手性化合物色谱分析方法开发(一)
- 格式:pdf
- 大小:562.42 KB
- 文档页数:7
手性药物分析方法研究进展摘要:近年来,手性药物的分析已成为药学界的一个重要研究课题,并且不断出现新的检测技术,以满足日益增长的需求。
本文将深入探讨近十年来手性药物的检测技术,以期为临床提供更有效的诊断依据。
对比了目前现有的手性药物检测技术的优点和缺点,并对手性药物分析方法的发展做出了展望。
关键词:手性药物;分析方法;研究进展;引言:现今,超过半数的药物均具有手性结构,而这些手性药物中两种不同的对映体之间的生物活性差异十分明显:一种可以产生高效的结果,而另一种则可能产生低效或者有害的结果。
进入人体后两种对映体还可能相互转换,从而使得许多药物服用后会产生副作用。
随着科学技术的不断发展,手性药物的分离技术已经成为一种必不可少的工具,它可以有效地检测和分析药物的理化性质。
本文将深入探讨几种手性药物的分析技术,并结合相关的研究成果,为读者提供有效的参考和借鉴。
一、手性药物概述随着技术的进步,手性药物已经成为一种新型的药物,它们通过将手性中心引入其分子结构,形成一对相对的对映异构体,这种新型的药物已经被广泛应用于临床,占比高达40%~50%。
手性药物的药理作用可能出现(1)一种特定的对映体具有显著的药理效果,而另一种则没有;(2)两种对映体的药理效果相似,但其作用强度不尽相同;(3)两种对映体的药理效果相似,但其作用强度不尽相同。
手性药物的药代动力学特征表明,它们在人体内都具有显著的立体选择性。
因此,对于这类药物的分离、质量控制和疗效评估,都具有极其重要的意义。
二、手性药物分析技术(一)高效液相色谱法(HPLC)20世纪70年代以来,HPLC法已经成为药物分析领域最受欢迎的技术之一,它能够将不对称中心引入分子间,从而实现拆分手性药物对映体的目的。
其中,直接法也被称为手性固定相法,它是将不对称中心引入分子间,而间接法则是将不对称中心引入分子内部,通过分子间的相互作用,实现药物的有效分析,从而更好地揭示药物的结构和功能。
第一讲手性分离色谱手性药物常用的色谱分离方法有:高效液相色谱、气相色谱、毛细管电泳、超临界流体色谱。
手性药物给人类曾经带来过空前的灾难——反应停事件。
概念手性:指一种化合物分子由于其三维空间结构的原因所显示出的相互不能重合,但互为镜像关系,它形象的比喻为人的左右手,这叫手性。
对映体: 由于手性中心连接的四个基团在空间三维排列的不同,对偏振光产生的旋转方向不同,从而产生不能重叠的互为镜像的光学异构体,称对映体。
旋光性:手性药物对映体之间对偏振光的偏转程度相同,但偏转方向相反,即旋光性。
右旋体:能使偏振光按顺时针方向旋转的对映体称为右旋体以d-或(+)-表示。
左旋体:按逆时针方向旋转者称为左旋体以l-或(-)-表示。
外消旋体:等量的左旋体和右旋体构成外消旋体,没有旋光性,以(dl)或(±)表示。
内消旋体:分子中含有手性碳原子,但作为分子整体来说是非手性的。
内消旋化合物是纯净物。
外消旋体与内消旋体的共同之处是:二者均无旋光性。
外消旋体:是混合物,可拆分出一对对映体。
内消旋体:是化合物,不能拆分。
手性药物:是指由具有药理活性的手性化合物组成的药物。
手性药物的表示方法1.dl-或(±)-表示能使偏振光的偏振面按顺时针方向旋转的对映体称为右旋体(dextrotatory),在药名前用d-或(+)-表示;反之,称为左旋体(levorotatory),在药名前加l-或(-)-表示。
外消旋体(racemate)则是由等量的左旋体和右旋体构成,没有旋光性,在其药名前用dl-或(±)-表示。
2. D/L标记法(相对构型)1951年前,人们还无法确定化合物的绝对构型。
费歇尔(Fischer)人为地选定(D)-甘油醛为标准物,以标准参照物来确定药物的立体化学构型,相对构型。
由于D/L构型表示法它只适用与甘油醛结构类似的化合物,对多个手性碳的化合物使用不方便。
与表示旋光方向的d和l容易混淆,目前多限于糖和氨基酸的立体化学命名。
手性分析经验谈关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。
手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。
手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。
一、手性柱手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报导。
大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ 和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、IB和IC,其中IA对应AD-H,IB 对应OD-H,IC是新开发的填料。
和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。
另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。
关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。
最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。
手性分析经验谈关于手性化合物、手性分析、手性填料和手性柱,现在的理论很多,讲的也比较复杂,我看了很多也不是特别明白,做分析三年多,分过的手性化合物最少也有几千种,拿到手里的消旋体几乎没有分不开的,没用到什么理论,主要都是经验,这里还是拣最实用的来讲。
手性分析可以使用普通的色谱柱,需要流动相中添加手性分离试剂,也可以直接用固定相为手性填料的手性色谱柱,前者使用较少,大家更多的是使用商品化的手性色谱柱。
手性分析包括气相和液相两种,这个主要和样品的物理性质有关系,现在的手性化合物绝大多数都不能做气相,所以气相手性色谱柱无论从数量还是质量上来讲都不能与液相手性色谱柱相提并论。
一、手性柱手性分离最重要的是选择一根好的手性柱,说到手性柱就不得不提大赛璐,做手性分析的都知道,大赛璐的手性柱目前市场占有率最高,大家最熟悉的可能是OD- H,很多文献中都有报道。
大赛璐公司最初有四种填料,结构类似,对应的色谱柱分别是OD、AD、OJ和AS,粒径10um,后来填料粒径变为5um,就是卖的最多、使用范围最广的柱子,号称四大金刚,分别是OD-H、AD-H、OJ-H和AS-H,在柱子名称后边加“-H”,意思应该是高效,这些柱子都只能做正相使用,为了在反相色谱中使用开发的柱子在相应的色谱柱名称中添加了一个“R”,上述色谱柱都属于涂覆型填料,不耐溶剂,使用起来受样品溶解性的限制,最近又开发了键合相手性柱,可以使用几乎所有的常见溶剂做流动相,新的溶剂还提供了新的选择性,进而提升了色谱柱的分离能力,主要是IA、I B和IC,其中IA对应AD-H,IB对应OD-H,IC是新开发的填料。
和反相柱的发展趋势一样,大赛璐的手性柱也通过减小粒径来获得更高的柱效,最新的手性柱填料粒径是3um。
另外大赛璐还有其它一些手性色谱柱,但是远不及上述几种。
关于大赛璐手性柱的详细资料官方网站上讲的很详细,大家有兴趣可以去看,这里主要讲我的使用经验。
最近大赛璐公司的销售和技术曾经来过我们公司做讲座,因为我们先后买了他们三四十只手性柱,一直是自己摸索着使用,理论上的东西懂得很少,非常希望专家的能给我们提供指导,提升我们的技术水平,这个讲座的ppt网上流传的很多,对初学者来讲确实非常不错,但是专家的水平让我们实在不敢恭维。
手性药物的液相色谱法分析法在药物分析中的应用第2组:冯文立0903511107彭新平0903511109李茂山0903511105摘要手性药物在目前使用的药物中占有很重要的地位,而液相色谱法在手性药物拆分中有广泛的应用。
本文就手性药物的分离测定中的液相色谱分析现状、分类、具体应用案例研究进行整理和描述,以此来帮助研究手性药物的药动学过程、药理和毒理作用机制、以及手性药物质量控制。
进而指导临床的应用。
手性药物在临床应用的化学药物中占有相当比例,但绝大多数仍以外消旋体给药,药理学研究表明,手性药物的各对映体在进入人体后药理作用有着明显差异,而市场上手性纯的药物和单一光学异构体的药物急剧增加,因此,手性药物的分离,测定对研究手性药物的药动学代谢过程,药理和毒理作用机制以及手性药物的质量控制等多方面具有重要的意义,本文随手性药物研究中应用较多的液相色谱加以综述。
AbstractChiral drugs play an important role in current use of drug, Moreover, liquid chromatographic method on chiral resolution have been widely used. Therefore This paper by the separation of chiral drugs determination of liquid chromatographic analysis situation, classification, application case studies were finishing and description, so as to be of the chiral drugs help to pharmacokinetic process, pharmacological and toxicological effect mechanism, and chiral drugs quality control and guide clinical application in the final.Chiral drugs in clinical application of chemical drug occupies scale, but most still away to spin body other than medicine, pharmacology study show that the chiral drugs each enantiomers in entering the human body pharmacological effects have obvious difference, and the market to pure drugs and sex of a single optical isomers drugs increase sharply, therefore, the separation of chiral drugs, determination of chiral drugs pharmacokinetic metabolic process, pharmacological and toxicological effect mechanism, and the quality of the chiral drugs control and so on various has an important关键词:手性药物液相色谱法药物分析前言[1]据报道:天然或半合成药物几乎都有手性,其中98%以上为光学活性物;全合成药物中40%为手性药物;目前常用的700多种药物有一半至少含有一个手性中心,其中90%使用外消旋体。
手性化合物的色谱法分离周丽华中师范大学化学学院2011级摘要:本文综述了手性化合物的四种拆分方法—薄层色谱法(TLC)、气相色谱法(GC)、高效液相色谱法(HPLC)、毛细管电色谱法(CEC),及每种方法的作用机理关键字:手性化合物色谱法分离Chromatographic Separation of Chiral Compounds Abstract: This paper reviewed four methods for separation of chiral compounds , such as TLC、GC、HPLC、CEC , introduced mechanism of each method.Key word : Chiral Compounds Chromatographic Separation1.引言手性是用来表达化合物分子结构不对称性的术语,被认为是三维物体的一个基本属性。
有很多化合物分子,构成它们的元素完全相同,但原子排列方式不同,彼此如同镜子内外世界的对应,也就是具有手性,它们就互称为“对映体”。
在自然界中,手性现象无处不在。
化合物分子含有某些不对称因素时,该化合物被称为手性化合物。
随着人类在生物工程和生命科学上的发展,科学家己经认识到,手性化合物例如手性药物异构体尽管其物理和化学性质几乎完全相同,只有旋光性不同,但他们在生物体内的生理活性和药理作用却存在很大的差别。
最经典的例子是thahdomide[l],也叫反应停。
其不同的构型却存在不同的生理效应:R构型具有良好的镇静作用而S构型却导致胎儿畸形。
在农药方面,手性问题也受到广泛的关注。
这主要是因为在外消旋体的农药中,其中一半可能是没有活性的,如果用于洒播在农田,既造成资源浪费,又污染环境。
但随着对环境安全、高效、安全的要求,含单一对映体的手性农药将会不断的发展。
鉴于有机分子的构型与其生物活性的的特殊关系,有必要对手性化合物的各个异构体分别进行考察,了解他们各自的生理活性,以便达到高效、安全、无污染的用药目的。
手性化合物色谱分析方法开发(一)
1、概述
首先,这里所说的手性化合物是指含有一个或多个不对称碳手性中心的对映或者非对映异构体,而不包含氮磷等含有孤电子对的手性中心化合物。
不对称性碳原子,需要具有四个不同的取代基,空间上形成不对称四面体,对映异构体之间形成镜面对称,就像人的左右手一样,不能够完全重合,如下图1所示。
Fig.1Diagram for enantiomers
对映异构体具有不同的使偏振光旋转的能力,据此对映异构体可以分为左旋与右旋。
在非手性环境下,对映异构体具有相同的化学性质(化学反应特性),相同的物理性质(如溶解度、熔点、沸点、熵焓等)以及同样的色谱保留行为等。
但在手性环境中对映异构体之间的某些性质则表现出不同,这也是手性化合物进行拆分的基础。
对映异构体需要对内消旋体与外消旋体进行区分,如下图2所示。
左右两个示意化合物结构的相同点在于均具有两个手性中心,不同点则在于左图的两个手性碳原子之间不存在对称平面或轴,而右图则存在对称平面。
因此在左图中,1S,2R与1R,2S为外消旋体;右图中1S,2R与1R,2S为内消旋体。
Fig.2Name and distinguish between mesomer and racemate
对于手性化合物的拆分,规模比较大的时候,可使用其他手性试剂(如酒石酸钠)与待拆分的化合物形成非对映异构体,然后根据非对映异构体之间具有不同的物理化学性质,进行相应的分离单元操作。
而在分析实验室中,一般是采用色谱法进行拆分,其中包括使用手性固定相法以及在流动相中添加手性流动相形成手性拆分环境的方式。
其中手性固定相拆分法包括气相色谱以及液相色谱。
对于气相色谱拆分手性化合物,其拆分选择性主要取决于所使用的手性固定相的种类以及色谱分离的温度。
一般气相用于低沸点的手性化合物的拆分,对于有机酸碱等极性手性化合物的拆分,一般需要先进行柱前衍生化处理,使之形成相应的酯或者酰胺。
用于气相手性拆分的手性固定相均为环糊精衍生物类,包括β以及γ环糊精,α环糊精比较少;其最高耐受温度不会超过220℃,而且分离温度超过120℃的时候,固定相的手性选择性开始降低;超过200℃的时候,固定相的手性选择性几近与无。
对于液相色谱而言,起主要拆分选择性作用的既包括手性固定相也包括流动相的选择,而且液相色谱可以使用正相洗脱模式,反相洗脱模式,也可以使用极性洗脱以及极性离子洗脱模式;可以等度也可以梯度。
最重要的是,色谱柱的类型要比气相色谱手性固定相多的多,其中就包括多糖类衍生物类手性固定相、环糊精及其衍生物类手性固定相、糖蛋白类手性固定相以及大环内酯抗生素类以及冠醚类手性固定相等。
此外,液相色谱拆分法可以对样品进行回收而且也可以用于对映异构体的制备,气相色谱法则不能方便的对对映异构体进行制备。
2、手性化合物液相色谱拆分方法
手性化合物在液相色谱中进行拆分的时候,从整体上进行分解的话,可以分为3个可控制部分,分别为流动相组成、手性固定相种类以及仪器操作条件。
上述这三个部分,对于手性化合物的拆分均有贡献,一般地,手性固定相的选择性要优先于流动相的组成,流动相的组成要优先于仪器操作条件。
2.1手性化合物拆分的模型
手性拆分的原理模型比较多,但是接受程度最大的是三点相互作用模型,如下图3所示。
也就是说,手性化合物要实现拆分,需要在三个作用力方向上同时发力,而且至少其中一个方向上的力是起到立体性的或对映选择性的。
Fig.3The three point principle model for chiral separation
而这些作用力种类有很多,其中就包括经常讨论的静电相互作用、偶极-偶极相互作用、包含作用、疏水相互作用、π-π相互作用以及氢键相互作用等。
2.1.1包含(Inclusion)作用
包含作用一般需要手性固定相能够形成具有一定空间结构的选择性的腔体,如纤维素衍生物、淀粉衍生物、环糊精及其衍生物以及大环内酯抗生素类的手性选择性腔体。
在拆分的时候,芳香类化合物的苯环或萘环以及其他的五元、六元环或者杂环可被包含与多糖衍生物的螺旋或者环糊精及其衍生物的腔体内,充当一个方向上的作用力。
如下图4所示,是环糊精以及其衍生物的结构及其衍生化位点。
图4中A是β环糊精,由7个D 葡萄糖通过β-1,4-糖苷键连接,其2,3以及6位羟基提供衍生化位点。
在环糊精腔体内部的氧原子
由于含有孤对电子,其腔体内部还可与待拆分化合物的极性部分发生静电相互作用,因而手性碳原子的α或者β位具有卤素取代芳香基的时候,可以尝试使用环糊精及其衍生物类的手性固定相。
Fig.4Structure and deriving points of cyclodextrin
此外,包含作用还比较常见于另外一种手性固定相,多糖衍生物类手性固定相,其中就包含有直链淀粉以及纤维素的衍生物,如下图5所示。
多糖衍生物对于手性化合物的包含作用,不像环糊精那样是一个闭合的环腔,而是一个由一定单糖单位形成的螺旋性腔体。
Fig.53D structure difference between amylose and cellulose
从上图5中,也可以看出直链淀粉相比纤维素而言具有更为均一化的螺旋结构,因此,直链淀粉衍生物类的手性固定相对于化合物的包含作用要比纤维素强一些,此外,包含作用的强弱也与使用的流动相、仪器条件的设置以及化合物的种类有关。
无论环糊精类还是多糖衍生物类手性固定相的包含作用,均对化合物的结构特点具有选择性,如下图6所示。
适用于环糊精以及多糖衍生物类手性固定相分析的化合物,其手性碳原子的α或者β位一般含有芳香基或杂环结构,特别是被卤族元素或其他具有吸电子效应的取代基取代的芳香基团。
Fig.6Structure characteristics of a compound suitable to be separate under polysaccharide columns
2.1.2疏水相互作用
疏水相互作用是手性固定相拆分对映异构体的另外一种主要的作用力的类型,一般在反相液相色谱中最多见。
如下图7所示,手性碳原子附近有苯环也有羰基以及羟基(均是氢键作用位点),在反相模式下,苯环的疏水作用以及其他两个配基的弱氢键作用可能是该化合物手性拆分的基础。
Fig.7Hydrophobic interaction recognition for chiral separation
一般地,当待分离的对映异构体结构上含有较大的疏水基团的时候,比较适宜于尝试反相液相色谱。
2.1.3π-π相互作用
对于芳香苯环,可以看作是由3个sigma键以及3π键组成,也可认为是由3个sigma键以及一个6电子所形成的大π键环状结构,如下图8所示。
当其上的H被其他吸电子基团或者给电子基团取代之后,而形成相应的π酸或者π碱,如下图9所示。
Fig.8π-πinteraction recognition for chiral separation
在下图9中,苯环上的氢被甲基或者其他给电子基团取代之后,形成相应的π碱,而被硝基等吸电子基团取代之后形成相应的π酸。
π酸与π碱之间可以形成π-π堆叠静电效应,是多种手性色谱柱进行手性拆分的主要作用力类型,其中就包括应用范围最广的多糖衍生物类手性色谱柱。
如Chiralcel OD-H、AD-H、AS-H、OJ-H,属于π-base型手性固定相;ChialpakIC,则属于π-acid型手性固定相。
Fig.9π-πinteraction recognition for chiral separation
2.1.4氢键相互作用
氢键作用更加普遍,基本类型有N-H以及O-H,如下图10-1与10-2所示。
不同的氢键类型以及不同的基团之间所形成的氢键的键能也不一样,主要发生在酮、酯、羧酸、酰胺以及胺类化合物与胺类化合物的氨基以及醇类化合物的羟基之间,是正相色谱拆分手性化合物的主要机理之一。
Fig.10-1Hydrogenbond interaction for chiral separation
Fig.10-2FT-IR for polysaccharide columns
在上图10-2红外谱中,在3300与3400之间,出现明显的W型底形状,说明发生了明显的氢键相互作用,而且这种氢键的相互作用强弱与用于多糖衍生化的配体的种类有很大关系。
3、结论
非手性环境下,对映异构体具有相同的化学性质、物理性质以及同样的色谱保留行为;但在手性环境中对映异构体之间的某些性质则表现出不同,这是手性化合物进行拆分的基础。
使用手性固定相对对映异构体进行拆分,是目前实验室最常用的方法,而起到拆分作用的作用力的类型有很多,其中就包括比较常见的包含作用、疏水相互作用、π-π相互作用以及氢键相互作用等。
究竟哪种作用力起分离的决定性作用,与手性固定相的种类、流动相的组成、添加剂的种类以及添加量,待分析的化合物的特性均有关系。
作者信息
Bruce Lee
作者微信号:Lindaring001
作者公众号:Pharma_Analytical。