高二数学余弦定理
- 格式:pdf
- 大小:612.46 KB
- 文档页数:8
高二数学必修5解三角形之余弦定理必考点详解总结第一章解三角形1.1.2余弦定理1.对余弦定理的四点说明(1)勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)与正弦定理一样,余弦定理揭示了三角形的边角之间的关系,是解三角形的重要工具之一.(3)余弦定理的三个等式中,每一个都包含四个不同的量,它们是三角形的三边和一个角,知道其中的三个量,代入等式,就可以求出第四个量.(4)运用余弦定理时,若已知三边(求角)或已知两边及夹角(求第三边),则由三角形全等的判定定理知,三角形是确定的,所以解也是唯一的.2.对余弦定理推论的理解余弦定理的推论是余弦定理的第二种形式,适用于已知三角形三边来确定三角形的角的问题.用余弦定理的推论还可以根据角的余弦值的符号来判断三角形中的角是锐角还是钝角.例题讲练探究点1 已知两边及一角解三角形方法归纳:(1)已知两边及其中一边的对角解三角形的方法①先由正弦定理求出另一条边所对的角,用三角形的内角和定理求出第三个角,再用正弦定理求出第三边,要注意判断解的情况;②用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长.(2)已知两边及其夹角解三角形的方法方法一:首先用余弦定理求出第三边,再用余弦定理和三角形内角和定理求出其他两角.方法二:首先用余弦定理求出第三边,再用正弦定理和三角形内角和定理求出其他两角.[注意] 解三角形时,若已知两边和一边的对角时,既可以用正弦定理,也可以用余弦定理.一般地,若只求角,则用正弦定理方便,若只求边,用余弦定理方便.练习:1.在△ABC中,边a,b的长是方程x2-5x+2=0的两个根,C=60°,则c=________.探究点2 已知三边(三边关系)解三角形方法归纳已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论(或由求得的第一个角利用正弦定理)求出第二个角;最后利用三角形的内角和定理求出第三个角.[注意] 若已知三角形三边的比例关系,常根据比例的性质引入k,从而转化为已知三边求解.练习:1.(2018·辽源高二检测)在△ABC中,角A,B,C的对边分别为a,b,c,若(a+c)(a-c)=b(b+c),则A=( ) A.90°B.60°C.120°D.150°探究点3 判断三角形的形状方法归纳判断三角形形状的思路(1)转化为三角形的边来判断①△ABC为直角三角形⇔a2=b2+c2或b2=a2+c2或c2=a2+b2;②△ABC为锐角三角形⇔a2+b2>c2且b2+c2>a2且c2+a2>b2;③△ABC为钝角三角形⇔a2+b2<c2或b2+c2<a2或c2+a2<b2;④按等腰或等边三角形的定义判断.(2)转化为角的三角函数(值)来判断①若cos A=0,则A=90°,△ABC为直角三角形;②若cos A<0,则△ABC为钝角三角形;③若cos A>0且cos B>0且cos C>0,则△ABC为锐角三角形;④若sin2A+sin2B=sin2C,则C=90°,△ABC为直角三角形;⑤若sin A=sin B或sin(A-B)=0,则A=B,△ABC为等腰三角形;⑥若sin 2A=sin 2B,则A=B或A+B=90°,△ABC为等腰三角形或直角三角形.在具体判断的过程中,注意灵活地应用正、余弦定理进行边角的转化,究竟是角化边还是边化角应依具体情况决定.章节总结。
人教版高二数学上册必修5 第一章余弦定理应用大家想要获得更好的成绩必定要仔细掌握知识点。
查词典数学网为大家整理了第一章余弦定理应用,让我们一同学习,一同进步吧 !余弦定理是解三角形中的一个重要定理,可应用于以下两种需求:当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。
当已知三角形的三边,能够由余弦定理获得三角形的三个内角。
[3]求边余弦定理公式可变换为以下形式:所以,假如知道了三角形的两边及其夹角,可由余弦定理得出已知角的对边。
[3]三角函数如上图所示,△ABC ,在 c 上做高,将 c 边写:将等式同乘以 c 获得:运用相同的方式能够获得:将两式相加:向量中,求角余弦定理公式可变换为以下形式:由于余弦函数在上的单一性,能够获得:所以,假如已知三角形的三条边,能够由余弦定理获得三角形的三个内角。
察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。
随机察看也是不行少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。
我供给的察看对象,注意形象传神,色彩鲜亮,大小适中,指引少儿多角度多层面地进行察看,保证每个少儿看获得,看得清。
看得清才能说得正确。
在察看过程中指导。
我注意帮助少儿学习正确的察看方法,即按次序察看和抓住事物的不一样特点重点察看,察看与说话相联合,在察看中累积词汇,理解词汇,如一次我抓住机遇,指引少儿察看雷雨,雷雨前天空急巨变化,乌云密布,我问少儿乌云是什么样子的,有的孩子说:乌云像海洋的波涛。
有的孩子说“乌云跑得飞速。
”我加以必定说“这是乌云滔滔。
”当少儿看到闪电时,我告诉他“这叫电光闪闪。
”接着少儿听到雷声惊叫起来,我抓住机遇说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得如何 ?”第2页/共4页儿掌握“滂沱大雨”这个词。
雨后,我又带少儿察看明朗的天空,朗读自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
高中数学余弦定理余弦定理是高中数学的一个核心内容,也是三角函数的一个重要应用。
余弦定理描述了三角形中一边的平方与另外两边及其夹角的余弦值之间的关系。
对于任何一个三角形,余弦定理都可以给出以下公式:c² = a² + b² - 2abcos(C)其中,a、b和c分别代表三角形的三边长度,C是a和b之间的夹角。
余弦定理的应用范围非常广泛,无论是解三角形、解决实际问题,还是在数学竞赛中,它都是一个重要的工具。
一、解三角形余弦定理可以用来确定三角形的形状和大小。
例如,如果我们知道三角形的三边长a、b和c,以及角A、B和C的度数,我们可以用余弦定理来计算角C的度数。
公式如下:cos(C) = (a² + b² - c²) / (2ab)二、解决实际问题余弦定理也被广泛应用于解决实际问题。
例如,在物理学中,余弦定理可以用来解决与力的合成和分解相关的问题;在地理学中,余弦定理可以用来计算地球上两点之间的距离;在经济学中,余弦定理可以用来计算投资组合的风险和回报。
三、数学竞赛在数学竞赛中,余弦定理也是一个重要的考点。
例如,一些几何问题可能需要使用余弦定理来解决;在一些代数问题中,余弦定理也可能是一个关键的工具。
余弦定理是高中数学的一个重要内容,它不仅在数学中有广泛的应用,也在其他领域中有重要的应用价值。
通过学习和理解余弦定理,我们可以更好地理解和解决各种问题。
一、引言在中国的教育体系中,数学一直是核心学科,特别是在高中阶段,数学的学习对学生的学习生涯和未来的学术成就具有重大影响。
因此,如何设计有效且吸引人的数学课程,帮助学生理解和掌握数学知识,是所有教育工作者都应的问题。
在本文中,我们将探讨如何利用APOS 理论来设计高中数学定理的教学,并以余弦定理为例进行具体阐述。
二、APOS理论概述APOS理论是由美国学者杜宾斯基提出的一种学习理论,它强调学习过程中学生的主动性和实践性。
高考余弦定理知识点在高考数学考试中,余弦定理是一个重要的知识点。
它是三角函数中的重要内容,被广泛应用于解决与三角形相关的问题。
掌握了余弦定理,我们就可以更好地理解和分析三角形的性质以及与之相关的几何问题。
一、什么是余弦定理余弦定理是描述任意一个三角形的边长与角度之间的关系的定理。
它可以帮助我们计算三角形的边长,以及求解其他与三角形边长和角度关系有关的问题。
余弦定理的数学表达式是:c² = a² + b² - 2ab·cos(C),其中a、b、c 表示三角形的边长,C表示夹在边a和边b之间的角。
二、余弦定理的推导为了更好地理解余弦定理,我们可以对其进行简单的推导。
首先,我们可以将任意一个三角形分解为两个直角三角形。
假设我们有一个三角形ABC,如下图所示:A/|/ |c/ |b/ |B____Ca我们可以在三角形ABC中引入一个高AD,使其垂直于边BC。
这样,我们可以将三角形ABC分为两个直角三角形ABD和ACD。
由于三角形ABD是直角三角形,我们可以利用三角函数中的正弦定理求出边BD的长度:BD = a · sin(C)同理,我们可以求出三角形ACD中高AD的长度:AD = b · sin(C)由于高AD是边c的延长线,所以AD的长度等于两个直角三角形的和,即BD + CD。
而BC的长度就是两个直角三角形的斜边AB和AC之和,即a + b。
因此,我们可以得到:c = a + b · sin(C)进一步移项,我们可以得到:c - a = b · sin(C)根据三角函数中的定义,我们可以将sin(C)转换成cos(C)的形式:sin(C) = √(1 - cos²(C))将其代入前式,再进行平方运算,即可得到余弦定理的数学表达式:c² - 2ac·cos(C) + a² = b² - 2ab·cos(C) + a² - 2ab·cos(C)·√(1 - cos²(C))通过简单的推导,我们可以得到余弦定理的具体数学表达式。
余弦定理(一)一.知识点余弦定理:形式一:(已知两边和其夹角求第三边)a 2=b 2+c 2-2bc cos A ,b 2=c 2+a 2-2ca cos B ,c 2=a 2+b 2-2ab cos C .形式二:(已知三边求角)cos A =bc a c b 2222-+,cos B =ca b a c 2222-+,cos C =abc b a 2222-+ 形式二:,cos 2222A bc c b a -+=⇔bca cb A 2cos 222-+= ,cos 2222B ca a c b -+=⇔ca b a c B 2cos 222-+= C ab b a c cos 2222-+=,⇔ab c b a C 2cos 222-+= 注意:利用余弦定理,我们可以解决以下两类有关三角形的问题:(1)已知三边,求三个角,这类问题由于三边确定,故三角也确定,解惟一(2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角惟一,故解惟一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.二.例题例1:在ΔABC 中,(1) 已知b =3,c =1,A=600,求a ;(2) 已知a =4,b =5,c=6求A 。
例2:用余弦定理证明:在△ABC 中,当C ∠为锐角时,222c b a >+ ;当C ∠为钝角时,222c b a <+例3:在△ABC 中,已知sinA =2sinBcosC ,试判断△ABC 的形状变式1:△ABC 中,已知(a +b +c)(b +c -a)=3bc ,且sinA =2sinBcosC ,判断△ABC 的形状.变式2:△ABC 中,已知2a =b +c ,且sin 2A =sinBsinC ,判断△ABC 的形状.例4(余弦定理在几何中的应用)AD 是△ABC的中线,求证:AD =例3:△ABC 中,求证:cos cos cos cos B c b A C b c A-=-。
2.1.2 余弦定理1.余弦定理:设a ,b ,c 为三角形的三边,它们所对的角分别为A ,B ,C ,则: A bc c b a cos 2222-+=;B ac c a b cos 2222-+=;C ab b a c cos 2222-+=。
变式:bc a c b A 2cos 222-+=, ac b c a B 2cos 222-+=,abc b a C 2cos 222-+=。
余弦定理反映了a b c A B C ,,,,,元素间的动态结构,揭示了任意三角形的边、角关系,且已知三边求角时,应用余弦定理的此表达形式简单易行。
通过对余弦定理的证明进一步掌握和理解余弦定理,下面介绍三种证明余弦定理的方法:(1)平面几何方法证明:①三角形为锐角三角形时:构造直角三角形,寻找三角比。
如下图所示,作AD ⊥BC ,垂足为D 。
设CD =x ,得BD =a -x在Rt ⊿ADC 中,h 2=b 2-x 2;在Rt ⊿ADB 中,h 2=c 2-(a -x )2∴b 2-x 2=c 2-(a -x )2,即a 2+b 2-c 2=2ax =2abcos C则c 2=a 2+b 2-2abcos C ,同理:a 2=b 2+c 2-2bccos A ;b 2=a 2+c 2-2accos B①三角形为钝角三角形时:构造直角三角形,寻找三角比。
如下图所示,作AD ⊥BC ,垂足为D 。
设CD =x ,得BD =x -a在Rt ⊿ADC 中,h 2=b 2-x 2;在Rt ⊿ADB 中,h 2=c 2-(x -a )2∴b 2-x 2=c 2-(x -a )2,即a 2+b 2-c 2=2ax =2abcos C(2)三角函数与两点间距离方法证明:如上图所示将顶点C 置于原点,CA 落在x 轴的正半轴上,△ABC 的AC=b ,CB=a ,AB=c ∵∠ACB=∠C,CB 为∠ACB 的终边,B 为CB 上一点,设B 的坐标为(x,y),则sin C=BC y =a y ,cos C=BC x =ax 所以B 点坐标x=acos C,y=asin C.又A 、C 点坐标分别为A(b ,0)、C(0,0)则|AB |2=(acos C-b )2+(asin C-0)2A B C a b c D h A B C a b c D h=a 2cos 2C-2abcos C+b 2-a 2sin 2C=a 2+b 2-2abcos C,即C ab b a c cos 2222-+=同理可证A bc c b a cos 2222-+=;B ac c a b cos 2222-+=。
高中余弦定理公式大全高中余弦定理公式是三角学中的重要定理之一,用于求解三角形的边长或角度。
它是基于三角形的三条边之间的关系而得出的。
余弦定理公式可以表示为:c = a + b - 2ab cos(C)其中,a、b、c 分别表示三角形的三条边的长度,C 表示夹在 a 和 b 之间的角的大小。
在使用余弦定理时,需要注意以下几点:1. 余弦定理适用于任意三角形,不仅仅是直角三角形。
2. 当 C 是直角时,余弦定理可以简化为勾股定理:c = a + b。
3. 当 C 是锐角时,cos(C) 大于 0;当 C 是钝角时,cos(C) 小于 0;当 C 是180度时,cos(C) 等于 -1。
这个性质可以用来判断三角形是锐角三角形、钝角三角形还是直角三角形。
4. 余弦定理也可以用来求解三角形的角度,当已知三边长度 a、b、c 时,可以通过余弦定理反解出角度 C 的大小。
除了上述提到的余弦定理公式,高中三角学中还有一些类似的公式,如正弦定理和正切定理。
这些公式在解决不同类型的三角形问题时都有其特定的应用。
正弦定理公式可以表示为:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c 分别表示三角形的三条边的长度,A、B、C 分别表示与对应边相对的角的大小。
正切定理公式可以表示为:tan(A) = a/b, tan(B) = b/a其中,a、b 分别表示三角形的两条边的长度,A、B 分别表示与对应边相对的角的大小。
这些定理的掌握和运用可以帮助我们更好地理解和解决三角形相关的数学问题,例如求解三角形的边长、角度或者判断三角形的形状。
余弦定理的十种证明方法余弦定理是解决任意三角形的重要定理之一,可以用来求解三角形的边长、角度等问题。
下面将介绍十种证明余弦定理的方法。
1.平面向量法:设三角形的三边向量分别为a、b、c,则有a²=b²+c²-2bc*cosA,b²=a²+c²-2ac*cosB,c²=a²+b²-2ab*cosC。
将这些公式转化为三角形的边长形式即为余弦定理。
2.向量的模长法:设向量a、b、c的模长分别为A、B、C,夹角分别为α、β、γ,则有A²=B²+C²-2BC*cosα,B²=A²+C²-2AC*cosβ,C²=A²+B²-2AB*cosγ。
令边长等于向量的模长,将这些公式转化为三角形的边长形式即为余弦定理。
3.正弦定理扩展法:在一个三角形的条边上延长一边,并在延长边上取一点,使得三角形分为两个相似三角形。
利用相似三角形的关系可以推导出余弦定理。
4.科学结算法:这种方法将余弦定理看作三角形面积公式的一种特殊情况。
通过证明三角形的面积公式和余弦定理是等价的,就证明了余弦定理的正确性。
5.高中数学综合证明法:利用高中教材中的已知定理和公式,如三角形内角和定理、三角形的面积公式等,可以通过一系列的推导和变形,最终得到余弦定理。
6.解析几何法:将三角形的顶点与坐标系关联,根据顶点的坐标,可以得到三角形的边长、角度等信息。
通过求解三角形的边长和角度,可以得到余弦定理。
7.直角三角形法:将三角形分解为两个直角三角形,利用直角三角形的性质和勾股定理,可以推导出余弦定理。
8.球面三角形法:在球面上考虑三角形的问题,利用球面三角形的性质和球面上的几何关系,可以推导出余弦定理。
9.微积分法:将三角形分解为一组小三角形,并使用微积分的方法求解这些小三角形的边长和角度。
余弦定理【知识梳理】1.余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即若a 、b 、c 分别是△ABC 的顶点A 、B 、C 所对的边长,则a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .余弦定理揭示了三角形中两边及其夹角与对边之间的关系,它的另一种表达形式是cos A =b 2+c 2-a 22bc,cos B = a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab. 须知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.∠A 为钝角⇔ a 2>b 2+c 2,∠A 为直角⇔a 2=b 2+c 2,∠A 为锐角⇔a 2<b 2+c 22.余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,代入等式,便可求出第四个量来.3.利用余弦定理可以解决以下两类解斜三角形的问题:(1)已知三边,求各角;(2)已知两边和它们的夹角,求第三边和其他两个角余弦定理【典例剖析】(一)已知两边及夹角,解三角形例1 △ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a .(二)已知三边,解三角形例2 在△ABC 中,已知(b +c ):(c +a ):(a +b )=4:5:6,求△ABC 的最大内角的正弦值.(三)判断三角形形状例3 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断三角形的形状.【课堂回顾】1.余弦定理的正确理解三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .余弦定理的推论:cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ac ,cos C =a 2+b 2-c 22ab. 利用推论可以由三角形的三边求出三角形的三个内角.请注意:(1)余弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具.(2)余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(3)在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.(4)运用余弦定理时,因为已知三边求角,或已知两边及夹角求另一边,由三角形全等的判定定理知,三角形是确定的,所以解也是惟一的.2.余弦定理的应用利用余弦定理可以解决以下两类解三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,可以求第三边,进而求出其他角.。
余弦定理编辑
余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。
是勾股定理在一般三角形情形下的推广模式。
余玄定理
表达式
cos A=(b²+c²-a²)/2bc[1]
欧几里得
余弦定理是解三角形中的一个重要定理,可应用于以下两种需求:
当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。
当已知三角形的三边,能够由余弦定理得到三角形的三个内角。
求边
余弦定理公式可变换为以下形式所以,如果知道了三角形的两边及其夹角,可由余弦定理得出已知角的对边。
求角
余弦定理公式可变换为以下形式所以,如果已知三角形的三条边,能够由余弦定理得到三角形的三个内角。
证明编辑
三角函数证明
如上图所示,△ABC,在c上做高,根据射影定理,可得到:
将等式同乘以c得到:
使用同样的方式能够得到:
将两式相加:
向量证明
中,
,
,
:。