当前位置:文档之家› MATLAB课程设计可视化(GUI)的线性方程组的Jacobi迭代解法。

MATLAB课程设计可视化(GUI)的线性方程组的Jacobi迭代解法。

MATLAB课程设计可视化(GUI)的线性方程组的Jacobi迭代解法。
MATLAB课程设计可视化(GUI)的线性方程组的Jacobi迭代解法。

华东交通大学

课程设计(论文)任务书

软件学院学院09 软件工程+电气专业 3 班

一、课程设计(论文)题目可视化(GUI)的线性方程组的Jacobi迭代解法

二、课程设计(论文)工作自 2011年6月27日起至2011 年 7月1 日止。

三、课程设计(论文) 地点: 电气学院机房

四、课程设计(论文)内容要求:

1.本课程设计的目的

(1)熟练掌握MATLAB语言的基本知识和技能;

(2)熟悉MA TLAB下的GUI程序设计;

(3)熟悉多项式曲线拟合,MA TLAB的绘图功能;

(4)培养分析、解决问题的能力;提高学生的科技论文写作能力。

2.课程设计的任务及要求

1)基本要求:

(1)利用matlab中的GUI设计窗口设计一个界面程序。其中主界面包含控制背景颜色与图形坐标的菜单;

(2)含有一个按钮控件,它的作用能够对一个文件的数据进行多项式曲线拟合;(3)文件名通过一个编辑控件由用户给定,给定文件内包含要拟合曲线的数据;(4)拟合好的多项式曲线能够在另一个坐标控件中显示;

(5)拟合好的曲线与实际数据曲线用不同的颜色并加各种必要标注在坐标中显示。

2)创新要求:

GUI界面使程序更加友好、美观和合理

3)课程设计论文编写要求

(1)要按照课程设计模板的规格书写课程设计论文

(2)论文包括目录、正文、心得体会、参考文献等

(3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成

4)答辩与评分标准:

(1)完成原理分析:20分;

(2)完成设计过程:40分;

(3)完成调试:20分;

(4)回答问题:20分;

5)参考文献:

(1)刘卫国.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2008.(2)刘志刚.电力电子学.北京:清华大学出版社、北京交通大学出版社,2004.

(3)李传琦. 电力电子技术计算机仿真实验.电子工业出版社,2006.

6)课程设计进度安排

内容天数地点

构思及收集资料2图书馆

编程设计与调试1实验室

撰写论文2图书馆、实验室

学生签名:

2011 年月日

课程设计(论文)评审意见

(1)完成原理分析(20分):优()、良()、中()、一般()、差();

(2)设计分析(20分):优()、良()、中()、一般()、差();

(3)完成调试(20分):优()、良()、中()、一般()、差();

(4)翻译能力(20分):优()、良()、中()、一般()、差();

(5)回答问题(20分):优()、良()、中()、一般()、差();

(6)格式规范性及考勤是否降等级:是()、否()

(7) 总评分数优()、良()、中()、一般()、差();

评阅人:职称:讲师

2011年月日

Matlab应用课程设计

目录

课程设计任务书 (1)

一、Matlab 软件简介 (4)

1.1 MATLAB产生的历史背景 (4)

1.2 MATLAB的语言特点和开发环境 (4)

1.3 基本语法 (5)

二、URI简介 (8)

2.1特点 (8)

2.2组成部分 (8)

2.3实现方法 (10)

三、设计题目 (10)

四、设计内容 (10)

4.1Jacobi迭代法基本原理 (10)

4.2实验内容 (11)

4.3实验结果 (19)

五、课程设计心得 (21)

六、参考文献 (21)

一、Matlab 软件简介

MATLAB是美国MathWorks公司生产的一个为科学和工程计算专门设计的交互式大型软件,是一个可以完成各种精确计算和数据处理的、可视化的、强大的计算工具。它集图示和精确计算于一身,在应用数学、物理、化工、机电工程、医药、金融和其他需要进行复杂数值计算的领域得到了广泛应用。它不仅是一个在各类工程设计中便于使用的训‘算工具,而且也是一个在数学、数值分析和工程计算等课程教学中的优秀的教学工具,在世界各地的高等院校中十分流行,在各类工业应用中更有不俗的表现。MATLAB可以在几乎所有的PC机和大型计算机上运行,适用于Windows、UNIX等多种系统平台。

1.1 MATLAB产生的历史背景

MATLAB名称是由两个英文单词Ma~ix和Laboratory的前二个字母组成。20世纪70年代后期,美国新墨西哥大学计算机系主任Cleve.Moler教授为了便于教学,减轻学生编写Fortran程序的负担,为两个矩阵运算软件包Linpack和Eispack编写了接口程序,这也许就算MATLAB的第一个版本。1984年,在JackLittle(也称JohnLittle)的建议推动下,由Little、Moler、SteveBangert 三人合作,成立rMathWorks公司,同时把MATLAB正式推向市场。从那时开始,MATLAB的源代码采用C语言编写,除加强了原有的数值计算能力外,还增加了数据图形的可视化功能。1993年,MathWorks公司推出了MATLAB的4.0版本,系统平台由DOS改为Windows,推出了功能强大的、可视化的、交互环境的用于模拟非线性动态系统的工具Simulink,第一次成功开发出了符号计算工具包Symbolic Math Toolbox 1.0,为MATLAB进行实时数据分析、处理和硬件开发而推出了与外部直接进行数据交换的组件,为MATLAB能融科学计算、图形可视、文字处理于一体而制作了Notebook,实现了MATLAB与大型文字处理软件Word 的成功对接。至此,MathWorks使MATLAB成为国际控制界公认的标准计算软件。

1997年,MathWorks公司推出了MATLAB的5.0版本,紧接着产生了5.1、5.2版本,至1999年MATLAB发展到5.3版本。MATLAB拥有了更丰富的数据类型和结构,更好的面向对象的快速精美的图形界面,更多的数学和数据分析资源,MATLAB工具也达到了25个,几乎涵盖了整个科学技术运算领域。在大部分大学里,应用代数、数理统计、自动控制、数字信号处理、模拟与数字通信、时间序列分析、动态系统仿真等课程的教材都把MATLAB作为必不可少的内容。在国际学术界,MATLAB被确认为最准确可靠的科学计算标准软件,在许多国际一流的学术刊物上都可以看到MATLAB在各个领域里的应用。

MATLAB当前推出的最新版本是7.0版(R14),本书无特殊注明均指7.0版。

1.2 MATLAB的语言特点和开发环境

MATLAB作为一种科学计算的高级语言之所以受欢迎,就是因为它有丰富的

函数资源和工具箱资源,编程人员可以根据自己的需要选择函数,而无需再去编写大量繁琐的程序代码,从而减轻了编程人员的工作负担。被称为第四代编程语言的MATLAB最大的特点就是简洁开放的程序代码和直观实用的开发环境。具体地说MATLAB主要有以下特点:

(1)库函数资源丰富

数百种库函数大大减轻了用户子程序的编写工作量,也避免了一些不必要的错误,因而用户也不必担心程序的可靠性问题。

(2)语言精炼,代码灵活

MATLAB的编程语言符合人们的思维习惯,对代码的书写也没有特别严格的控制,语言精炼,程序的亢余度非常小。

(3)运算符多而灵活

MATLAB的内核是用c语言编写的,它为用户提供了和C语言一样多的运算符,用户运用这些运算符可以使程序更加简炼。

(4)面向对象,控制功能优良

MATLAB在5.x各版本中优化了数据结构,使得程序的结构化控制更精良,面向对象的功能更加友善。特别是当前的7.0版,在可视化编程方面比以前的版本又有了更大的提高,使界面编程更方便、自由。

(5)程序设计自由

MATLAB7.0版支持长变量名达到63个字符,用户可以不对矩阵进行预定义就使用,变量和数组的应用也有了很大的扩展,这为用户编写程序提供了更大的自由度,使编程更加简单、方便。

(6)图形功能强大

在很多程序语言中,绘制图形是一件很麻烦的事情。但在MATLAB中,只需调用相应的绘图函数即可,既方便又迅速。随着硬件的发展和MATLAB7.0推出,MATLAB的图形功能更好,可视化编程能力得到更进一步的提高。

(7)程序的兼容性好

MATLAB可以在各种PC机、大型计算机和各种操作系统上运行。

(8)源代码开放

MATLAB的最重要的特点是源代码的开放性,除了内部函数,所有的MATLAB 核心文件和工具箱文件都完全开放,都可渎可改。用户对源文件修改就可以生成适合自己的源代码文件。

(9)形形色色的工具箱

凡有工具箱的软件大都分为两大部分,就是核心部分和形形色色的工具箱。MATLAB有数百个核心内部函数,数十个形形色色的工具箱。工具箱大致可以分为两大类,——类是学科性工具箱,另一类是功能性工具箱。学科性工具箱大都涵盖了本学科所有的已有的基本概念和基本运算,大都十分专业。如符号数学工具箱,简直就是一个高等数学、工程数学解题器。极限、导数、微分、积分、级数运算与展开、微分方程求解、Laplace变换等应有尽有。还有控制系统、信号处理、模糊逻辑、神经网络、小波分析、统计;优化、金融预测等工具箱,无一不是非常优秀的运算工具。这些工具箱都可以添加自己根据需要编写的函数,用户可以不断更新自己的工具箱,使之更适合于自己的研究和计算

1.3 基本语法

1.3.1变量

1、变量的命名:变量的名字必须以字母开头(不能超过19个字符),之后可以是任意字母、数字或下划线;变量名称区分字母的大小写;变量中不能包含有标点符号。

2、一些特殊的变量:

ans:用于结果的缺省变量名

i、j:虚数单位

pi:圆周率

realmin:最小正实数

realmax:最大正实数

1.3.2简单的数学运算

1、常用的数学运算符:+,—,*(乘),/(左除),\(右除),^(幂)在运算式中,MATLAB通常不需要考虑空格;多条命令可以放在一行中,它们之间需要用分号隔开;逗号告诉MATLAB显示结果,而分号则禁止结果显示。

2、常用数学函数:abs,sin,cos,tan,sqrt,exp,imag,real, rem,

1.3.3流程控制语句

1、if语句

基本格式:

if 逻辑表达式

执行语句

End

其执行过程为:当条件成立时,则执行语句组,执行完之后继续执行if语句的后继语句,若条件不成立,则直接执行if语句的后继语句。

2、while循环语句

基本格式:

while 表达式

循环体

End

其执行过程为:若条件成立,则执行循环体语句,执行后再判断条件是否成立,如果不成立则跳出循环。

4、switch语句

基本格式:

switch 表达式(%可以是标量或字符串)

case 值1

语句1

case 值2

语句2

….

otherwise

语句3

End

其执行过程为:当表达式的值等于表达式1的值时,执行语句组1,当表达

式的值等于表达式2的值时,执行语句组2,…,当表达式的值等于表达式m的值时,执行语句组m,当表达式的值不等于case所列的表达式的值时,执行语句组n。当任意一个分支的语句执行完后,直接执行switch语句的下一句。

5、for语句

基本格式:

for 循环变量=表达式1:表达式2:表达式3

循环体语句

end

其中表达式1的值为循环变量的初值,表达式2的值为步长,表达式3的值为循环变量的终值。步长为1时,表达式2可以省略。

执行过程是依次将矩阵的各列元素赋给循环变量,然后执行循环体语句,直至各列元素处理完毕。

1.3.4特殊矩阵:

常用的产生通用特殊矩阵的函数有:

zeros:产生全0矩阵(零矩阵)。

ones:产生全1矩阵(幺矩阵)。

eye:产生单位矩阵。

rand:产生0~1间均匀分布的随机矩阵。

randn:产生均值为0,方差为1的标准正态分布随机矩阵。

1.3.5函数文件

1、函数文件的基本结构

函数文件由function语句引导,其基本结构为:

function 输出形参表=函数名(输入形参表)

注释说明部分

函数体语句

其中以function开头的一行为引导行,表示该M文件是一个函数文件。函数名的命名规则与变量名相同。输入形参为函数的输入参数,输出形参为函数的输出参数。当输出形参多于一个时,则应该用方括号括起来。

2、函数调用

函数调用的一般格式是:

[输出实参表]=函数名(输入实参表)

要注意的是,函数调用时各实参出现的顺序、个数,应与函数定义时形参的顺序、个数一致,否则会出错。函数调用时,先将实参传递给相应的形参,从而实现参数传递,然后再执行函数的功能。

1.3.6二维数据曲线图

1绘制单根二维曲线

plot函数的基本调用格式为:

plot(x,y)

其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。

2设置曲线样式

MATLAB提供了一些绘图选项,用于确定所绘曲线的线型、颜色和数据点标

记符号,它们可以组合使用。例如,“b-.”表示蓝色点划线,“y:d”表示黄色虚线并用菱形符标记数据点。当选项省略时,MATLAB规定,线型一律用实线,颜色将根据曲线的先后顺序依次。

要设置曲线样式可以在plot函数中加绘图选项,其调用格式为:

plot(x1,y1,选项1,x2,y2,选项2,…,xn,yn,选项n)

3 图形标注与坐标控制

有关图形标注函数的调用格式为:

title( ‘图形名称’)

xlabel(‘x轴说明’)

ylabel(‘y轴说明’)

text(‘x,y,图形说明’)

二、GUI简介

如Windows是以”wintel标准“方式操作的,因为你可以用鼠标来点击按钮来进行操作,很直观。而DOS就不具备GUI,所以他只能输入命令。DOS 的这种界面叫CLI (Command line User Interface ) 命令行模式的人机接口。

GUI 是 Graphical User Interface 的简称,即图形用户界面,通常人机交互图形化用户界面设计经常读做“goo-ee”,准确来说 GUI 就是屏幕产品的视觉体验和互动操作部分。

GUI 是一种结合计算机科学、美学、心理学、行为学,及各商业领域需求分析的人机系统工程,强调人—机—环境三者作为一个系统进行总体设计。

这种面向客户的系统工程设计其目的是优化产品的性能,使操作更人性化,减轻使用者的认知负担,使其更适合用户的操作需求,直接提升产品的市场竞争力。

GUI 即人机交互图形化用户界面设计。纵观国际相关产业在图形化用户界面设计方面的发展现状,许多国际知名公司早已意识到 GUI 在产品方面产生的强大增值功能,以及带动的巨大市场价值,因此在公司内部设立了相关部门专门从事 GUI 的研究与设计,同业间也成立了若干机构,以互相交流 GUI 设计理论与经验为目的。随着中国 IT 产业,移动通讯产业,家电产业的迅猛发展,在产品的人机交互界面设计水平发展上日显滞后,这对于提高产业综合素质,提升与国际同等业者的竞争能力等等方面无疑起了制约的作用。

2.1特点

GUI的广泛应用是当今计算机发展的重大成就之一,他极大地方便了非专业用户的使用人们从此不再需要死记硬背大量的命令,取而代之的是可以通过窗口、菜单、按键等方式来方便地进行操作。而嵌入式GUI具有下面几个方面的基本要求:轻型、占用资源少、高性能、高可靠性、便于移植、可配置等特点。

2.2组成部分

●桌面

在启动时显示,也是界面中最底层,有时也指代包括窗口、文件浏览器在内的“桌面环境”。在桌面上由于可以重叠显示窗口,因此可以实现多任务化。一般的界面中,桌面上放有各种应用程序和数据的图标,用户可以依此开始工作。桌面与既存的文件夹构成里面相违背,所以要以特殊位置的文件夹的参照形式来定义内容。比如在微软公司的Windows XP系统中,各种用户的桌面内容实际保存在系统盘(默认为C盘):\Documents and Settings\[用户名]\桌面文件夹里。

墙纸,即桌面背景。可以设置为各种图片和各种附件,成为视觉美观的重要因素之一。

●视窗

应用程序为使用数据而在图形用户界面中设置的基本单元。应用程序和数据在窗口内实现一体化。在窗口中,用户可以在窗口中操作应用程序,进行数据的管理、生成和编辑。通常在窗口四周设有菜单、图标,数据放在中央。

在窗口中,根据各种数据/应用程序的内容设有标题栏,一般放在窗口的最上方,并在其中设有最大化、最小化(隐藏窗口,并非消除数据)、最前面、缩进(仅显示标题栏)等动作按钮,可以简单地对窗口进行操作。

●单一文件界面

在窗口中,一个数据在一个窗口内完成的方式。在这种情况下,数据和显示窗口的数量是一样的。若要在其他应用程序的窗口使用数据,将相应生成新的窗口。因此窗口数量多,管理复杂。

●多文件界面

在一个窗口之内进行多个数据管理的方式。这种情况下,窗口的管理简单化,但是操作变为双重管理。

●标签

多文件界面的数据管理方式中使用的一种界面,将数据的标题在窗口中并排,通过选择标签标题显示必要的数据,这样使得接入数据方式变得更为便捷。

上述中,多文件界面主要是微软视窗系统采用。而在其他环境中,通常多是单文件界面,所以无所谓单一/多文件界面的称呼问题。

●菜单

将系统可以执行的命令以阶层的方式显示出来的一个界面。一般置于画面的最上方或者最下方,应用程序能使用的所有命令几乎全部都能放入。重要程度一般是从左到右,越往右重要度越低。命定的层次根据应用程序的不同而不同,一般重视文件的操作、编辑功能,因此放在最左边,然后往右有各种设置等操作,最右边往往设有帮助。一般使用鼠标的第一按钮进行操作。

即时菜单(又称功能表)

与应用程序准备好的层次菜单不同,在菜单栏以外的地方,通过鼠标的第二按钮调出的菜单称为“即时菜单”。根据调出位置的不同,菜单内容即时变化,列出所指示的对象目前可以进行的操作。

●图标

显示在管理数据的应用程序中的数据,或者显示应用程序本身。

数据管理程序,即在文件夹中用户数据的管理、进行特定数据管理的程序的情况下,数据通过图标显示出来。通常情况下显示的是数据的内容或者与数据相关联的应用程序的图案。另外,点击数据的图标,一般可以之间完成启动相关应

用程序以后再显示数据本身这两个步骤的工作。

应用程序的图标只能用于启动应用程序。

按钮

菜单中,利用程度高的命令用图形表示出来,配置在应用程序中,成为按钮。

应用程序中的按钮,通常可以代替菜单。一些使用程度高的命令,不必通过菜单一层层翻动才能调出,极大提高了工作效率。但是,各种用户使用的命令频率是不一样的,因此这种配置一般都是可以由用户自定义编辑。

2.3实现方法

2.3.1针对特定的图形设备输出接口,自行开发相关的功能函数。

2.3.2购买针对特定嵌入式系统的图形中间软件包。

2.3.3采用源码开放的嵌入式GUI系统。

2.3.4使用独立软件开发商提供的嵌入式GUI产品。

三、设计题目

可视化(GUI)的线性方程组的Jacobi迭代解法。

四、设计内容

4.1.1Jacobi迭代法基本原理

≠0(i=1,2,…,n),对于线性方程组Ax=b,如果A为非奇异方阵,记a

ii

则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L与U为A的下三角阵和上三角阵:

于是Ax=b转化为:

x=D-1(L+U)x+D-1b

与之对应的迭代公式为:

x(k+1)=D-1(L+U)x(k)+D-1b

这就是Jacobi迭代公式。如果序列{ x(k+1)}收敛于x,则x必是方程Ax=b 的解。

Jacobi迭代法的MATLAB函数文件Jacobi.m如下:

function [y,n] = jacobi(A,b,x0,eps)

if nargin==3

eps=1.0e-6;

elseif nargin<3

error

return

end

D=diag(diag(A));

L=-tril(A,-1);

U=-tril(A,1);

B=D\(L+U);

f=D\b;

y=B*x0+f;

n=1;

while norm(y-x0)>=eps

x0=y;

y=B*x0+f;

n=n+1;

end

4.1.2用Jacobi迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。

10x

1-x

2

=9

-x

1+10x

2

-2x

3

=7

-2x

2+10x

3

=6

在命令中调用函数文件Jacobi.m,命令如下:

A=[10,-1,0;-1,10,-2;0,-2,10];

B=[9,7,6]’;

[x,n]=jacobi(A,b,[0,0,0]’,1.0e-6)

4.2实验内容

4.2.1启动Matlab并进入GUIDE环境:在Command Window下输入“guide”,进入GUIDE环境。出现如下图所示的界面。这里Matlab提供了一个新建空白界面及三个样本界面。进入后,Matlab就新建了一个fig文件(默认名是untitled.fig),同时得到如下的编辑窗口:

4.2.2.1首先,在用户界面编辑窗口添加2个命令按钮(显示是OK的用个PUSH BUTTON),再如下图所示添加3个静态文本框(Static Text)、4个编辑文本框(Edit Text)

4.2.2.2其次,按下表设置每个控件的属性值(具体操作是:右击要设置属性的控件——property inspector 命令——在弹出的属性窗口中找到相应的属性名称——将该属性的值修改成自己需要的值),以上所示是我修改过的。

4.2.3.1最后,添加程序(在添加程序前,先将文件保存,比如以untitled.m

为文件名保存),方法是:单击菜单命令view——M-file Editor,此时,得到

下面的程序:

function varargout = untitled(varargin)

%UNTITLED M-file for untitled.fig

% UNTITLED, by itself, creates a new UNTITLED or raises the existing

% singleton*.

%

% H = UNTITLED returns the handle to a new UNTITLED or the handle to

% the existing singleton*.

%

% UNTITLED('Property','Value',...) creates a new UNTITLED using the

% given property value pairs. Unrecognized properties are passed via

% varargin to untitled_OpeningFcn. This calling syntax produces a

% warning when there is an existing singleton*.

%

% UNTITLED('CALLBACK') and UNTITLED('CALLBACK',hObject,...) call the % local function named CALLBACK in UNTITLED.M with the given input

% arguments.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help untitled

% Last Modified by GUIDE v2.5 27-Jun-2011 02:59:38

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @untitled_OpeningFcn, ...

'gui_OutputFcn', @untitled_OutputFcn, ...

'gui_LayoutFcn', [], ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before untitled is made visible.

function untitled_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% varargin unrecognized PropertyName/PropertyValue pairs from the % command line (see V ARARGIN)

% Choose default command line output for untitled

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes untitled wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line. function varargout = untitled_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see V ARARGOUT); % hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

% str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text

% str2double(get(hObject,'String')) returns contents of edit2 as a double

% --- Executes during object creation, after setting all properties.

function edit2_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end

function edit3_Callback(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text

% str2double(get(hObject,'String')) returns contents of edit3 as a double % --- Executes during object creation, after setting all properties.

function edit3_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

function edit4_Callback(hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text

% str2double(get(hObject,'String')) returns contents of edit4 as a double

% --- Executes during object creation, after setting all properties.

function edit4_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

4.2.3.2下面真正添加自己的程序,最后成的程序如下:自己添加的程序用红色表示。

function varargout = untitled(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

'gui_OpeningFcn', @untitled_OpeningFcn, ...

'gui_OutputFcn', @untitled_OutputFcn, ...

'gui_LayoutFcn', [] , ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

function untitled_OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = untitled_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

function pushbutton1_Callback(hObject, eventdata, handles)

A=str2num(get(handles.edit1,'String'));

b=str2num(get(handles.edit2,'String'));

[x,n] = jacobi(A,b,[0,0,0]',1.0e-6)

set(handles.edit3,'String',x);

set(handles.edit4,'String',n);

function pushbutton2_Callback(hObject, eventdata, handles)

ss=questdlg('你真的要退出吗?','退出信息窗口!','不,我还想看看!','是的,我要退出!','是的,我要退出!');

switch ss

case '是的,我要退出!'

delete(handles.figure1);

end

function edit1_Callback(hObject, eventdata, handles)

function edit1_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit2_Callback(hObject, eventdata, handles)

function edit2_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit3_Callback(hObject, eventdata, handles)

function edit3_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end

function edit4_Callback(hObject, eventdata, handles)

function edit4_CreateFcn(hObject, eventdata, handles)

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end

function [y,n] = jacobi(A,b,x0,eps)

if nargin==3

eps=1.0e-6;

elseif nargin<3

error

return

end

D=diag(diag(A));

L=-tril(A,-1);

U=-triu(A,1);

B=D\(L+U);

f=D\b;

y=B*x0+f;

n=1;

while norm(y-x0)>=eps

x0=y;

y=B*x0+f;

n=n+1;

end

4.3实验结果:

另外举一个例子:

添加一个退出功能:

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

研究线性方程组迭代收敛速度

研究解线性方程组迭代收敛速度 一. 实验目的 科学研究与生产实践中许多问题都可归结为线性方程组的求解,高效求解线性方程组成为了许多科学与工程计算的核心.迭代法就是用某种极限过程去逼近线性方程组精确解的方法,该方法具有对计算机的存贮单元需求少,程序计算简单,原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法。常用的迭代法有Jacobi 迭代法、Gauss —seidel 迭代法、逐次超松驰法(SOR 法)等。 二. 实验摘要 由迭代法平均收敛速度与渐进收敛速度的关系引入近似估计法,即通过对迭代平均收敛速度取对数,然后利用Mathematica 软件对其进行拟合,给出拟合函数,最终得到了Jacobi 迭代法、Gauss —seidel 法的平均收敛速度收敛到渐进收敛速度的近似收敛阶,以及逐次超松驰法(SOR 法)的渐进收敛速度,且该法适用于其他迭代法收敛速度的估计。 三. 迭代法原理 1.Jacobi 迭代法(J 法) 设方程组b Ax =,其中, n n n n ij R a A ??∈=)(,。n R b x ∈, A 为可逆矩阵,可分裂为,U D L A ++=其中, ??????? ???? ???? ?=-00 00 1 ,21323121 n n n n a a a a a a L ΛO O M M ??????? ????? ??? ?=-00 0,1223 11312n n n n a a a a a a U M O O ΛΛ

??????? ? ???? ??? ?=nn a a a D O O 22 11 从而由b Ax =得到, b D x A D I b D x A D D b D x U L D x 111111)()()(------+-=+-=++-= 令 A D I B J 1--=, b D f J 1-=, 由此可构造出迭代公式:J k J k f x B x +=+)()1( 令初始向量)0,...,0,0()0(=x ,即可得到迭代序列,从而逼近方程组的解 这种方法称为Jacobi 迭代法,其中J B 称为Jacobi 迭代矩阵。 2. Gauss-Seidel 迭代法(GS 法) 与Jacobi 迭代法类似,将方程组b Ax =中的系数矩阵 A 分裂为 ,U D L A ++=,其中U L D ,,与前面相同。 与Jacobi 迭代法所不同的是,Gauss-Seidel 迭代法将Jacobi 迭代公式中的 b Ux Lx Dx k k k +--=+)()()1( 改为 b Ux Lx Dx k k k +--=++)()1()1( 从而b Ax =可写成矩阵形式 b Ux x D L k k +-=++)()1()(, 若设1 )(-+D L 存在,则 b D L Ux D L x k k 1)(1)1()()(--++++-=, 其中, U D L B G 1)(-+-=,b D L f 1)(-+=, 于是Gauss —Seidel 迭代公式的矩阵形式为f x B x k G k +=+)() 1(。

线性方程组迭代解法

实验六:线性方程组迭代解法 1)实验目的 ? 熟悉Matlab 编程; ? 学习线性方程组迭代解法的程序设计算法 2)实验题目 1.研究解线性方程组Ax=b 迭代法收敛速度。A 为20阶五对角距阵 ??????????????? ?????????????????------------------=321 412132141412132141412132141 412132 141213 O O O O O A 要求: (1)选取不同的初始向量x 0 及右端向量b ,给定迭代误差要求,用雅可比迭代和高斯-赛 德尔迭代法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论。 (2)用SOR 迭代法求解上述方程组,松弛系数ω取1< ω <2的不同值,在 时停止迭代.记录迭代次数,分析计算结果并得出你的结论。 2.给出线性方程组b x H n =,其中系数矩阵n H 为希尔伯特矩阵: ()n n ij n h H ??∈=,.,,2,1,,1n j i j i i h ij Λ=-+= 假设().,1,,1,1*x H b x n n T =?∈=Λ若取,10,8,6=n 分别用雅可比迭代法及SOR 迭代 (5.1,25.1,1=ω)求解,比较计算结果。 3)实验原理与理论基础 1.雅克比(Jacobi )迭代法算法设计: ①输入矩阵a 与右端向量b 及初值x(1,i); ②按公式计算得 ),,2,1(1)(1)1(n i x a b a x k j n i j j ij i ii k i Λ=????? ??-=∑≠=+ 2.高斯――赛得尔迭代法算法设计: 1. 输入矩阵a 与右端向量b 及初值x(1,i).

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

高斯-赛德尔迭代法matlab程序

disp('划分为M*M个正方形') M=5 %每行的方格数,改变M可以方便地改变剖分的点数 u=zeros(M+1);%得到一个(M+1)*(M+1)的矩阵 disp('对每个剖分点赋初值,因为迭代次数很高,所以如何赋初值并不重要,故采用对列线性赋值。') disp('对边界内的点赋初值并使用边界条件对边界赋值:') for j=1:M-1 for i=1:M-1 u(i+1,j+1)=100*sin(pi/M*j)/M*(M-i);%对矩阵(即每个刨分点)赋初值 end end for i=1:M+1 u(1,i)=100*sin(pi*(i-1)/M);%使用边界条件对边界赋值 u(1,M+1)=0; end u tic %获取运行时间的起点 disp('迭代次数为N') N=6 %迭代次数,改变N可以方便地改变迭代次数 disp('n为当前迭代次数,u为当前值,结果如下:') for n=1:N for p=2:M i=M+2-p; for j=2:M u(i,j)=0.25*(u(i,j-1)+u(i+1,j)+u(i-1,j)+u(i,j+1));%赛德尔迭代法 end end n %输出n u %输出u end disp('所用的时间:') t=toc %获取算法运行需要的时间 [x,y]=meshgrid(0:1/M:1,0:1/M:1); z=u(1,:); for a=2:M+1 z=[z;u(a,:)];%获取最终迭代的结果,幅值给z,z的值代表该点的点位值 end mesh(x,y,z)%绘制三维视图以便清楚地显示结果 mesh(x,y,z,'FaceColor','white','EdgeColor','black') %绘制三维视图以便清楚地显示结果

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序

一、实验目的及题目 1.1 实验目的: (1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。 (2)学会用Matlab 编写各种方法求解线性方程组的程序。 1.2 实验题目: 1. 用列主元消去法解方程组: 1241234 123412343421233234x x x x x x x x x x x x x x x ++=??+-+=??--+=-??-++-=? 2. 用LU 分解法解方程组,Ax b =其中 4824012242412120620266216A --?? ?- ?= ? ?-??,4422b ?? ? ?= ?- ?-?? 3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组: 123234 1231234102118311210631125x x x x x x x x x x x x x -+=-??-+=-??-+=??-+-+ =? 二、实验原理、程序框图、程序代码等 2.1实验原理 2.1.1高斯列主元消去法的原理 Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式: 1111221122222n n n n nn n n b x b x b x g b x b x g b x g +++=??++=????= ? 这个过程就是消元,然后再回代就好了。具体过程如下: 对于1,2, ,1k n =-,若() 0,k kk a ≠依次计算

()() (1)()()(1)()()/,,1, ,k k ik ik kk k k k ij ij ik kj k k k i i ik k m a a a a m a b b m b i j k n ++==-=-=+ 然后将其回代得到: ()() ()()()1/()/,1,2,,1 n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+?=??=-=--? ? ∑ 以上是高斯消去。 但是高斯消去法在消元的过程中有可能会出现() 0k kk a =的情况,这时消元就无法进行了,即使主元数() 0,k kk a ≠但是很小时,其做除数,也会导致其他元素数量级的严重增长和舍入误差的扩散。因此,为了减少误差,每次消元选取系数矩阵的某列中绝对值最大的元素作为主元素。然后换行使之变到主元位置上,再进行销元计算。即高斯列主元消去法。 2.1.2直接三角分解法(LU 分解)的原理 先将矩阵A 直接分解为A LU =则求解方程组的问题就等价于求解两个三角形方程组。 直接利用矩阵乘法,得到矩阵的三角分解计算公式为: 1111111 11 1,1,2,,/,2,,,,,1,,,2,3, ()/,1,2, ,i i i i k kj kj km mj m k ik ik im mk kk m u a i n l a u i n u a l u j k k n k n l a l u u i k k n k n -=-===?? ==?? =-=+??=??=-=++≠?? ∑∑且 由上面的式子得到矩阵A 的LU 分解后,求解Ux=y 的计算公式为 11 111,2,3,/()/,1,2, ,1 i i i ij j j n n nn n i i ij j ii j i y b y b l y i n x y u x y u x u i n n -==+=??? =-=?? =??? =-=--?? ∑∑ 以上为LU 分解法。

线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法 2015年12月27日17:12 迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR) 1.雅可比迭代法(Jacobi) A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。 A=D+L+U 要解的方程变为Dx+Lx+Ux=b x=D^(-1)(b-(L+U)x) 所以Jocabi方法如下: Matlab程序 function [x,iter] =jacobi(A,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=zeros(size(b)); for iter=1:500 x=D\(b+L*x+U*x); error=norm(b-A*x)/norm(b); if(error

解线性方程组的几种迭代算法

解线性方程组的几种迭代算法 内容摘要: 本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题. 关键词: 线性方程组迭代法算法收敛速度 Several kinds of solving linear equations iterative algorithm Abstract: In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the algorithm of SSOR, and the convergence of the two algorithms is demonstrated. Compared with other methods, the new algorithm acquired by changing the fission form of coefficient matrix A is possessed of a better convergence. And the improved SSOR algorithm has a faster convergence speed. Finally, some numerical examples verify that the two algorithms can solve problems more effectively in some cases. Key words: Linear equations Iteration method algorithm Convergence speed

matlab 迭代法[精品]

matlab 迭代法[精品] 1. 矩阵 122,211,,,,,,,,,A,111A,222, 11,,,,,,,,221,,112,,,, 证明:求解以为系数矩阵线性方程组的Jacobi迭代式收敛的,而A1 Gauss-Seidel方法是发散的;求解以为系数矩阵线性方程组的A2实验名称Gauss-Seidel是收敛的,而Jacobi方法是发散的. 2. 矩阵 1aa,,,,Aaa,1 ,,,,aa1,, (a) 参数取什么值时,矩阵是正定的. a (b) 取什么值时,求以为系数矩阵线性方程组的Jacobi迭代式收aa 敛的. 1、根据迭代收敛性的充分必要条件来判断Jacobi迭代式与Gauss-Seide 迭代式的收敛性,迭代收敛性仅与方程组系数矩阵有关,与右端无关;而且不依赖于初值的选取。实验目的 2、根据矩阵的判断定理求得矩阵元素a的取值,同时根据矩阵线性方程组的Jacobi迭代式收敛的充分条件(严格对角占优)来求a得取值。 1、(1)检验线性方程组的Jacobi迭代式的收敛性: function jacobi(A) D=zeros(3); for i=1:3 D(i,i)=A(i,i); 实验内容end (算法、程B=D^(-1)*(D-A); 序、步骤和k=max(abs(eig(B))) 方法) if k<1

'该线性方程组的Jacobi迭代式是收敛的' else k>=1 '该线性方程组的Jacobi迭代式是发散的' end (2)检验线性方程组的Gauss-Seide迭代式的收敛性: function Gauss(A) D=zeros(3); L=zeros(3); U=zeros(3); for i=1:3 D(i,i)=A(i,i); end L(2:3,1)=A(2:3,1); L(3,2)=A(3,2); U(1,2:3)=A(1,2:3); U(2,3)=A(2,3); B=-(D+L)^(-1)*U; k=max(abs(eig(B))) if k<1 '该线性方程组的Gauss-Seidel迭代式是收敛的' else k>=1 '该线性方程组的Gauss-Seidel迭代式是发散的' end 2、(1)参数取什么值时,矩阵是正定的.(矩阵的特征值全为正) a >> syms a >> A=[1 a a;a 1 a;a a 1]; >> eig(A) ans = 2*a+1 1-a

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪 费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量) 1(+k i x 时, 用最新分量) 1(1 +k x ,???+) 1(2 k x ) 1(1 -+k i x 代替旧分量)(1k x ,???) (2 k x ) (1-k i x ,可以起到节省存储 空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 )()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=, 则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+)()1( 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(1111 1 )() 1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)() 1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

matlab迭代法代码

matlab 迭代法代码 1、%用不动点迭代法求方程x-e A x+4=0的正根与负根,误差限是 10A-6% disp(' 不动点迭代法 '); n0=100; p0=-5; for i=1:n0 p=exp(p0)-4; if abs(p-p0)<=10(6) if p<0 disp('|p-p0|=') disp(abs(p-p0)) disp(' 不动点迭代法求得方程的负根为 :') disp(p); break; else disp(' 不动点迭代法无法求出方程的负根 .') end else p0=p; end end

if i==n0 disp(n0) disp(' 次不动点迭代后无法求出方程的负根') end p1=1.7; for i=1:n0 pp=exp(p1)-4; if abs(pp-p1)<=10(6) if pp>0 disp('|p-p1|=') disp(abs(pp-p1)) disp(' 用不动点迭代法求得方程的正根为 ') disp(pp); else disp(' 用不动点迭代法无法求出方程的正根 '); end break; else p1=pp; end end if i==n0

disp(n0) disp(' 次不动点迭代后无法求出方程的正根 ') end 2、%用牛顿法求方程x-e A x+4=0的正根与负根,误差限是disp(' 牛顿法') n0=80; p0=1; for i=1:n0 p=p0-(p0-exp(p0)+4)/(1-exp(p0)); if abs(p-p0)<=10(6) disp('|p-p0|=') disp(abs(p-p0)) disp(' 用牛顿法求得方程的正根为 ') disp(p); break; else p0=p; end end if i==n0 disp(n0) disp(' 次牛顿迭代后无法求出方程的解 p1=-3; for i=1:n0 p=p1-(p1-exp(p1)+4)/(1-exp(p1)); 10A-6 ') end

线性方程组的直接法和迭代法

线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 线性方程组迭代法 迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法.该方法具有对计算机的存贮单元需求少,程序设计简单、原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法.迭代法不是用有限步运算求精确解,而是通过迭代产生近似解逼近精确解.如Jacobi 迭代、Gauss — Seidel 迭代、SOR 迭代法等。 1. 线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 1.1 Cramer 法则 Cramer 法则用于判断具有n 个未知数的n 个线性方程的方程组解的情况。当方程组的系数行列式不等于零时,方程组有解且解唯一。如果方程组无解或者有两个不同的解时,则系数行列式必为零。如果齐次线性方程组的系数行列式不等于零,则没有非零解。如果齐次线性方程组有非零解,则系数行列式必为零。 定理1如果方程组Ax b =中0D A =≠,则Ax b =有解,且解事唯一的,解为1212,,...,n n D D D x x x D D D ===i D 是D 中第i 列换成向量b 所得的行列式。 Cramer 法则解n 元方程组有两个前提条件: 1、未知数的个数等于方程的个数。 2、系数行列式不等于零 例1 a 取何值时,线性方程组

1231231 2311x x x a ax x x x x ax ++=??++=??++=?有唯一解。 解:2111111 11011(1)11001 A a a a a a a ==--=--- 所以当1a ≠时,方程组有唯一解。 定理2当齐次线性方程组0Ax =,0A ≠时该方程组有唯一的零解。 定理3齐次线性方程组0Ax =有非零解0A <=>=。 1.2 Gauss 消元法 Gauss 消元法是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。 1.2.1 用Gauss 消元法为线性方程组求解 eg :Gauss 消元法可用来找出下列方程组的解或其解的限制: ()()()123283211223x y z L x y z L x y z L +-=??--+=-??-++=-? 这个算法的原理是:首先,要将1L 以下的等式中的x 消除,然后再将2L 以下的等式中的y 消除。这样可使整个方程组变成一个三角形似的格式。之后再将已得出的答案一个个地代入已被简化的等式中的未知数中,就可求出其余的答案了。 在刚才的例子中,我们将132 L 和2L 相加,就可以将2L 中的x 消除了。

迭代法解线性方程组(C语言描述)

用Gauss-Seidel迭代法解线性方程组的C语言源代码:#include #include #include struct Line{ int L; struct Row *head; struct Line *next; }; struct Row{ int R; float x; struct Row *link; }; //建立每次迭代结果的数据存储单元 struct Term{ float x; float m; }; struct Line *Create(int Line,int Row){ struct Line *Lhead=NULL,*p1=NULL,*p2=NULL; struct Row*Rhead=NULL,*ptr1,*ptr2=NULL; int i=1,j=1; float X; while(i<=Line){ while(j<=Row+1){ scanf("%f",&X); if(X!=0||j==Row+1){ ptr1=(struct Row*)malloc(sizeof(Row)); if(ptr1==NULL){ printf("内存分配错误!\n"); exit(1); } ptr1->x=X; ptr1->R=j; if(ptr2==NULL){ ptr2=ptr1; Rhead=ptr1; } else{

ptr2->link=ptr1; ptr2=ptr1; } } j++; } if(ptr2!=NULL){ ptr2->link=NULL; ptr2=NULL; } if(Rhead!=NULL){ p1=(struct Line*)malloc(sizeof(Line)); if(p1==NULL){ printf("内存分配错误!\n"); exit(1); } p1->L=i; p1->head=Rhead; if(p2==NULL){ Lhead=p1; p2=p1; } else{ p2->next=p1; p2=p1; } } i++; Rhead=NULL; j=1; } if(p2!=NULL) p2->next=NULL; return Lhead; } struct Line *Change(struct Line*Lhead,int n){ struct Line*p1,*p2,*p3,*p; struct Row*ptr; int i=1,k,j; float max,t; if(Lhead==NULL){ printf("链表为空!\n");

二分法、简单迭代法的matlab代码实现教学文案

二分法、简单迭代法的m a t l a b代码实现

实验一非线性方程的数值解法(一)信息与计算科学金融崔振威 201002034031 一、实验目的: 熟悉二分法和简单迭代法的算法实现。 二、实验内容: 教材P40 2.1.5 三、实验要求 1 根据实验内容编写二分法和简单迭代法的算法实现 2 简单比较分析两种算法的误差 3 试构造不同的迭代格式,分析比较其收敛性 (一)、二分法程序: function ef=bisect(fx,xa,xb,n,delta) % fx是由方程转化的关于x的函数,有fx=0。 % xa 解区间上限 % xb 解区间下限 % n 最多循环步数,防止死循环。 %delta 为允许误差 x=xa;fa=eval(fx); x=xb;fb=eval(fx); disp(' [ n xa xb xc fc ]'); for i=1:n xc=(xa+xb)/2;x=xc;fc=eval(fx); X=[i,xa,xb,xc,fc]; disp(X), if fc*fa<0 xb=xc; else xa=xc;

end if (xb-xa)eps & k> fplot('[x^5-3*x^3-2*x^2+2]',[-3,3]);grid 得下图:

第6章 线性方程组迭代解法 参考答案

第6章 线性方程组迭代解法 参考答案 一、选择题(15分,每小题3分) 1、(3) 2、(4) 3、(4) 4、(1) 5、(2) 二、填空题(15分,每小题3分) 1、1a <;2 、2a < ;3、1a <;4 ;5、Ax b ? 三、(9分) 解: (1) 19.01<=B ,∴迭代法f Bx x k k +=?1的收敛;--------------------(3分) (2) B 的特征值8.0,5.1=λ,15.1)(>=B ρ,∴迭代法f Bx x k k +=?1发散;(6分) (3) B 的特征值19.0)(<=B ρ,∴迭代法f Bx x k k +=?1收敛。 ---------(9分) 四、(14分) 解:(1)Jacobi 迭代法的分量形式 1123121313121222012322()()()()()()()()() ;,,,k k k k k k k k k x x x x x x k x x x +++?=?+?=??=??=???L ----------------------------------(2分) Gauss-Seidel 迭代法的分量形式 1123112131113 121222012322()()()()()()()()() ;,,,k k k k k k k k k x x x x x x k x x x ++++++?=?+?=??=??=???L ---------------------------------(4分) (2)Jacobi 迭代法的迭代矩阵为 1022101220()B D L U ??????=+=?????????? , --------------------------------(6分) 1230λλλ===,01()B ρ=<,Jacobi 迭代法收敛 ------------------------(8分) Gauss-Seidel 迭代法的迭代矩阵为 1022023002()G D L U ??????=?=??????? , --------------------------------(10分) 12302,λλλ===,21()B ρ=>,Gauss-Seidel 迭代法发散------------------(12分) (3)SOR 迭代法的分量形式

迭代解法的matlab实现

解线性方程组b AX =的迭代法是从初始解出发,根据设计好的步骤用逐次求出的近似解逼近精确解.在第三章中介绍的解线性方程组的直接方法一般适合于A 为低阶稠密矩阵(指n 不大且元多为非零)的情况,而在工程技术和科学计算中常会遇到大型稀疏矩阵(指n 很大且零元较多)的方程组,迭代法在计算和存贮两方面都适合后一种情况.由于迭代法是通过逐次迭代来逼近方程组的解,所以收敛性和收敛速度是构造迭代法时应该注意的问题.另外,因为不同的系数矩阵具有不同的性态,所以大多数迭代方法都具有一定的适用范围.有时,某种方法对于一类方程组迭代收敛,而对另一类方程组迭代时就发散.因此,我们应该学会针对具有不同性质的线性方程组构造不同的迭代. 4.1 迭代法和敛散性及其MATLAB 程序 4.1.2 迭代法敛散性的判别及其MATLAB 程序 根据定理4.1和谱半径定义,现提供一个名为pddpb.m 的M 文件,用于判别迭代公H=eig(B);mH=norm(H,inf); if mH>=1 disp('请注意:因为谱半径不小于1,所以迭代序列发散,谱半径mH 和B 的所 有的特征值H 如下:') else disp('请注意:因为谱半径小于1,所以迭代序列收敛,谱半径mH 和B 的所有 的特征值H 如下:') end mH 4.1.3 与迭代法有关的MATLAB 命令 (一) 提取(产生)对角矩阵和特征值 可以用表4–1的MATLAB 命令提取对角矩阵和特征值. (二) 提取(产生)上(下)三角形矩阵

可以用表4–2的MATLAB命令提取矩阵的上三角形矩阵和下三角形矩阵. (三)稀疏矩阵的处理 对稀疏矩阵在存贮和运算上的特殊处理,是MA TLAB进行大规模科学计算时的特点和优势之一.可以用表4–3的MATLAB命令,输入稀疏矩阵的非零元(零元不必输入),即可进行运算. 4.2 雅可比(Jacobi)迭代及其MATLAB程序 4.2.2 雅可比迭代的收敛性及其MATLAB程序 [n m]=size(A); for j=1:m a(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); end for i=1:n if a(i)>=0 disp('请注意:系数矩阵A不是严格对角占优的,此雅可比迭代不一定收敛') return end end if a(i)<0 disp('请注意:系数矩阵A是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛') end 例4.2.2 用判别雅可比迭代收敛性的MATLAB主程序,判别由下列方程组的雅可比迭

相关主题
文本预览
相关文档 最新文档