()2542--=x y 14. ⎪⎭⎫⎝⎛-45,2315.481 16. ()1532--=x y 17. 312y y y << 18. 1 19. 21y y < 20. 32三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式. 解:(1)开口向上,对称轴为直线1=x ; ……………………………………………2分 (2)函数y 有最小值,最小值为3-=y ; ……………………………………………4分 (3)令0=x ,则()49310432-=--⨯=y ∴⎪⎭⎫ ⎝⎛-49,0P ……………………………5分令0=y ,则()031432=--x 解之得:3,121=-=x x∴()0,1-Q 或Q (3 , 0)……………………………………………6分 设直线PQ 的函数表达式为b kx y +=当⎪⎭⎫ ⎝⎛-49,0P ,()0,1-Q 时⎪⎩⎪⎨⎧=+--=049b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-=-=4949b k∴直线PQ 的函数表达式为4949--=x y ; ……………………………………………8分当⎪⎭⎫ ⎝⎛-49,0P , Q (3 , 0)时⎪⎩⎪⎨⎧=+-=0349b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-==4943b k∴直线PQ 的函数表达式为4943-=x y …………………………………………10分 综上所述,直线PQ 的函数表达式为4949--=x y 或4943-=x y . 22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标. 解:(1)由题意可设该函数的关系式为()k h x a y +-=2∵其顶点为()4,1-A ∴4,1-==k h……………………………………………2分 ∴()412--=x a y把()5,2-B 代入()412--=x a y 得:()54122-=--⨯a解之得:1-=a……………………………………………4分 ∴该函数的关系式为()412---=x y ;(2)令0=x ,则()54102-=---=y∴该函数的图象与y 轴的交点为()5,0-;……………………………………………7分 令0=y ,则()0412=---x∴()412-=-x∴方程无实数解∴该函数的图象与x 轴无交点.…………………………………………10分 23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.解:由题意可设该抛物线为()k h x a y +-=2∵其顶点坐标为()1,4- ∴1,4-==k h……………………………………………4分 ∴()142--=x a y把(0 , 3)代入()142--=x a y 得:()31402=--⨯a……………………………………………6分 解之得:41=a …………………………………………10分 ∴这条抛物线的函数表达式为()14412--=x y . 24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.解:(1)平移后,抛物线的解析式为()412-+=x y……………………………………………3分 ∴4,1-=-=k h ;……………………………………………5分 (2)令0=y ,则()0412=-+x解之得:1,321=-=x x ∵点A 在点B 的左边 ∴()0,3-A ,B (1 , 0)……………………………………………6分 ∴3=OA令0=x ,则()34102-=-+=y∴()3,0-C……………………………………………7分 ∴3=OC∴OC OA =∴△AOC 为等腰直角三角形∴︒=∠45ACO∵点D 为抛物线()412-+=x y 的顶点∴()4,1--D……………………………………………8分 过点D 作y DE ⊥轴 ∴4,1==OE DE∴134=-=-=OC OE CE ∴CE DE =∴△DCE 为等腰直角三角形∴︒=∠45DCE∴︒=︒-︒-︒=∠904545180ACD ∴△ACD 为直角三角形.…………………………………………10分 25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标;(2)求出抛物线与x 轴、y 轴的交点坐标; (3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值. 解:(1)()222212221--=-+-=x x x y ……………………………………………1分 开口向下,对称轴为直线2=x ,顶点坐标为(2 , 0);……………………………………………4分 (2)令0=y ,则()02212=--x 解之得:2=x∴抛物线与x 轴的交点为(2 , 0)……………………………………………5分 令0=x ,则()220212-=-⨯-=y ∴抛物线与y 轴的交点为()2,0-;……………………………………………6分 (3)由题意可设抛物线的解析式为k ax y +=2∵其顶点为A ()2,0- ∴2-=k……………………………………………7分 ∴22-=ax y把B (2 , 0)代入22-=ax y 得:024=-a 解之得:21=a……………………………………………8分∴2212-=x y开口向上,函数的最小值为2-.…………………………………………10分 26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.解:(1)()11222-++=++=m x m x x y∵其图象1C 与x 轴有且只有一个公共点 ∴01=-m ∴1=m……………………………………………3分∴()21+=x y∴1C 的顶点坐标为()0,1-;……………………………………………4分(2)设2C 的函数关系式为()k x y ++=21把()0,3-A 代入()k x y ++=21得:()0132=++-k解之得:4-=k∴2C 的函数关系式为()412-+=x y……………………………………………7分 令0=y ,则()0412=-+x解之得:1,321=-=x x∴2C 与x 轴的另一个交点坐标为(1 , 0); ……………………………………………8分 (3)2>n 或4-<n .…………………………………………10分。
初中数学二次函数的图象与性质基础练习题2(附答案详解) 1.二次函数y=(x-2)2+1的对称轴表达式是 A .x=2B .x=-2C .x=1D .x=-12.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( ) A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 3>y 2>y 1D .y 3>y 1>y 23.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①abc<0;②2a +b=0;③当x=﹣1或x=3时,函数y 的值都等于0;④4a +2b +c >0,其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为( ) A .y=﹣(x+1)2+1B .y=﹣(x ﹣1)2+3C .y=﹣(x+1)2+5D .y=﹣(x+3)2+35.已知点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭在函数23612y x x =++的图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>6.如图,在平面直角坐标系中,A (1,2),B (1,﹣1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .a≤﹣1或a≥2B .12≤a≤2 C .﹣1≤a <0或1<a≤2D .﹣1≤a <0或0<a≤27.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为( )A .x >2B .x <2C .x >6D .x <68.函数2122y x x =-++有最值为( ) A .最大值32B .最小值32C .最大值12-D .最小值12-9.在同一直角坐标系中,函数y=2x +3与y=mx(0)m ≠的图象可能是( ) A . B . C . D .10.二次函数y =ax 2+bx +c (a ≠0)的图象所示,对称轴为x =1,给出下列结论:①abc >0;②当x >2时,y >0;③3a +c >0;④3a+b>0.其中正确的结论有( )A .①②B .①④C .①③④D .②③④11.将二次函数y =x 2的图象向右平移1个单位,再向上平移3个单位,得到的新图象的函数表达式是____.12.将抛物线y=(x+m )2向右平移2个单位后,对称轴是y 轴,那么m 的值是_____. 13.二次函数2y 2x 4x 1=--的图象是由2y 2x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b =________,c =________. 14.抛物线2(1)y x =-的顶点坐标是__________.15.一条抛物线的顶点是A (2,1),且经过点B (1,0),则该抛物线的函数表达式是_____.16.二次函数222y x x -=-,当x ________时,y 有________值,这个值为________;当x ________时,y 随x 的增大而增大;当x ________时,y 随x 的增大而减小. 17.已知函数y=﹣2x 2+x ﹣4,当x________时,y 随x 增大而减少.18.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.19.如图,二次函数()20y ax bx c a =++≠的图象经过点()1,2-且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0b <;②0a b c ++<;③420a b c -+<;④20a b -<,其中正确的有________.(填代号)20.将抛物线y =﹣5x 2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:_____21.观察表格:根据表格解答下列问题:(l) a =______,b =_____,c =_____;(2) 在下图的直角坐标系中画出函数y =ax 2+bx +c 的图象,并根据图象,直接写出当x 取什么实数时,不等式ax 2+bx +c > -3成立;(3)该图象与x 轴两交点从左到右依次分别为A 、B ,与y 轴交点为C ,求过这三个点的外接圆的半径.22.如图,顶点为C 的抛物线y=ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知OA=OB=2,∠AOB=120°. (1)求这条抛物线的表达式;(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+12E′B的最小值.23.当行驶中的汽车撞到物体时,汽车的损坏程度通常用“撞击影响”来衡量.汽车的撞击影响I可以用汽车行驶速度v(km/min)来表示,下表是某种型号汽车的行驶速度与撞击影响的试验数据:v(km/min) 0 1 2 3 4I 0 2 8 18 32(1)请根据上表中的数据,在直角坐标系中描出坐标(v,I)所对应的点,并用光滑曲线将各点连接起来;(2)填写下表,并根据表中数据的呈现规律,猜想用v表示I的二次函数表达式;v(km/min) 1 2 3 42 v I 12121212(3)当汽车的速度分别是1.5 km/min,2.5 km/min,4.5 km/min时,利用你得到的撞击影响公式,计算撞击影响分别是多少?24.二次函数2y ax bx c =++的图象过()3,0A -,()1,0B ,()0,3C ,点D 在函数图象上,点C ,D 是二次函数图象上的一对对称点,一次函数图象过点B ,D ,求:()1一次函数和二次函数的解析式;() 2写出使一次函数值大于二次函数值的x 的取值范围.25.已知抛物线2y ax bx c =++与y 轴交于点()0,3a ,对称轴为1x =.()1试用含a 的代数式表示b 、c .()2当抛物线与直线1y x =-交于点()2,1时,求此抛物线的解析式. ()3求当()6b c +取得最大值时的抛物线的顶点坐标.26.如图,已知抛物线y=ax 2+32x+4的对称轴是直线x=3,且与轴相交于A 、B 两点(B 点在A 点的右侧),与轴交于C 点.(1)A 点的坐标是 ;B 点坐标是 ; (2)直线BC 的解析式是: ;(3)点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合),是否存在点P ,使△PBC 的面积最大.若存在,请求出△PBC 的最大面积,若不存在,试说明理由; (4)若点M 在x 轴上,点N 在抛物线上,以A 、C 、M 、N 为顶点的四边形是平行四边形时,请直接写出点M 点坐标.27.如图,抛物线y=ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (﹣2,0),B (﹣1,﹣3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标.28.己知二次函数221y x x =--.(1)写出其顶点坐标为 ,对称轴为 ; (2)在右边平面直角坐标系内画出该函数图像; (3)根据图像写出满足2y >的x 的取值范围 .参考答案1.A 【解析】 【分析】根据二次函数2()y a x b c =-+的对称轴是直线x=b,顶点坐标分别为 (b, c) 判断即可. 【详解】解:二次函数y=(x-2)2+1的对称轴为直线x=2, 故选:A. 【点睛】本题主要考查二次函数的性质. 2.A 【解析】 【分析】根据二次函数的对称性,可利用对称性,找出点A 的对称点A′,再利用二次函数的增减性可判断y 值的大小. 【详解】∵函数的解析式是y=-(x+1)2+a , ∴对称轴是x=-1,∴点A 关于对称轴的点A′是(-2,y 1),那么点A′、B 、C 都在对称轴的左边,而对称轴左边y 随x 的增大而减小, 于是y 1>y 2>y 3. 故选A . 【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断. 3.D 【解析】根据函数图象,我们可以得到以下信息:a <0,c >0,对称轴x=1,b >0,与x 轴交于(﹣1,0)(3,0)两点.①abc <0,正确; ②∵对称轴x=﹣2ba=1时, ∴2a+b=0,正确;③当x=﹣1或x=3时,函数y 的值都等于0,正确; ④当x=2时,y=4a+2b+c >0,正确; 故选D . 4.B 【解析】解:∵将抛物线y =﹣(x +1)2+3向右平移2个单位,∴新抛物线的表达式为y =﹣(x +1﹣2)2+3=﹣(x ﹣1)2+3.故选B . 5.C 【解析】 【分析】)把点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭代入2361y x x =++,求出1y ,2y ,3y 的值,比较即可得到大小关系. 【详解】把点()11,y -、213,2y ⎛⎫- ⎪⎝⎭、31,2y ⎛⎫⎪⎝⎭代入23612y x x =++得, y 1=9,y 2=3274,y 3=3154, ∴1y ,2y ,3y 的大小关系为23y y >>1y . 故选C. 【点睛】本题考查了二次函数的性质,二次函数图像上的点的坐标满足二次函数解析式. 6.D 【解析】 【分析】分a<0和a>0两种情况,确定开口最小经过的点,代入解析式求出a 的取值范围即可. 【详解】解:若a<0,则抛物线开口向下,开口最小过点B(1,-1)∴-1=a×12∴a=-1∴-1≤a<0若a>0,则抛物线开口向上,开口最小过点A(1,2)∴2=a×12∴a=2∴0<a≤2∴a的取值范围是-1≤a<0或0<a≤2故选D【点睛】本题考查了二次函数的图象,有一定难度,进行分类讨论是解题的关键.7.A【解析】【分析】根据抛物线的顶点坐标是P(2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x的取值范围. 【详解】∵抛物线的顶点坐标是P(2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y随自变量x的增大而减小,∴x的取值范围是x>2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质. 8.A【解析】【分析】把二次函数解析式整理成顶点式形式,然后根据二次函数的最值问题解答.【详解】∵y=-x 2+2x+12=-(x-1)2+32, ∴二次函数有最大值32.故选A . 【点睛】本题考查了二次函数的最值问题,把函数解析式整理成顶点式形式是解题的关键. 9.A 【解析】试题解析:因为23y x =+的图象经过第一、二、三象限, 故选A . 10.C 【解析】 【分析】由二次函数图象开口方向、对称轴的位置、图象与y 轴交点的位置得到a 、b 、c 的符号,即可判①;由图象可知,当x=0时,y <0,根据对称轴为x=1可得当x=2时,y <0,观察图象即可判定②;由图象可知,x=-1时,y >0,即可得a-b+c=0,根据对称轴-2ba=1,可得b=-2a ,代入即可判定③;由-2ba=1可得2a+b=0,所以3a+b=2a+b+a=a >0,即可判定④. 【详解】由二次函数图象开口向上,得到a>0;与y 轴交于负半轴,得到c<0,对称轴在y 轴右侧,a 、b 异号,则b<0,所以abc>0,①正确;②由图象可知,当x=0时,y <0,根据对称轴为x=1可得当x=2时,y <0,当x >2时,y 值得符号不确定,∴②不正确;③∵当x=-1时,y >0, ∴a-b+c=0,∵-2b a=1, ∴b=-2a ,∴a+2a+c >0,∴3a+c >0,∴③正确;④∵-2b a=1, ∴2a+b=0,∴3a+b=2a+b+a=a >0,∴④正确.综上,正确的结论为①③④.故选C .【点睛】本题考查了抛物线图象与系数的关系,熟练运用抛物线的图象与系数的关系是解决问题的关键.11.y =(x -1) 2+3.【解析】根据二次函数图象平移规律,左加右减,上加下减的平移规律,所以将二次函数y =x 2的图像向右平移1个单位,再向上平移3个单位,得到的新图像的函数表达式是y =(x -1) 2+3,故答案为: y =(x -1) 2+3.12.2【解析】【分析】根据平移规律“左加右减,上加下减”填空.【详解】解:将抛物线y=(x+m )2向右平移2个单位后,得到抛物线解析式为y=(x+m-2)2.其对称轴为:x=2-m=0,解得m=2.故答案是:2.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13.-8, 7【解析】【分析】把y=2x 2-4x-1化为顶点坐标式,按照“左加右减,上加下减”的规律,右平移1个单位,再向上平移2个单位得抛物线跟y=2x 2+bx+c 的系数对比则可.【详解】把y=2x 2-4x-1=2(x-1)2-3,向右平移1个单位,再向上平移2个单位,得y=2(x-2)2-1=2x 2-8x+7,所以b=-8,c=7.故答案为-8;7.【点睛】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.14.(1,0)【解析】试题解析:抛物线2(1)y x =-的顶点坐标是()1,0. 故答案为: ()1,0.点睛:根据抛物线()2y a x h k =-+的顶点坐标是(),h k 直接写出即可. 15.2(2)1y x =--+(或243y x x =-+-)【解析】设抛物线解析式为y=a (x-2)2+1,把B (1,0)代入得a+1=0,解得a=-1,所以抛物线解析式为y=-(x-2)2+1,即y=-x 2+4x-3故答案为:()221y x =--+(或y=-x 2+4x-3).【点睛】本题考查了待定系数法求二次函数的解析式,关键是在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.16.1= 最小 3- 1> 1<【解析】【分析】先把解析式配成顶点式得到y=(x-1)2-3,根据二次函数的性质得到当x=1时,y 有最小值,最小值为-3;当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.【详解】解:y=x 2-2x-2=(x-1)2-3,∵a=1>0,∴当x=1时,y 有最小值,最小值为-3;当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.故答案为=1,最小,-3,>1,<1.【点评】本题考查了二次函数的最值:二次函数y=ax 2+bx+c (a≠0),当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,因为图象有最低点,所以函数有最小值,当x=−2b a时,y=244ac b a -;当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,因为图象有最高点,所以函数有最大值,当x=−2b a时,y=244ac b a -. 17.> 14【解析】【分析】把抛物线解析式化为顶点式,可求得其对称轴,再利用二次函数的增减性可求得答案.【详解】∵y=-2x 2+x-4=-2(x-14)2-318, ∴抛物线开口向下,对称轴为x=14,∴当x>14时,y随x的增大而减小,故答案是:>14.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,其顶点坐标为(h,k),对称轴为x=h.18.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为﹣3<x<1.考点:二次函数的图象.19.①②③④【解析】【分析】观察图象,通过抛物线的开口方向,对称轴x=−b2a>−1,以及与x轴交于两点这些条件,即可解答出该题.【详解】①∵抛物线的开口方向向下,∴a<0,由图象可看出抛物线的对称轴x=b2a<0,∴b<0,故①正确.②由图象看出当x=1时,y=a+b+c<0,故②正确.③由图象看出当x=−2时,y=4a−2b+c<0,故③正确.④∵抛物线的对称轴大于−1,即x=b2a>−1,得出2a−b<0,故④正确.故答案为:①②③④.【点睛】本题综合考查了抛物线的性质,体现了数形结合的思想,同学们要熟练掌握.20.25(5)3y x =-+-【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】∵抛物线y=-5x 2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-5,-3),∴所得到的新的抛物线的解析式为y=-5(x+5)2-3,故答案为y=-5(x+5)2-3.【点睛】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.21.(1)1,-2,-3;(2)图象见解析,0x <或2x >;(3【解析】【分析】(1)直接将()11,代入求出a 即可,进而将2x =代入求出y ,再分别将()()03,23--,,代入求出b c ,的值;(2)再利用函数解析式进而得出函数图象,进而得出不等式的解集.(3)根据题意求得外接圆的圆心的坐标为()1,1-,进而求得圆的半径.【详解】(1)2y ax =过(1,1),∴1=a ,∴当x =2时,224y ==, 2y ax bx c =++过(0,−3),(2,−3),a =1,23,3223c b ∴=--=+-,解得:b =−2,223y x x ∴=--,当x =1时,y =−4, 故答案为1,−2,−3;(2)如图所示:当0x <或2x >时,不等式2 3.ax bx c ++>-(3)由(2)可知A (−1,0),B (3,0),C (0,−3), 则作BC 、AB 的垂直平分线的交点Q (1,−1),∴外接圆的半径()()223101 5.QB =-++= 22.(1)3223x ;(2)点P 坐标为(03043);(321. 【解析】 【分析】(1)根据AO=OB=2,∠AOB=120°,求出A 点坐标,以及B 点坐标,进而利用待定系数法求二次函数解析式;(2)∠EOC=30°,由OA=2OE ,23,推出当OP=12OC 或OP′=2OC 时,△POC 与△AOE 相似; (3)如图,取Q (12,0).连接AQ ,QE ′.由△OE′Q ∽△OBE ′,推出12E Q OE BE OB ''==',推出E′Q=12BE ′,推出AE′+12BE′=AE′+QE ′,由AE′+E′Q≥AQ ,推出E′A+12E′B 的最小值就是线段AQ 的长.【详解】(1)过点A作AH⊥x轴于点H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=3,∴A点坐标为:(-1,3),B点坐标为:(2,0),将两点代入y=ax2+bx得:3420a ba b⎧-⎪⎨+⎪⎩==,解得:3323ab⎧⎪⎪⎨⎪-⎪⎩==,∴抛物线的表达式为:y=33x2-23x;(2)如图,∵C(1,-33),∴tan∠EOC=33ECOE=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=233,∴当OP=12OC或OP′=2OC时,△POC与△AOE相似,∴OP=3,OP′=433,∴点P坐标为(0,3)或(0,43).(3)如图,取Q(12,0).连接AQ,QE′.∵12 OE OQ OB OE'==',∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴12E Q OEBE OB''==',∴E′Q=12 BE′,∴AE′+12BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+12E′B的最小值就是线段AQ22321()(3)22+=.【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.23.解:(1)如图所示;(2)2v2;(3)4.5,12.5,40.5.【解析】试题分析:将表(1)里各个数据在直角坐标系里描出,连接各点,形成的光滑曲线就是速度与撞击影响之间的函数图象.从表格里可看出速度与撞击影响的函数表达式为I=2v2;当V=1.5,2.5,4.5时,代入函数表达式中可求得撞击影响.解:(1)如图所示.(2)由表格得I=2v2.(3)当V=1.5,2.5,4.5时,I=4.5,12.5,40.5.所以撞击影响分别是4.5,12.5,40.5.24.()12123y x x=--+,21y x=-+;()22x<-或1x>【解析】【分析】(1)将A、B、C的坐标代入抛物线的解析式中即可求得二次函数的解析式,进而可根据抛物线的对称轴求出D点的坐标,再用待定系数法求出一次函数解析式;(2)根据(1)画出函数图象,即可写出一次函数值大于二次函数值的x的取值范围.【详解】()1二次函数21y ax bx c=++的图象经过点()A3,0-,()B1,0,()C0,3,则9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得123abc=-⎧⎪=-⎨⎪=⎩.故二次函数图象的解析式为21y x 2x 3=--+,∵对称轴x 1=-,∴点D 的坐标为()2,3-,设2y kx b =+,∵2y kx b =+过B 、D 两点,∴023k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩. ∴2y x 1=-+;()2函数的图象如图所示,∴当21y y >时,x 的取值范围是x 2<-或x 1>.【点睛】此题主要考查了一次函数和二次函数解析式的确定以及根据函数图象比较函数值大小,画出函数图象熟练运用数形结合是解决第2问的关键.25.(1)2b a =-;(2)抛物线为212133y x x =-+;(3)抛物线的顶点坐标为()1,2-. 【解析】【分析】(1)根据抛物线与y 轴的交点可以得到c 与a 的关系,根据对称轴可以得到b 与a 的关系; (2)间已知点的坐标代入函数关系式并结合上题求得的系数的关系得到a 、b 、c 的值即可求得其解析式;(3)b (c+6)=-2a (3a+6)=-6a 2-12a=-6(a+1)2+6,从而确定a 的值,确定二次函数的解析式后即可确定其顶点坐标.【详解】解:()1∵抛物线与y 轴交于点()0,3a∴3c a =∵对称轴为1=, ∴12b x a=-= ∴2b a =-;()2∵抛物线与直线1y x =-交于点()2,1,∴()2,1在抛物线上,∴()212223a a a =⨯+-+ ∴13a = ∴223b a =-=-31c a == ∴抛物线为212133y x x =-+;()3∵()()2262366126(1)6b c a a a a a +=-+=--=-++ 当1a =-时,()6b c +的最大值为6;∴抛物线2223(1)2y x x x =-+-=---故抛物线的顶点坐标为()1,2-.【点睛】考查了二次函数的性质,二次函数最值以及待定系数法求二次函数解析式,正确的利用三个系数之间的关系是解题的关键.26.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4,0),(5+0),(50).【解析】【分析】可得a 的值,求出解析式.由解析式可得出C 和B 的坐标,从而得出直线的解析式.运用假设法,连接辅助线可以设出P,D 的坐标,表达出相应△PBC 的面积解析式,分析可得出结果.由平行四边形的定义可求出答案.【详解】(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)假设存在点P ,连结PB 、PC ,过点P 作PD ∥y 轴交直线BC 于点D ,设点P (m ,213442m m -++) 则点D (m ,142m -+) 所以PD =213442m m -++- 142m ⎛⎫-+ ⎪⎝⎭ =2124m m -+ ∴211128224PBC S PD OB m m ⎛⎫=⨯⨯=⨯-+⨯ ⎪⎝⎭()228416m m m =-+=--+∵点P 是直线BC 上方的抛物线上的一动点(不与B 、C 重合)∴08m <<∴当4m =时,△PBC 的面积最大,最大面积是16∴存在点P ,使△PBC 的面积最大,最大面积是16(4)(8-,0),(4, 0),(541+0),(541,0) .【点睛】本题考查了一元二次方程的解析式的结构,和直线解析式的求解,以及品行四边形的定义,熟练掌握这些是解决本题的关键.27.(1)y=x 2﹣4;(2)M (0,﹣2)【解析】(1)将A 、B 点的坐标代入抛物线的解析式中即可求出待定系数的值;(2)由于A 、D 关于抛物线对称轴即y 轴对称,那么连接BD ,BD 与y 轴的交点即为所求的M 点,可先求出直线BD 的解析式,即可得到M 点的坐标;解:(1)由题意可得:403a c a c +=⎧⎨+=-⎩,解得14a c =⎧⎨=-⎩; ∴抛物线的解析式为:y =x 2﹣4;(2)由于A 、D 关于抛物线的对称轴(即y 轴)对称,连接BD .则BD 与y 轴的交点即为M 点;设直线BD 的解析式为:y =kx +b (k ≠0),则有:320k b k b -+=-⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩; ∴直线BD 的解析式为y =x ﹣2,∴点M (0,﹣2).点睛:本题主要考查待定系数法及二次函数的性质.利用二次函数的对称性是解题的关键. 28.(1,-2),直线x=1, x <-1或x >3.【解析】试题分析:(1)利用配方法将二次函数的解析式由一般式该写为顶点式,由此即可得出该函数的顶点坐标以及对称轴;(2)利用五点法画出函数图象即可;(3)观察函数图象,根据二次函数图象与2y =的上下位置关系即可得出不等式的解集.试题解析:()22121(1)2y x x x =--=--,∴该二次函数的顶点坐标为(1,−2),对称轴为x =1.故答案为(1,−2);x =1.(2)找出函数图象上部分点的坐标,如图所示:x… −1 0 1 2 3 … y… 2 −1 −2 −1 2 …描点、连线,画出函数图象如图所示.(3)观察函数图象可知:当x <−1或x >3时,函数图象在y =2的上方, ∴满足y >2的x 的取值范围为x <−1或x >3.故答案为x <−1或x >3.。
26.2.4 二次函数y=ax2+bx+c的图象和性质一、单选题1.已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1),则这二次函数的表达式为( )A.y=-6x2+3x+4B.y=-2x2+3x-4C.y=x2+2x-4D.y=2x2+3x-42.已知点在抛物线上,则的值为()A.B.C.2D.3.某函数图象刚经过(1,1),该函数的解析式可以是()A.B.C.D.4.已知抛物线经过和两点,则的值为()A.B.C.D.5.如果A(-2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图象上,那么这个函数的解析式可能是( )A.B.C.D.6.已知二次函数的图象经过(1,3),(0,1)两点,则b,c的值为()A.,B.,C.,D.,7.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是( )A.-11B.-2C.1D.-58.如图,在平面直角坐标系中,抛物线与轴交于A、B两点,点A在x轴的负半轴,点B在x轴的正半轴,与y轴交于点,且,,.则下列判断中正确的是( )A.此抛物线的解析式为B.当时,随着的增大而增大C.此抛物线与直线只有一个交点D.在此抛物线上的某点,使的面积等于,这样的点共有三个9.如图,已知二次函数在坐标平面上的图象经过、两点.若,,则的值可能为()A.1B.3C.5D.7二、填空题10.写出一个图象开口向上,且经过点的二次函数的解析式:_______.11.已知二次函数的图象经过(-1.0)、(3.0)、(0、3)三点,那么这个二次函数的解析式为______.12.已知抛物线y=ax2+bx+8经过点(3,2),则代数式3a+b+8的值为______.13.抛物线经过点(,)、(,)两点,则关于的一元二次方程的解是______________.三、解答题14.已知二次函数的图象过点P(2,0),对称轴x=4,顶点在直线y=x﹣1.(1)求顶点坐标;(2)求二次函数的解析式.15.如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).(1)画出关于点O成中心对称的,并写出点B1的坐标;(2)求出以点B1为顶点,并经过点B的二次函数关系式.16.已知二次函数()与一次函数的图象相交于A.B两点,如图所示,其中.(1)请求出以上两个函数的解析式;(2)求点B的坐标;(3)求的面积.参考答案1.D解析:利用待定系数法即可求出抛物线的解析式.解:设所求函数的解析式为y=ax2+bx+c,把(-1,-5),(0,-4),(1,1)分别代入,得:解得所求的函数的解析式为y=2x2+3x-4.故选:D【点拨】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识.2.C解析:把点代入,求解即可.解:把点代入,得:解得:a=2故选:C【点拨】本题考查待定系数法,正确代入求值是本题的解题关键.3.A解析:把分别代入四个选项中的解析式,即可判断.解:A.把代入得,故函数经过点;B.把代入得,故函数不经过点;C.把代入得,故函数不经过点;D.把代入得,故函数不经过点;故选:A.本题考查了一次函数,反比例函数以及二次函数图象上点的坐标特征,图象上的点的坐标适合解析式.4.C解析:将分别代入抛物线中,转化为解关于n、b的二元一次方程组,由代入消元法解题即可.将代入中得,把①代入②,解得,把代入①得故选:C.【点拨】本题考查抛物线解析式的求法,其中涉及二元一次方程组的解法,是重要考点,难度较易,掌握相关知识是解题关键.5.D解析:分析给出的三个点的特点,可知A,B关于y轴对称,所以排除关于原点对称的函数A,B选项,然后再利用函数的增减性可得出答案.∵A(-2,n),B(2,n)∴点A与点B关于y轴对称∵、的图象都关于原点对称∴选项A,B错误∵由B(2,n)、C(4,n+12)得,在对称轴右侧y随x增大而增大∴a>0∴选择D:【点拨】本题主要考查函数的增减性和对称性,掌握函数的图象和性质是解题的关键.6.B解析:把(1,3),(0,1)两点坐标代入y=x2+bx+c得到关于B.c的方程组,然后解方程组即可把(1,3),(0,1)代入得,解得所以选B.【点拨】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.7.D解析:由已知可得函数图象关于y轴对称,则错误应出现在x=-2或x=2时,根据正确的数据求出函数的解析式,进而可得答案.解:由已知中的数据,可得函数图象关于y轴对称,则错误应出现在x=-2或x=2时,故函数的顶点坐标为(0,1),y=ax2+1,当x=±1时,y=a+1=-2,故a=-3,故y=-3x2+1,当x=±2时,y=4a+1=-11,故错误的数值为-5,故选D.【点拨】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.8.C解析:利用CO=2AO,而CO=BO,AB=3,可得出AO=1,BO=OC=2,即可求出二次函数的解析式,由二次函数的对称轴,可得出当x>0时,y随着x的增大而先减小再增大,由二次函数的最小值为-,可得此抛物线与直线y=-只有一个交点,由△MAB的面积等于4,得出M到x轴的距离为,这样的点共有2个.即可选出答案.解:∵CO=2AO,而CO=BO,AB=3,∴AO=1,BO=OC=2,即A(-1,0),B(2,0),C(0,-2),∴二次函数的解析式为y=x2-x-2,故A错误.∵二次函数的对称轴为x=,∴当x>0时,y随着x的增大而先减小再增大,故B错误.∵此二次函数的最小值为-,∴此抛物线与直线y=-只有一个交点,C正确.∵要使△MAB的面积等于4,须使M到x轴的距离为,这样的点共有2个,故B错误.故选C.【点拨】本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是利用几何图形的有关性质、定理和二次函数的知识求解.9.D解析:先画出抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由于抛物线过(0,5)、(10,8)两点.若a<0,0<h<10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h-0>10-h,然后解不等式后进行判断.∵抛物线的对称轴为直线x=h,而(0,5)、(10,8)两点在抛物线上,∴h−0>10−h,解得h>5.故答案选D.【点拨】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系. 10.等解析:设二次函数的表达式为y=ax2+bx+c(a≠0),根据开口向上,a>0,可取a=1,将(0,1)代入得出c=1,即可得出二次函数表达式.设二次函数的表达式为(a≠0),∵图象为开口向上,且经过(0,1),∴a>0,c=1,∴二次函数表达式可以为:(答案不唯一).故答案为:(答案不唯一).【点拨】本题主要考查了二次函数的性质,得出a的符号和c=1是解题关键.11.解析:求函数的解析式的方法是待定系数法,可以设函数的解析式是y=ax2+bx+c,把(-1.0)、(3.0)、(0、3)三点的坐标代入就得到一个关于A.B.c的方程组,就可以求出函数的解析式.解:设:函数的解析式是:y=ax2+bx+c,把(-1,0),(3,0)和(0,3)三点的坐标代入得到:,解得:,因而函数的解析式是:,故答案为.【点拨】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.12.6.解析:由抛物线y=ax2+bx+8经过点(3,2),代入得a与b的关系3a+b=-2,再整体代入求代数式的值即可.由抛物线y=ax2+bx+8经过点(3,2),将点(3,2)代入抛物线的:2=9a+3b+8,整理得:3a+b+2=0,当3a+b=-2时,代数式3a+b+8=-2+8=6,则代数式3a+b+8的值为6,故答案为:6.【点拨】本题考查代数式的值问题,掌握利用抛物线过点来解决式子的值,会利用式子的值解决问题是关键.13.,解析:由题意可得关于A.B.c的方程组,解方程组用含a的式子表示出B.c,然后把B.c代入到一元二次方程组进行求解即可得.依题意,得:,解得:,所以,关于x的一元二次方程a(x-2)2+c=2b-bx为:,即:,化为:,解得:,,故答案为,.【点拨】本题考查了抛物线上点的坐标特征,解方程组,解一元二次方程等,综合性较强,正确把握抛物线上的点的坐标一定满足抛物线的解析式,得到用含a的式子表示出b和c是解题的关键.14.(1)顶点坐标为(4,3);(2)y=﹣(x﹣4)2+3.解析:(1)直接由对称轴x=4,顶点在直线y=x﹣1,可得顶点坐标.(2) 设二次函数的解析式为:y=a(x﹣4)2+3,代入P点坐标可求得二次函数的解析式.解:(1)∵对称轴x=4,顶点在直线y=x﹣1,∴y=3,∴顶点坐标为(4,3);(2)设二次函数的解析式为:y=a(x﹣4)2+3,把点P(2,0)代入得,a(2﹣4)2+3=0,解得:a=﹣,∴二次函数的解析式为:y=﹣(x﹣4)2+3.【点拨】本题主要考查二次函数的对称轴的求法及待定系数法求二次函数解析式.15.(1)图见解析,点;(2).解析:(1) 先由条件求出A点的坐标, 再根据中心对称的性质求出、的坐标, 最后顺次连接、, △OAB关于点O成中心对称的△就画好了,可求出B1点坐标.(2) 根据(1) 的结论设出抛物线的顶点式, 利用待定系数法就可以直接求出其抛物线的解析式.(1)如图,点.(2)设二次函数的关系式是,把(4,2)代入上式得,,即二次函数关系式是.【点拨】本题主要考查中心对称的性质,及用待定系数法求二次函数的解析式,难度不大.16.(1)一次函数表达式为,二次函数表达式为;(2)(2,-4);(3)解析:(1)代入点A的坐标可求出直线与抛物线的解析式;(2)两个函数解析式联立即可求解B点坐标;(3)设AB交y轴于点G,过B作BH⊥OG于点H,利用S△OAB=OG•|A的横坐标|+OG•|点B 的横坐标|,求解即可.(1)一次函数的图象相过点,,解得一次函数表达式为,∵y=ax2过点A(-1,-1),∴-1=a×(-1)2,解得a= -1∴二次函数的解析式为(2)由一次函数与二次函数联立可得解得,∴B(2,-4)(3)设AB交y轴于点G,过B作BH⊥OG于点H在y=-x-2中,令x=0,得y= -2∴由(2)得BH=2∴S△OAB=S△AOG+S△BOG=×2×1+×2×2=1+2=3.【点拨】本题主要考查了待定系数法求函数解析式,题目较为基础,难度较低,解题的关键是正确的求出点B 的坐标.。
26.2.1 二次函数y=ax2的图象和性质练习一、单选题1.二次函数y = ax2-2x-3(a<0)的图象一定不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知时,二次函数的图象如下列四个图之一所示.根据图象分析的值等于().A. -2B. -1C. 1D. 23.如图,抛物线的对称轴为直线,与轴的一个交点坐标为(-1,0),与y 轴交点为(0,3),其部分图象如图所示,则下列结论错误的是()①;②当时,y随的增大而减小;③当时,;④关于的方程有两个相等的实数根A. ①③B. ②④C. ③④D. ①②④4.将抛物线()先向下平移1个单位长度,再向左平移2个单位长度后所得到的抛物线为.A. B. C. D.5.已知函数,则()A. 当时,y随x的增大而增大B. 当时,y随x的增大而减小C. 当时,y随x的增大而增大D. 当时,y随x的增大而减小6.对于二次函数,下列说法正确的是()A. 图象开口向下B. 图象和y轴交点的纵坐标为-3C. 时,y随x的增大而减小D. 图象的对称轴是直线7.把抛物线y=ax2+bx+c(a>0)作关于x轴的对称变换,所得图象的解析式为y=-a(x-1)2+4a,若(m-1)a+b+c≤0,则m的最大值是().A. 6B. 2C. 0D. -48.如图,a<0,b>0,c<0,那么二次函数y=ax2+bx+c的图象可能是( )A. B. C. D.9.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出以下结论:①abc <0;②c+2a<0;③9a-3b+c=0;④a-b≥m(am+b) (m为实数):⑤4ac-b2<0.其中错误结论的个数有( )A. 1个B. 2个C. 3个D. 4个10.二次函数y=ax2+bx+c的图象如图所示,反比例函数y= 与正比例函数y=cx在同一坐标系内的大致图象是( )A. B. C. D.二、填空题11.已知点P(x1,y1),Q(x2,y2)都在抛物线y = x2-4x + 4上,若x1 + x2 = 4,则y1 ________y2 .(填“>"、“<"或“=”)12.在平面直角坐标系内抛物线y=x2﹣2x+3的图象先向左平移3个单位,再向上平移5个单位后图象对应的二次函数解析式为________.13.已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”如图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是________.14.如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为________.三、综合题15.若二次函数的x与y的部分对应值如下表:x-101234y03430-5(1)求这个二次函数的表达式;(2)当x=﹣2时,y的值.16.已知抛物线y = x2 +bx + c经过点(-1,0),(3,0).(1)求该抛物线的对称轴.(2)自变量x在什么范围内时,y随x的增大而减小?17.已知抛物线y=a(x+4)2经过点M(﹣3,2),请解答下列问题:(1)求抛物线的函数表达式,并说明此抛物线是由哪条抛物线经过平移得到的;(2)求抛物线的开口方向,顶点坐标和对称轴;(3)写出y随x的变化规律;(4)求出函数的最大值或最小值.18.已知二次函数图象的对称轴为y轴,且经过点(1,5)和(﹣,).(1)求此二次函数的解析式;(2)若将该二次函数先向下平移4个单位,再沿x轴翻折后与x轴交于A,B两点,设顶点为P,求△AOP 的面积.19.已知二次函数.(1)求该二次函数图象的对称轴.(2)当时,若该二次函数图象的最高点为P,最低点为Q,点P的纵坐标为10,求点P与点Q的坐标.(3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象求出t的取值范围.20.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)若点C是该二次函数的最高点,求△OBC的面积.参考答案一、单选题1.【答案】A解:∵a<0,b=-2<0∴抛物线的开口向下,对称轴在y轴的左侧,∵c=-3<0∴抛物线与y轴的交点在x轴的下方,∴抛物线经过第二,三,四象限,不经过第一象限.故答案为:A.2.【答案】D解:第一个和第二个图象的对称轴都是y轴,则b=0,因而不是二次函数y=ax2+bx+a2-4的图象;第三个图象,开口向上,则a>0,对称轴在y轴的右侧,则b<0,函数经过原点,则a2-4=0,则a=2,满足条件;第四个图象,开口向下,则a<0,对称轴在y轴的右侧,则b>0,不满足条件.故答案为:D.3.【答案】C解:当x=-1时,代入得,故①符合题意;根据图象可得:当x>1时,y随的增大而减小,故②符合题意;x=-1关于对称轴对称的点是x=3,当y<0时,图象在x轴下方,则x>3或x<-1,故③不符合题意;∵,∴,当y=3时,直线与图象有2个交点,故方程有2个不相等的实数根,故④不符合题意;故答案为:C4.【答案】A解:由题意得:将抛物线先向上平移1个单位长度,再向右平移2个单位长度后即可得到平移前的抛物线,∴平移前的函数解析式为:,故答案为:A.5.【答案】D解:函数,对称轴为直线x=﹣1,开口方向上,故当x<﹣1时,y随x的增大而减小.故答案为:D6.【答案】C解:A. ,,图象的开口向上,故本选项错误;B. ,即图象和y轴的交点的纵坐标为-1,故本选项错误;C. 对称轴是直线,开口向上,当时,y随x的增大而减小,故本选项正确;C.图象的对称轴是直线,故本选项错误;故答案为:C.7.【答案】A解:∵把抛物线y=ax2+bx+c(a>0)作关于x轴的对称变换,所得图象的解析式为y=-a(x-1)2+4a,∴原二次函数的顶点为(1,-4a),∴原二次函数为y=a(x-1)2-4a,∴b=-2a,c=-3a,∵(m-1)a+b+c≤0,∴(m-1)a-2a-3a≤0,∵a>0,∴m-1-2-3≤0,解得m≤6,∴m的最大值为6.故答案为:A.8.【答案】A解:∵a<0∴二次函数的图象开口向下∵c<0∴二次函数图象与y轴交点在负半轴∵a<0,b>0∴x=->0二次函数的对称轴,在y轴的右侧故答案为:A.9.【答案】A解:①根据抛物线可知,a>0,c<0对称轴x=-<0∴b>0∴abc<0,即①正确;②根据对称轴可得,-=-1∴b=2a∵x=1时,y=a+b+c=0∴c+3a=0∴c+2a=-3a+2a=-a<0,即②正确;③(1,0)关于x=-1的对称点为(-3,0)∴x=-3时,y=9a-3b+c=0,即③正确④当x=-1时,y的最小值为a-b+c∴x=m时,y=am2+bm+c∴am2+bm+c≥a-b+c即a-b≤m(am+b),即④错误;⑤∵抛物线与x轴有两个交点∴△>0∴b2-4ac>0∴4ac-b2<0,即⑤正确故答案为:A.10.【答案】C解:根据二次函数的图象可得,a<0,c>0∴反比例函数y=分布在第二、四象限,正比例函数y=cx经过第一、三象限故答案为:C.二、填空题11.【答案】=解:∵y= x2-4x + 4对称轴为直线x=2∵点P(x1,y1),Q (x2,y2)都在抛物线y = x2-4x + 4上,若x1 + x2 = 4,∴点P和点Q关于直线x=2对称,∴y1=y2.故答案为:=.12.【答案】y=(x+2)2+7或y=x2+4x+11解:二次函数y=x2﹣2x+3=(x﹣1)2+2的图象在坐标平面内向左平移3个单位,再向上平移5个单位后图象对应的二次函数解析式为y=(x﹣1+3)2+2+5,即y=(x+2)2+7或y=x2+4x+11.故答案为:y=(x+2)2+7或y=x2+4x+11(两种形式都可以).13.【答案】解:根据题意可知,抛物线的顶点坐标为(2a,a-1)设x=2a①,y=a-1②①-②×2得,x-2y=2∴y=x-114.【答案】解:∵四边形ABCD为平行四边形∴CD=AB=4∴C点坐标为∴A点坐标为,B点坐标为设函数解析式为,代入C点坐标有解得∴函数解析式为,即故答案为.三、综合题15.【答案】(1)解:把(﹣1,0)、(0,3)、(1,4)代入,得,解得:,∴这个二次函数的解析式是;(2)解:把x=﹣2代入,得.16.【答案】(1)解:由题意得解之:∴此函数解析式为:y=x2-2x-3∴抛物线的对称轴为直线x=.(2)解:∵a=1>0∴当x≤1时y随x的最大而减小.17.【答案】(1)解:∵抛物线y=a(x+4)2经过点M(﹣3,2),∴a(﹣3+4)2=2,解得a=2,∴抛物线解析式为y=2(x+4)2,是由抛物线y=2x2向左平移4个单位得到;(2)解:∵a=2>0,∴抛物线开口方向向上,顶点坐标为(﹣4,0),对称轴为直线x=﹣4;(3)解:x<﹣4时,y随x的增大而减小,x>﹣4时,y随x的增大而增大;(4)解:抛物线的顶点坐标为,当时,函数有最小值0.18.【答案】(1)解:设函数的解析式为y=ax2+c,将(1,5)和(﹣,)分别代入函数解析式,得.解得,故此二次函数的解析式y=3x2+2;(2)解:二次函数先向下平移4个单位得到:y=3x2﹣2;然后沿x轴翻折后解析式为:y=﹣3x2+2.此时P(0,2),A(,0),B(﹣,0),所以S△AOP=× ×2=.19.【答案】(1)解:∴该二次函数对称抽为;(2)解:由配方得:∵当时时,y取最小值,时,y取最大值,即P点坐标为,将,代入得:∴∴二次函数为将代入∴即Q点坐标为;当时时,取最小值,时,y取最大值,即P点坐标为将,代入得:∴∴二次函数为将代入得∴点坐标为,∴时,所求坐标分别为,时,所求坐标分别为,;(3)解:∵,时,均满足∴抛物线开口向下点B关于二次函数对称轴的对称点为∴当时,满足∴.20.【答案】(1)解:将点A(2,4)与B(6,0)代入y=ax2+bx,得,解得(2)解:由(1)知,y= x2+3x= (x-3)2+∴点C的坐标为(3,)∴S△OBC=。
二次函数图象与性质基础检测题一、选择题:1.抛物线y = 3x 2 , y = -3x 2 , y = 1x2 + 33共有的性质是()A.张口向上; B .在对称轴右边,y随x 的增大而增大C.极点坐标都是( 0,0)D.对称轴是y 轴;2. 关于抛物线 y = - 1 (x + 5)32 + 3,以下说法正确的选项是()(A)张口向下,极点坐标 (5 ,3)(B)张口向上,极点坐标(5 ,3)(C)张口向下,极点坐标( - 5,3)(D)张口向上,极点坐标( - 5,3)23. 抛物线 y = 3x向右平移1个单位,再向下平移2个单位,所得抛物线是()A y = 3( x - 1) 2 - 2B y = 3( x + 1) 2 - 2C y = 3( x + 1) 2 + 2D y = 3( x - 1) 2 + 24. 如图,四个二次函数的图象中,分别对应的是:①y = ax 2;② y = bx 2 ;③ y = cx 2 ;④ y = dx 2 ,则 a 、b、c、d 的大小关系为()A. a > b > c > d ; B. a > b > d > c ;C. b > a > c > d ; D.b > a > d > c 。
5.抛物线 y = 2( x + m ) 2 + n ( m,n 是常数)的极点坐标是()A. ( m ,n) B. ( - m,n) C. ( m ,- n) D. ( - m,- n)二、填空题:2 + 2 的最小值是6.二次函数y = ( x + 1)7.二次函数 y = - 2(x + 3) 2 - 1 由 y = - 2(x - 1) 2 + 1 向_____平移_______个单位,再向 _____平移 _______个单位获得。
8.写出抛物线的一个分析式 ____________________三、解答题:9、如图是y = a( x + m ) 2 的图象(1)、求二次函数的分析式(2) 、把抛物线y 1 x 2经过如何的平移才能获得4(3)、若将 (1) 、中的抛物线绕极点选择 180 度,求旋转后的抛物线的分析式?若绕原点旋转 180 度呢?。
二次函数图像和性质 基础练习题
基础练习题
1.下列函数中是二次函数的为 A .y =3x -1
B .y =3x 2-1
C .y =(x +1)2-x 2
D .y =x 3+2x -3
2.抛物线y =2x 2+1的的对称轴是 A .直线x =
14
B .直线x =14
-
C .x 轴
D .y 轴
3.抛物线y =-(x -4)2-5的顶点坐标和开口方向分别是 A .(4,-5),开口向上
B .(4,-5),开口向下
C .(-4,-5),开口向上
D .(-4,-5),开口向下
4.抛物线y =-x 2不具有的性质是 A .对称轴是y 轴
B .开口向下
C .当x <0时,y 随x 的增大而减小
D .顶点坐标是(0,0)
5.已知点(-1,2)在二次函数y =ax 2的图象上,那么a 的值是 A .1
B .2
C .
12
D .-
12
6.已知抛物线y =ax 2(a >0)过A (-2,y 1)、B (1,y 2)两点,则下列关系式一定正确的是 A .y 1>0>y 2
B .y 2>0>y 1
C .y 1>y 2>0
D .y 2>y 1>0
7.当函数y =(x -1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是 A .x >0
B .x <1
C .x >1
D .x 为任意实数
8.对于二次函数2(3)4y x =--的图象,给出下列结论:①开口向上;②对称轴是直线3x =-;③顶
点坐标是34--(,);④与x 轴有两个交点.其中正确的结论是
A .①②
B .③④
C .②③
D .①④
9.一种函数2
1
(1)53m y m x x +=-+-是二次函数,则m =__________.
10.把二次函数y =x 2-4x +3化成y =a (x -h )2+k 的形式是__________.
11.将抛物线y =2(x -1)2+2向左平移3个单位,那么得到的抛物线的表达式为__________. 12.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C (5,4).
(1)求a 的值和该抛物线顶点P 的坐标;
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.
13.已知:抛物线2y x bx c =-++经过(30)B ,
、(03)C ,两点,顶点为A . 求:(1)抛物线的表达式; (2)顶点A 的坐标.
14.如图,已知二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点.
(1)求二次函数的解析式;
(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;
(3)在同一坐标系中画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.
能力拓展
15.在平面直角坐标系中,将抛物线y =-12
x 2
向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是 A .y =-
12x 2-x -3
2
B .y =-
12x 2+x -1
2
C .y =-12x 2+x -32
D .y =-
12x 2-x -1
2
16.二次函数y =ax 2+bx +c 的图象如图所示,那么一次函数y =bx +a 的图象大致是
A .
B .
C .
D .
17.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②b a c <+;
③420a b c ++>;④23c b <;⑤()(0)a b m am b m +>+≠,其中正确的结论有
A .2个
B .3个
C .4个
D .5个
18.二次函数y =x 2-2x -3,当m -2≤x ≤m 时函数有最大值5,则m 的值可能为__________.
19.若直线y =ax -6与抛物线y =x 2-4x +3只有一个交点,则a 的值是__________.
20.如图,已知二次函数y =ax 2+bx +8(a ≠0)的图象与x 轴交于点A (-2,0),B (4,0),与y 轴交于点C .
(1)求抛物线的解析式及其顶点D 的坐标; (2)求△BCD 的面积;
(3)若直线CD 交x 轴与点E ,过点B 作x 轴的垂线,交直线CD 与点F ,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).
真题实战
21.(2018·四川成都)关于二次函数2241y x x =+-,下列说法正确的是
A .图象与y 轴的交点坐标为(0,1)
B .图象的对称轴在y 轴的右侧
C .当0x <时,y 的值随x 值的增大而减小
D .y 的最小值为-3
22.(2018·湖北黄冈)当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为
A .-1
B .2
C .0或2
D .-1或2
23.(2018·江苏连云港)已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数
表达式h =-t 2+24t +1.则下列说法中正确的是 A .点火后9 s 和点火后13 s 的升空高度相同 B .点火后24 s 火箭落于地面 C .点火后10 s 的升空高度为139 m D .火箭升空的最大高度为145 m
24.(2018·山东德州)如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角
坐标系的图象可能是
A .
B .
C .
D .
25.(2018·湖北恩施州)抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图所示,下列判断中:
①abc >0;②b 2-4ac >0;③9a -3b +c =0;④若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2;⑤5a -2b +c <0. 其中正确的个数有
A .2
B .3
C .4
D .5
26.(2018·江苏淮安)将二次函数y =x 2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达
式是__________.
27.(2018·山东淄博)已知抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物
线向右平移m (m >0)个单位长度,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧),若B ,C 是线段AD 的三等分点,则m 的值为__________.
参考答案
1. B
2. D
3. B
4. C
5. B
6. C
7. B
8. D
9. -1
10. y =(x -2)2-1 11. y =2(x +2)2+2 12. (1)⎪⎭
⎫
⎝⎛-49,25,(2)22++=x x y (答案不唯一)。
13. (1)322
++-=x x y ,(2)(1,4)。
14. (1)12
1
212--=x x y ,(2)D 坐标为(-1,0),(3)-1<x <4. 15. A 16. C 17. B 18. 0或4 19. 2或-10
20. (1)顶点坐标(1,9),(2)6,(3)抛物线最多向上平移72个单位。
21. D 22. D 23. D 24. B 25. B 26. y =x 2+2 27. 2。