Deform使用简明步骤
- 格式:pdf
- 大小:229.25 KB
- 文档页数:5
上机实验DEFORM软件的基本操作1实验目的了解认识DEFORM软件的窗口界面,掌握DEFORM软件的前处理、后处理的操作方法与技能,学会运用DEFORM软件分析实际问题。
2实验内容(1)运用DEFORM绘制或导入各模具部件及坯料的三维造型;(2)设计模拟控制参数;(3)定义模具及坯料的材料;(4)完成模具及坯料的网格划分;(5)调整模具和坯料的相对位置;(6)设定模具运动;(7)设定变形边界条件;(8)生成数据库;(9)利用后处理观察变形过程,绘制载荷曲线图,观察变形体内部应力、应变及损伤值分布状态;(10)制作分析报告。
图1圆柱体镦粗过程模拟3实验步骤3.1创建新项目打开DEFORM软件,在DEFORM主界面单击设置工作目录为C:\DEFORM3D\PROBLEM。
单击按钮,弹出Problem setup(项目设置)对话框,选择使用Deform-3D preprocessor,单击进入项目位置设置对话框,直接单击进入项目名称设置对话框,在Problem name框中输入本项目名称“Upset”,进入DEFORM-3D前处理界面。
3.2设置模拟控制初始参数单击Input/Simulation controls菜单或单击按钮进入模拟控制对话框,在对话框左侧的栏中选取Main窗口,如图2所示。
设定模拟分析标题为“Upset”,操作名为“Upset”,Units单位制为“SI”,分析模式为变形“Deformation”,单击OK按钮,完成模拟控制的初始设置。
图2模拟控制初始设置3.3创建对象3.3.1坯料的定义单击对象设置区的按钮,进入Workpiece对象一般信息设置窗口,。
在Object name后面的框中输入“Billet”,单击其后的按钮,将对象名称改为“Billet”。
在Object type(对象类型)中选择Plastic(塑性)。
单击对象设置区的按钮,进行对象几何模型的设置,单击按钮,进入几何造型单元。
操作教程一、进入Deform-3D界面进入运行Deform-3D v6.1程序,软件打开软件会自动选择安装时的默认目录,为了防止运算结果混乱不便管理,可单击工具栏中的打开按钮选择新的文件存放路径,如图10:单击此按钮,选择新的文件路径图10 选择新文件路径二、操作步骤1、进入前处理操作在主窗口右侧界面Pre Processor中Machining[Cutting]选项,弹出图11所示对话框,输入问题名称,单击【Next】按钮,进入前处理界面。
2、选择系统单位进入前处理界面会自动弹出图12所示对话框,要求选择单位制(英制或国际单位制),按需求选择国际单位制(System International),然后单击【Next】按钮,进入下一步。
3、选择切削加工类型Deform中给我们提供的加工方式有车削加工(Turing)、铣削加工(Milling)、钻削加工(Boring)、钻孔加工(Dtilling),其中我们模拟的是铣削加工,故选择Milling,然后单击【next】进入下一步,如图13所示。
图11 进入前处理操作1、选择国际单位制2、单击【Next】图12 选择系统单位制图13 选择切削加工类型4、设定切削参数图14所示对话框参数设置,可根据自己的需要改变数值的大小,不过后面选择刀具参数时要考虑这些参数,否则很肯能出现接触错误。
该模拟中选择参数如下:图14 设定切削参数5、工作环境和接触面属性设置1、选择铣削加工2、单击【Next 】2、单击【Next 】1、输入各项切削参数图15 工作环境和接触面属性设置5、刀具设置如图16所示,单击新建刀具在弹出的对话框中选择预先建立好的刀具模型(图17),单击打开按钮,弹出刀具材料设定对话框选择预先定义好的刀具材料物理参数的key 文件(图18),单击【load 】加载刀具材料。
所选刀具材料将被列在刀具材料设定对话框下方(图19)。
一直单击Next直到完成刀具设置。
D E F O R M使用手册(总47页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除DEFORM 2D-HT 使用手册1.几何操作-XYR格式创建新作业设置模拟控制创建新对象图视几何对象保存作业退出DEFORM TM-2D本章使用的图标:对象几何尺寸定义几何尺寸检查动态放大窗口放大动态平移保存文件221.几何输入操作-XYR格式创建新作业注意:正确设置文档(文件夹)结构有利于文件调用,因而,用户最好事先建立作业目录路径。
例如,设定主目录LABS,而在LABS路径下建立目录LAB1、LAB2、LAB3等等。
启动DEFORM程序。
如果是UNIX平台的版本,一开始键入DEFORM2。
如果是PC 平台的版本,在DEFORM目录下单击DEFORM2D。
DEFORM 的主系统窗口如图1-1所示:图 DEFORM TM 2D系统窗口单击Create a New Directory 图标,创建新路径(MESH),完成后单击OK按钮。
双击目录MESH打开该目录。
在文本框Problem ID中设置Problem ID(作业ID)为MESH。
完成以上过程后进入Pre-Processor(前处理)来定义模拟数据。
现在单击Pre-Processor图标,DEFORM TM 2D的前处理窗口如图所示,该窗口包括TOOLS,CONTROL,MESSAGE和DISPLAY窗口。
33图 DEFORM TM 2D前处理窗口设置模拟控制参数单击CONTROL窗口中的Simulation Controls按钮打开SIMULATION CONTROLS窗口(如图。
在文本框Simulation Title中键入模式名称为MESH,在本模拟过程中,我们使用SIMNLATION CONTROLS窗口的缺省设置。
(单位UNITS:英制English,变形Deformation:为ON,对象几何类型:轴对称Axisymmetric)。
Deform是一款专门用于金属成形的仿真软件,主旨在于帮助设计人员在制造周期的早期检查、了解和修正潜在的问题或缺陷。
以下是使用Deform进行冷镦模拟的基本过程:
1. 前处理:这是模拟的第一步,包括创建几何模型、设置材料属性、定义工艺参数等。
对于初学者,建议选择一个最简单的案例进行模拟,例如最简单的冷压缩模拟,仅仅只需要试样、上模、下模三个简单的零件。
2. 求解运算:在前处理完成后,进入求解模块,Deform会基于有限元分析方法进行模拟计算。
3. 后处理:在完成求解后,进入后处理模块,这里可以观察和分析模拟结果,如应力、应变、温度分布等。
4. 优化与应用:根据模拟结果,设计人员可以检查、了解和修正潜在的问题或缺陷,从而优化工艺参数和提高生产效率。
Deform简单操作步骤:1、在三维软件画出坯料、上下模具的三维图,进行装配后再使用另存为,保存为STL格式文件。
保存时注意文件保存的路径为英文字符或数字,不能出现中文字符。
2、从开始位置打开deform-3d,然后点击“文件打开”找到你保存零件的文件夹。
3、点击“新建”,创建新的deform数据库文件,直接点next,至finish。
4、点击“simulation controls”按钮,在units选项里将单位选成国标:SI,然后点击OK5、在“general”选项中点击“assign temperature”,将温度设定为始锻温度。
然后点击下面的圆柱形图标,选择坯料的材料,一般选择steel中的1045或8620,选中后点击load 按钮,添加成功。
6、点击“geometry”按钮,然后点击import,选择保存的坯料的stl文件,调入坯料7、点击“mesh”按钮,输入要划分的网格数,刚开始一般输入2000-5000,然后点击“generatemesh”按钮,生成网格8、点击“properties”按钮,选中“active in meshing”,然后点击下面的图标,生成体积补偿的数据。
至此工件的前处理数据完成。
9、点击添加工件按钮,添加top die选项10、点击“general”按钮,然后点击“assign temperature”按钮,将温度设定为模具的预热温度。
11、点击“geometry”按钮,然后点击“import”选择保存的上模的stl文件,调入上模。
12、点击“movement”按钮,选择模具下行的方向,然后在最后行输入上模下行的速度13、点击添加工件按钮,添加bottom die选项14、点击“general”按钮,然后点击“assign temperature”按钮,将温度设定为模具的预热温度。
至此模具前处理数据完成。
15、点击右上角“inter-objiect”按钮,选中框中的一项,点击“edit”按钮,在constant选项中选择hot forging (lubricated)选项,然后点击关闭16、点击“apply to other relations”按钮,然后点击小钉锤图标,然后点击“generate all”按钮,然后点击ok。
deform钻削步骤详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(deform钻削步骤详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为deform钻削步骤详解的全部内容。
刀具:2棱槽麻花钻,直径6mm,转速400RPM,进给量f=0.15mm/r.1、进入前处理器,命名文件2、仿真控制设置打开“热转换”,单位变为SI,仿真名称Drilling Simulation。
3、定义工件、刀具,建立钻削模型可以直接插入。
stl 格式的文件,按“添加”按钮。
简单的直接在前处理建立。
.stl 格式的文件必须保存在非中文的文件夹里。
外部插入的模型必须是独立、封闭的面,多面导致仿真过程中网格划分生成的问题.建立的钻尖最好在CAD系统坐标中XYZ的初始位置工件直径比刀具大1/5,厚度足够使钻尖进入,直径7mm,厚1.7mm工件:塑性,刀具:刚性修改工件、钻头名字保存4、物体位置设置刀具接触工件,干涉,沿-Z轴5、网格划分General:设置绝对尺寸(Absolute)或相对尺寸(Relative),前者设置网格的绝对大小(Max/Min Element Size)以及最大最小单元的尺寸比值限制(Size Ratio),而后者设置的是单元的数量(Number of Elements)以及最大最小单元的尺寸比值限制(Size Ratio)。
定义最小网格单元尺寸,最小网格单元尺寸为单个切削刃进给量的1/2,选用的麻花钻是2棱的,所以最小网格单元尺寸为f的1/4,即0。
0375,约等于0.4。
金属切削仿真中,最大网格单元尺寸与最小网格单元尺寸的比例通常选用10.为了仿真时网格自动生成计算,需要进行细节设置,工件:绝对型。
deform11.0实施例
DEFORM 11.0是一款专业的金属成型仿真软件,它可以模拟金属加工过程中的各种现象,为工程师提供优化工艺方案的依据。
下面是一个DEFORM 11.0实施例,以演示如何模拟落料拉伸成形过程:
1. 打开DEFORM 11.0软件,创建一个新的项目。
2. 在项目浏览器中,双击“材料”节点,添加所需的金属材料属性,如密度、弹性模量、泊松比等。
3. 双击“几何”节点,创建一个拉伸件的3D模型。
可以使用软件内置的绘图工具或导入现有的CAD文件。
4. 在“工艺”节点下,设置拉伸工序的参数,如拉伸方向、拉伸速度、摩擦系数等。
5. 双击“分析”节点,启动仿真分析。
DEFORM 11.0将根据设定的工艺参数,模拟拉伸过程中的应力、应变、厚度分布等变化。
6. 分析完成后,查看结果。
软件会自动生成各种分析报告,包括最大应力、最小厚度、成形极限等。
7. 根据分析结果,优化工艺参数,如调整拉伸速度、增加润滑等,以提高成形质量。
8. 若需进一步优化,可以重复步骤5和6,直至达到满意的成形效果。
9. 最后,将优化后的工艺方案应用于实际生产,以提高金属拉伸成品的质量。
这个实施例仅是DEFORM 11.0软件应用的一个简要概述。
实际上,DEFORM 11.0还具备丰富的功能,可以模拟多种金属成型工艺,为工程师提供全面的工艺优化解决方案。
Deform-3D(version6.1 使用步骤Deform-3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。
Deform-3D的高度模块化、友好的操作界面、强大的处理弓[擎使得它在同类模拟软件中处于领先地位。
以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform-3D 的使用步骤。
一、模拟准备模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。
实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。
该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量,可把装配体剖分为1/4,1/8或更多后再进行保存。
二、前处理前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。
首先打开软件,新建(new problem1选择前处理(Deform-3D preprocessor1在存放位置(Problem location选项卡下选择其他(other location并浏览到想要存放deform 模拟文件的文件夹一下步的problem name可任意填写。
注意:所有路径不能含有中文字符。
之后会打开新的界面,点击模拟控制(simulation controls-改变单位(units为SI,接受弹出窗口默认值;选中模式(mode选项卡下热传导(heat transfero 导入坯料、模具并设置参数:>导入毛坯:1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic,之后导入的模具定义为刚性(rigid;温度(temperature:根据成形要求设定坯料预热温度(温热成形时一定注意;材料(material:点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。
Deform操作流程Deform操作流程1.导入几何模型在DEFORM-3D软件中,不能直接建立三维几何模型,必须通过其他CAD/CAE软件建模后导入导DEFORM系统中,目前,DEFORM-3D的几何模型接口格式有:①STL:几乎所有的CAD软件都有这个接口。
它由一系列的三角形拟合曲面而成。
②UNV:是由SDRC公司(现合并到EDS公司)开发的软件IDEAS制作的三维实体造型及有限元网格文件格式,DEFOEM接受其划分的网格。
③PDA:MSC公司的软件Patran的三维实体造型及有限元网格文件格式。
④AMG:这种格式DEFORM存储己经导入的几何实体。
2.网格划分在DEFORM-3D中,如果用其自身带的网格剖分程序,只能划分四面体单元,这主要是为了考虑网格重划分时的方便和快捷。
但是它也接收外部程序所生成的六面体(砖块)网格。
网格划分可以控制网格的密度,使网格的数量进一步减少,有不至于在变形剧烈的部位产生严重的网格畸变。
DEFORM-3D的前处理中网格划分有两种方式,一种是用户指定单元数量,系统默认划分方式,用户指定的网格单元数量只是网格划分的上限约数,实际划分的网格单元数量不会超过这个值。
用户可以通过拖动滑块修改网格单元数,也可以直接输入指定数值,该数值和系统计算时间有着密切的关系,该数值越大,所需要的计算量越大,计算时间越长。
另一种手动设置网格使用的是Detailed settings下的Absolute 方式,该方式允许用户指定最小或最大的网格尺寸和最大与最小网格尺寸的比值。
该值设置完成在网格单元数量中可以看到网格的大概数目,但无法在那里修改,只能通过修改最大或最小单元尺寸来修改网格数目。
3.初始条件有些加工过程是在变温环境下进行的,比如热轧,在轧制过程中,工件,模具与周围环境介质之间存在热交换,工件内部因大变形生成的热量及其传导都对产品的成形质量产生主要的影响,对此问题,仿真分析应按照瞬态热一机祸合处理。
Deform-3D(version6.1)使用步骤Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。
Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。
以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。
一、模拟准备模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。
实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。
该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。
二、前处理前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。
首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform 模拟文件的文件夹→下步的problem name可任意填写。
注意:所有路径不能含有中文字符。
之后会打开新的界面,点击模拟控制(simulation controls)→改变单位(units)为SI,接受弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。
导入坯料、模具并设置参数:导入毛坯:1、general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为刚性(rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意);材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。
2、geometry:importgeometry from a file:从保存的STL格式文件中找到坯料,导入后会在左侧窗口显示出预览,然后点击check GEO检查模型,务必保证出现下图椭圆中数值。
3、网格(mesh):合理划分网格对有限元模拟至关重要。
网格划分方法分为相对和绝对,相对(relative)划分时指定网格数量和尺寸比率,网格的大小则由系统自动计算;绝对(absolute)划分时指定最大最小网格尺寸,而网格数量则由系统自动计算。
相对法划分网格的步骤通常是,在detailed settings----general中将尺寸比率(size ratio)设置为1→指定网格数量→选中精细内部网格(finer internal mesh)→点击预览表面网格(surface mesh)→查看最小单元尺寸(min element size),通常应使最小网格尺寸小于该次模拟成形工件最小尺寸的1/2,若不满足可适当增加网格数量→点击solid mesh生成内部网格→网格生成完成后再将size ratio改为2或其它。
这样划分可保证在模拟开始时网格是均匀的,从而一定程度上提高精度。
需要注意的是网格数量要同时考虑到计算精度和个人计算机的计算能力,另外对变形大的区域可考虑进行局部网格细化。
网格划分的更多细节应查阅其他更多资料。
4、movement:为简单起见选择类型(type)为speed;方向(direction)应根据成形要求确定;速度(constant value):一定设置为0。
5、边界条件(Bdry. Cnd.):若对毛坯进行了剖分则应添加边界。
点击对称面(symmetry plane)→在左侧预览图中选中对称面→点击添加,依次添加完成全部边界面的设定;点击heat exchange with environment→选择毛坯与环境的接触面→。
6、Properties:deformation-----target volume-----选中active in FEM + meshing→点击接受系统的补偿量;导入模具:点击→添加上模;1、general:定义为刚性(rigid);温度:温热成形时一定注意;刚性模型的材料不需指定。
2、geometry: import导入STL格式的上模→check出现上图椭圆中数值3、网格(mesh):刚性模型不需划分网格4、movement:type----speed;direction:按照成形时上模运动方向(不能选错)指定;速度:constant value填入设备速度。
5、点击,依次完成下模及其它成形部件的导入,并设定参数。
注意:只有运动的模具才设定速度,不动的模具速度设定为0;一次模拟中只能有一个运动的模具作为主模(primary die),系统将根据主模的移动距离确定模拟是否终止,因此应正确设置主运动模具对象。
定义对象间内部接触条件:点击inter-object,进入进行设置。
1、定义主从关系:将刚性模型(通常为模具)定义为主(master),塑性模型(通常为毛坯)定义为仆(slave);2、编辑(edit):deformation:摩擦类型(friction type)通常定义为剪切摩擦(shear)→value----constant根据成形条件选择摩擦系数(冷、温、热成形及是否有润滑时摩擦系数不同);thermal:定义热传导系数(heat transfer coefficient)→constant根据成形条件选择→close→应用到其他(apply to other relations);3、点击接受系统的计算值,完成定义接触容差→生成所有(General all),完成模具与坯料接触关系的设定,左侧会显示出接触节点→OK4、workpiece----Bdry. Cnd. 查看contact中坯料与模具的接触是否成功添加,再查看对称边界以及坯料与环境热交换边界是否已存在。
注意:可通过适当调整坯料、模具的位置,但最好在对实体造型进行装配时就确定好各对象位置。
模拟终止条件的设定:点击进入模拟控制,有两种方式可实现模拟终止,一种是设定总步数、另一种是设定主模位移,通常采用后者能较准确的控制模具移动距离。
Step:general-----选中with die displacement----constant定义每步的移动距离,需要查看毛坯的最小网格尺寸,步长的设定应小于最小网格尺寸的1/3(注意查看primary die是否正确)→step increment to save设定每隔多少步进行保存→填入根据设计的成形结束时模具的移动距离除以步长得到的模拟总步数(number of simulation steps);stop:process parameters-----general-----primary die displacement填入主模在坐标方向的位移(正值)。
注意:为保证通过主模位移终止模拟,应使step中模拟总步数与步长的乘积大于stop中设置的主模位移,即需要适当增加总步数。
网格重划准则(remeshcritertia):网格重划触发(remeshing triggers)通过相对和绝对穿透深度(interference depth)设定,通常采用系统默认(相对0.7),也可根据实际模拟需要进行调整。
生成数据库:检查确定所有参数设置无误后点击→check →generate 可生成数据库;file →save as保存key 文件。
三、求解器从第一次打开的界面(deform-3D main )浏览到含有以上所生成的数据库文件和key 文件的文件夹,点击simulation----run (options )→选中multiple processor →setup →在host name 下填入自己电脑主机名,No. of processor 设置参与运算的多核处理器的核心数→OK →close →run ,等待直到模拟结束,等待时间视计算机配置水平和坯料变形程度而不同,模拟过程中可点击simulation graphics 查看已保存的最近一步模拟结果。
模拟时可通过点stop 暂停,点击continue 继续。
四、后处理模拟完成后,点击deform-3D post 进入后处理界面。
可查看连续或每步的成形状态;可更改模型显示状态;查看载荷,可查看模具或工件在某一方向随时间(time )或每步(step )的受力曲线;切片工具,可对模型进行剖切;镜像工具,如果是剖分后进行的模拟,可通过镜像工具选择对称面后添加(add )直到出现一个整体;控制显示工件与模具接触点从而查看模具型腔是否填充满;使选中对象透明;控制选中的对象是否显示;测量工具,在模型上通过两点粗略测量距离;在左侧模拟状态显示窗口点右键→show dimensions 可查看系统选择的测量距离;可查看各种成形数据;损伤;等效应变;等效应变速率;等效应力;最大主应力;全局速度;温度;更多…详细设置标题、坐标系、背景亮度等的显示效果。
以上简要介绍了Deform-3D的使用步骤,它的强大功能需要在掌握一定的理论基础后不断深入探索相关参数的设置并与实际生产相联系才能发挥出来,在此希望与大家互相学习、共同进步。