初中数学动点问题综合测试卷(含答案)
- 格式:doc
- 大小:417.00 KB
- 文档页数:3
一、选择题(每题5分,共50分)1. 下列关于动点的说法正确的是()A. 动点在平面直角坐标系中一定沿着直线运动B. 动点的运动轨迹可以是曲线C. 动点的速度和加速度都是不变的D. 动点的位置随时间变化而变化2. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x+y=0B. x-y=0C. x^2+y^2=1D. x^2-y^2=13. 一个动点在平面直角坐标系中,从原点出发,先向x轴正方向运动2个单位,然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。
则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线4. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=4然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。
则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线6. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=47. 一个动点在平面直角坐标系中,从原点出发,先向x轴正方向运动2个单位,然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。
则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线8. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=4然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。
则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线10. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=4二、填空题(每题5分,共50分)1. 动点的运动轨迹可以是()、()、()等。
OMANBCyx初中数学动点问题练习题1、(宁夏回族自治区)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.2、如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ?(2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? 若有最小值,最小值是多少? C PQBA M NA DCB M NEDBCAQP(3)连接AC ,那么是否存在这样的t ,使MN 与AC 互相垂直? 若存在,求出这时的t 值;若不存在,请说明理由. 4、(河北卷)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.5、(山东济宁)如图,A 、B 分别为x 轴和y 轴正半轴上的点。
初一动点考试试题及答案一、选择题(每题2分,共10分)1. 动点P在直线y=2x+3上运动,当x=1时,y的值为()。
A. 5B. 4C. 3D. 22. 若动点M在直线y=-x+1上运动,且M的坐标为(a,b),则a+b的值为()。
A. 1B. 0C. -1D. 23. 动点N在直线y=x-2上运动,当y=0时,x的值为()。
A. 2B. -2C. 0D. 14. 动点Q在直线y=3x+4上运动,当x=-1时,y的值为()。
A. -1B. 1C. -5D. 55. 若动点R在直线y=-2x+5上运动,且R的坐标为(m,n),则2m+n的值为()。
A. 5B. 3C. 1D. 0二、填空题(每题3分,共15分)6. 动点S在直线y=4x-1上运动,当x=2时,y的值为______。
7. 动点T在直线y=-3x+6上运动,当y=0时,x的值为______。
8. 动点U在直线y=5x+2上运动,当x=-1时,y的值为______。
9. 动点V在直线y=-4x+7上运动,当x=1时,y的值为______。
10. 动点W在直线y=2x-3上运动,当y=-1时,x的值为______。
三、解答题(每题10分,共40分)11. 动点X在直线y=6x-7上运动,求当x=3时,y的值。
12. 动点Y在直线y=-5x+8上运动,求当y=-2时,x的值。
13. 动点Z在直线y=3x+1上运动,求当x=-2时,y的值。
14. 动点A在直线y=-x+4上运动,求当x=-1时,y的值。
四、综合题(每题15分,共30分)15. 动点B在直线y=2x+1上运动,动点C在直线y=-x+3上运动。
若B和C的横坐标相同,求此时B和C的纵坐标之和。
16. 动点D在直线y=4x-2上运动,动点E在直线y=-2x+6上运动。
若D和E的纵坐标相同,求此时D和E的横坐标之差。
答案:一、选择题1. A2. A3. B4. C5. D二、填空题6. 77. 28. -39. 310. 1三、解答题11. 将x=3代入y=6x-7,得到y=6×3-7=18-7=11。
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
初中数学动点问题及练习题附参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学动点问题及练习题附参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学动点问题及练习题附参考答案(word版可编辑修改)的全部内容。
初中数学动点问题及练习题所谓“动点型问题"是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。
解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。
关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理.选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容。
人教版九年级数学中考动点问题专项练习例题1. 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y轴相交于点C ,顶点为D .⑴ 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;⑵ 连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为;① 用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?② 设BCF ∆的面积为S ,求S 与m 的函数关系式. 【答案】⑴()10A -,,()30B ,,()03C ,.抛物线的对称轴是:1x =.⑵①设直线BC 的函数关系式为:y kx b =+. 把()()3003B C ,,,分别代入得:303.k b b +=⎧⎨=⎩,解得:13k b =-=,. 所以直线BC 的函数关系式为:3y x =-+. 当1x =时,132y =-+=,∴()12E ,. 当x m =时,3y m =-+, ∴()3P m m -+,.在223y x x =-++中,当1x =时,4y =. ∴()14D ,当x m =时,223y m m =-++∴()223F m m m -++,.∴线段422DE =-=,线段()222333PF m m m m m =-++--+=-+. ∵PF DE ∥∴当PF ED =时,四边形PEDF 为平行四边形. 由232m m -+=解得:1221m m ==,.(不合题意,舍去). 因此,当2m =时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由()30B ,,()00O ,,可得:3OB OM MB =+=. ∵BPF CPE S S S ∆∆=+.即()11112222S PF BM PF OM PF BM OM PF OB =⋅+⋅=⋅+=⋅.∴()()221393303222S m m m m m =⨯-+=-+≤≤.例题2. 如图,已知抛物线(1)2)0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】(1)∵抛物线2(1))0y a x a =-+≠经过点()20A -,,∴09a =+a =∴二次函数的解析式为:2y =+(2)∵D 为抛物线的顶点∴(1D 过D 作DN OB ⊥于N ,则DN =,3AN =,∴6AD ==∴60DAO ∠=︒∵OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 ∴6OP =∴()6t s =②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =) ∴5OP DH ==,()5t s =③当PD OA =时,四边形DAOP 是等腰梯形 ∴2624OP AD AH =-=-=∴()4t s =综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)由(2)及已知,60OC OB COB OCB =∠=,,°△是等边三角形 则62OB OC AD OP t BQ t =====,,,∴()6203OQ t t =-<< 过P 作PE OQ ⊥于E,则PE =∴113322263(62)BCPQ t S t -=⨯⨯⨯-⨯=233633228t ⎛⎫-+⎪⎝⎭ 当32t =时,BCPQ S 的面积最小值为6338 ∴此时33324OQ OP OE ==,=,∴39334443PE QE ===- ∴222233933442PE QE PQ ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭=例题3. 已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,cos ∠BAO =13.设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图1,当⊙P 与⊙O 外切时,求y 与x 之间的函数关系式,并写出函数的定义域;(3)当∠OCA =∠OPC 时,求⊙P 的半径.图1 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2.(2)如图2,作CH ⊥AP ,垂足为H . 由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OCOC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154.②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO ACAC AP =.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6例题4. 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B 的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由.图1【答案】(1)直线AB的函数解析式为y=-x+4.(2)①如图2,∠BDE=∠CDE=∠ADP;②如图3,∠ADP=∠DEP+∠DPE,如图4,∠BDE=∠DBP+∠A,因为∠DEP=∠DBP,所以∠DPE=∠A=45°.所以∠DFE=∠DPE=45°.因此△DEF是等腰直角三角形.于是得到2y x=.图2 图3 图4(3)①如图5,当BD∶BF=2∶1时,P(2,2).思路如下:由△DMB∽△BNF,知122BN DM==.设OD=2m,FN=m,由DE=EF,可得2m+2=4-m.解得23m=.因此4(0,)3D.再由直线CD与直线AB求得交点P(2,2).②如图6,当BD∶BF=1∶2时,P(8,-4).思路同上.图5 图6例题5. 在Rt △ABC 中,∠C =90°,AC =6,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3【答案】(1) 在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离. 图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO==,所以158BO =.此时658OA =.图5 图6(3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y .在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45BF y =.在Rt △ONF 中,4105OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55x y x y y +=--+.整理,得2505040x y x -=+.定义域为0<x <5.图7 图8例题6. 如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行;(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1【答案】 (1)当M 、N 都在O 右侧时,24122OM t t OA-==-,642163ON t t OB-==-,所以OM ON OAOB≠.因此MN 与AB 不平行.(2)①如图2,当M 、N 都在O 右侧时,∠OMN >∠B ,不可能△OMN ∽△OBA .②如图3,当M 在O 左侧、N 在O 右侧时,∠MON >∠BOA ,不可能△OMN ∽△OBA .③如图4,当M 、N 都在O 左侧时,如果△OMN ∽△OBA ,那么ON OA OMOB=.所以462426t t -=-.解得t =2.图2 图3 图4(3)①如图2,24OM t =-,12OH t =-,2)MH t =-.(64)(12)52NH ON OH t t t =-=---=-.②如图3,42OM t =-,21OH t =-,1)MH t =-.(64)(21)52NH ON OH t t t =+=-+-=-.③如图4,42OM t =-,21OH t =-,1)MH t =-.(21)(46)52NH OH ON t t t =-=---=-.综合①、②、③,s 222MN MH NH ==+22221)(52)16322816(1)12t t t t t ⎤=-+-=-+=-+⎦. 所以当t =1时,甲、乙两人的最小距离为12千米.例题7. 已知点 (1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【解析】点(1,3)在函数k y x=的图像上,3k =.又E 也在函数k y x =的图像上,故设E 点的坐标为(m ,3m). 过E 点作EF x ⊥轴于F ,则3EF m=. 又E 是对角线BD 的中点,62AB CD EF m===. 故A 点的纵坐标为6m ,代入3y x =中,得A 点坐标为 (2m ,6m). 因此22m mBF OF OB m =-=-=.由45ABD ∠=︒,得45EBF ∠=︒,BF EF =. 即有32m m=.解得m =而0m >,故m =则E 点坐标为【答案】例题8. 如图,11POA ∆、212PA A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【解析】分别过点1P 、2P 做x 轴的垂线,根据题意易得1PC OC =,21P D A D =,14PC OC ⋅=,24P D OD ⋅=,得2OA =,所以2A(0).【答案】2A(0).例题9. 如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.【解析】由已知易得()133P ,,则13y =,点2P 横坐标为26y +, 那么可得()2269y y +=,解得23y =,同理点3P横坐标为3y,那么可得()339y y =,解得3y =依此类推,n P的纵坐标为n y =∴1233n y y y +++=+++……【答案】例题10. 如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F.求AF BE ⋅的值.【解析】设点P (x ,y ),过点E 、F 分别作x 轴的垂线,21AF BE xy ⋅==. 【答案】1例题11. 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与BC ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =. ∴1111122S x y k ==,2221122S x y k ==.∴12S S =,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,∵90EMN FMB FMB MFB ∠+∠=∠+∠= ∴EMN MFB ∠=∠.又∵90ENM MBF ∠=∠=, ∴ENM MBF △∽△. ∴EN EM MB MF= ∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭ ∴94MB =.222MB BF MF +=,解得218k =.∴21432k BF ==∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例题12. 如图,点()1A m m +,,()31B m m +-,都在反比例函数ky x=的图象上. (1)求m k ,的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.【解析】(1)由题意可知,()()()131m m m m +=+-.解,得3m =.∴()()3462A B ,,,;∴4312k =⨯=.(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设1M 点坐标为()10x ,,1N 点坐标为()10y ,. ∵ 四边形11AN M B 为平行四边形,∴线段11N M 可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 坐标为(3,4),B 坐标为(6,2),∴1N 点坐标为042(,-),即102N (,); 1M 点坐标为(6-3,0),即1M (3,0).设直线11M N 的函数表达式为12y k x =+,把30x y ==,代入,解得123k =-. ∴ 直线11M N 的函数表达式为223y x =-+.②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设2M 点坐标为20x (,),2N 点坐标为20y (,).∵11221122AB N M AB M N AB N M AB M N ∥,∥,=,=,∴1221122N M M N N M M N ∥,=. ∴线段22M N 与线段11N M 关于原点O 成中心对称. ∴2M 点坐标为(-3,0),2N 点坐标为(0,-2).设直线22M N 的函数表达式为22y k x =-,把30x y =-=,代入,解得223k =-,∴ 直线M 2N 2的函数表达式为223y x =--.所以,直线MN 的函数表达式为223y x =-+或223y x =--.【答案】(1)3m =,12k =;(2)223y x =-+或223y x =--。
初三动点试题及答案试题:一、选择题(每题2分,共10分)1. 在平面直角坐标系中,若动点P的坐标为(x,y),且满足x^2 + y^2 = 1,那么点P的轨迹是:A. 直线B. 抛物线C. 圆D. 椭圆2. 已知动点M在直线y=x上,且M到原点O的距离为√2,那么动点M 的坐标可以是:A. (1,1)B. (-1,-1)C. (1,-1)D. (-1,1)3. 在平面直角坐标系中,若动点Q的坐标为(x,y),且满足y =x^2,那么点Q的轨迹是:A. 直线B. 抛物线C. 圆D. 椭圆4. 动点N在抛物线y = x^2 - 2x + 1上,且N到x轴的距离为1,那么动点N的坐标可能为:A. (0,1)B. (1,0)C. (1,2)D. (2,1)5. 动点R在圆x^2 + y^2 = 4上运动,且R到直线y = x的距离为√2,那么动点R的坐标可能为:A. (1,1)B. (-1,-1)C. (1,-1)D. (-1,1)二、填空题(每题2分,共10分)6. 若动点P的坐标为(x,y),且满足x + y = 2,那么点P的轨迹方程是_________。
7. 动点S在直线y = 2x + 3上,若S到直线y = -x的距离为√5,那么动点S的坐标为_________。
8. 若动点T在圆x^2 + y^2 = 9上,且T到原点O的距离为3,那么动点T的坐标可能为_________。
9. 动点U在抛物线y^2 = 4x上,若U到直线y = 2x的距离为√5,那么动点U的坐标可能为_________。
10. 若动点V在直线y = 3x + 5上,且V到点(1,1)的距离为√10,那么动点V的坐标为_________。
三、解答题(每题5分,共10分)11. 已知动点W在直线y = 3x + 7上,求W到点(2,4)的距离为2时,W的坐标。
12. 已知动点X在抛物线y^2 = 8x上,求X到焦点F(2,0)的距离为5时,X的坐标。
中考数学高频考点《动点综合问题》专项测试卷-带答案(16道)一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .484.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x 菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C.D.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中O为原点35OA OB==点C为平面内一动点32BC=连接AC点M是线段AC上的一点且满足:1:2CM MA=.当线段OM取最大值时点M的坐标是()A.36,55⎛⎫⎪⎝⎭B.365,555C.612,55⎛⎫⎪⎝⎭D.6125,55510.(2023·广东深圳·统考中考真题)如图1 在Rt ABC△中动点P从A点运动到B点再到C点后停止速度为2单位/s 其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为()A155B427C.17D.5311.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中60A∠=︒4AB=动点M N同时从A 点出发点M以每秒2个单位长度沿折线A B C--向终点C运动点N以每秒1个单位长度沿线段AD向终点D运动当其中一点运动至终点时另一点随之停止运动.设运动时间为x秒AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A .B .C .D .12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C.D.13.(2023·河南·统考中考真题)如图1 点P从等边三角形ABC的顶点A出发沿直线运动到三角形内部一点再从该点沿直线运动到顶点B.设点P运动的路程为x PByPC图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.43D.23二解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC中①C=90° 点M从点C出发沿CB方向以1cm/s 的速度匀速运动到达点B停止运动在点M的运动过程中过点M作直线MN交AC于点N且保持①NMC=45° 再过点N作AC的垂线交AB于点F连接MF将①MNF关于直线NF对称后得到①ENF已知AC=8cm BC=4cm设点M运动时间为t(s)①ENF与①ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中能否使得四边形MNEF为正方形?如果能求出相应的t值如果不能说明理由(2)求y关于t的函数解析式及相应t的取值范围(3)当y取最大值时求sin①NEF的值.AB=点O是对角线AC的中点动点P 15.(2023·吉林·统考中考真题)如图,在正方形ABCD中4cmQ分别从点A B同时出发点P以1cm/s的速度沿边AB向终点B匀速运动点Q以2cm/s的速度沿折线-向终点D匀速运动.连接PO并延长交边CD于点M连接QO并延长交折线DA ABBC CD-于点N连接PQ QM MN NP得到四边形PQMN.设点P的运动时间为x(s)(04<<)四边形PQMN的x面积为y(2cm)(1)BP的长为__________cm CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时直接写出x的值.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .参考答案一、单选题1.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中 菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 (3D ()1,1P --.点M 在菱形的边AD 和DC 上运动(不与点A C 重合) 过点M 作MN y ∥轴 与菱形的另一边交于点N 连接PM PN 设点M 的横坐标为x PMN 的面积为y ,则下列图象能正确反映y 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据菱形的性质求出各点坐标 分M 的横坐标x 在01 12 23~之间三个阶段 用含x 的代数式表示出PMN 的底和高 进而求出分段函数的解析式 根据解析式判断图象即可. 【详解】解:菱形ABCD 的顶点A 在y 轴的正半轴上 顶点B C 在x 轴的正半轴上 ∴2AB AD == 3OA =∴()2222231OB AB OA --= ∴123OC OB BC =+=+=∴(3A ()10B , ()3,0C 设直线AB 的解析式为y kx b =+ 将(3A ()10B ,代入 得: 03k b b +=⎧⎪⎨=⎪⎩ 解得33k b ⎧=-⎪⎨=⎪⎩ ∴直线AB 的解析式为33y x =-MN y ∥轴∴N 的横坐标为x(1)当M 的横坐标x 在01之间时 点N 在线段AB 上 PMN 中MN 上的高为1x + ∴(,33N x x ∴(3333MN x x -+∴()()2113313122PMNS MN x x x x =⋅+=⋅+= ∴该段图象为开口向上的抛物线(2)当M 的横坐标x 在12之间时 点N 在线段BC 上 PMN 中3MN = MN 上的高为1x + ∴()()113313122PMNS MN x x x =⋅+=+=∴该段图象为直线(3)当M 的横坐标x 在23~之间时 点N 在线段BC 上 PMN 中MN 上的高为1x + 由(3D ()3,0C 可得直线CD 的解析式为333y x =-+∴(,333M x x + (),0N x ∴333MN x =-+ ∴()(()21133313331322PMN S MN x x x x =⋅+=-+⋅+=++ ∴该段图象为开口向下的抛物线观察四个选项可知 只有选项A 满足条件故选A .【点睛】本题考查动点问题的函数图象 涉及坐标与图形 菱形的性质 二次函数 一次函数的应用等知识点 解题的关键是分段求出函数解析式.2.(2023·江苏·统考中考真题)折返跑是一种跑步的形式.如图,在一定距离的两个标志物① ①之间 从①开始 沿直线跑至①处 用手碰到①后立即转身沿直线跑至①处 用手碰到①后继续转身跑至①处 循环进行 全程无需绕过标志物.小华练习了一次250m ⨯的折返跑 用时18s 在整个过程中 他的速度大小v (m/s )随时间t (s )变化的图像可能是( )A .B .C .D .【答案】D【分析】根据速度与时间的关系即可得出答案.【详解】解:刚开始速度随时间的增大而增大 匀速跑一段时间后减速到① 然后再加速再匀速到① 由于体力原因 应该第一个50米速度快 用的时间少 第二个50米速度慢 用的时间多故他的速度大小v (m/s )随时间t (s )变化的图像可能是D .故选:D .【点睛】本题主要考查函数的图象 要根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件 结合实际意义得出正确的结论.3.(2023·江苏南通·统考中考真题)如图,ABC 中 90C ∠=︒ 15AC = 20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止 过点D 作DE AB ⊥ 垂足为E .设点D 运动的路径长为x BDE △的面积为y 若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .48【答案】B 【分析】根据点D 运动的路径长为x 在图中表示出来 设,25AE z BE z ==- 在直角三角形中 找到等量关系 求出未知数的值 得到BDE △的值.【详解】解:当10x =时 由题意可知10,5AD CD ==在Rt CDB △中 由勾股定理得22222520425BD CD BC =+=+=设,25AE z BE z ==-222(25)50625BE z z z ∴=-=-+在Rt ADE △中 由勾股定理得2222100DE AD AE z =-=-在Rt DEB △中 由勾股定理得222BD DE BE =+即2242510050625z z z =-+-+解得6z =6,19DE BE ∴==1198762BDE a S ∴==⨯⨯=当25x =时 由题意可知 10CD BD ==设,25BE q AE q ==-222(25)62550AE q q q =-=-+在Rt CDA △中 由勾股定理得222221510325AD AC CD =+=+=在Rt BDE △中由勾股定理得2222100DB BD BE q =-=-Rt DEA 中 由勾股定理得222AD DE AE =+即2232510062550q q q =-+-+解得8q =6DE ∴=168242BDE b S ∴==⨯⨯= 762452a b ∴-=-=.故选:B .【点睛】本题主要考查勾股定理 根据勾股定理列出等式是解题的关键 运用了数形结合的思想解题. 4.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD 中 对角线,AC BD 交于点O 4AB = 43BC = 垂直于BC 的直线MN 从AB 出发 沿BC 3 当直线MN 与CD 重合时停止运动 运动过程中MN 分别交矩形的对角线,AC BD 于点E F 以EF 为边在MN 左侧作正方形EFGH 设正方形EFGH 与AOB 重叠部分的面积为S 直线MN 的运动时间为t s ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】B【分析】求出MN 在O 点左侧时的两段图象 即可得出结论.【详解】解:当MN 在O 点左侧 即:2t <时:①当正方形EFGH 的边GH 在AOB 的外部时 重叠部分为矩形 如图:设,HE FG 分别交AB 于点,I K①垂直于BC 的直线MN 从AB 出发 沿BC 3 ①3IE FK t ==①在矩形ABCD 中 4AB =43BC =①228AC AB BC =+=①4OA OB AB ===①ABO 为等边三角形①60OAB OBA ∠=∠=︒①tan60AI BK IE t ==÷︒=①42IK t =- ①()23422343S IK IE t t t t =⋅=-=-+ 图象为开口向下的一段抛物线①当正方形EFGH 的边GH 在AOB 的内部时 与AOB 重叠部分即为正方形EFGH 如图:由①可知:42EF IK t ==-①()242S t =- 图象是一段开口向上的抛物线当MN 过点O 时 即2t =时 ,E F 重合 此时 0S =综上:满足题意的只有B 选项故选B .【点睛】本题考查动点的函数图象问题.解题的关键是确定动点的位置 利用数形结合和分类讨论的思想进行求解.5.(2023·辽宁锦州·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 3AC = 4BC = 在DEF 中 5DE DF == 8EF = BC 与EF 在同一条直线上 点C 与点E 重合.ABC 以每秒1个单位长度的速度沿线段EF 所在直线向右匀速运动 当点B 运动到点F 时 ABC 停止运动.设运动时间为t 秒 ABC 与DEF 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】A【分析】分04t ≤< 48t ≤< 812t ≤<三种情况 分别求出函数解析即可判断.【详解】解:过点D 作DH CB ⊥于H①5DE DF == 8EF = ①142EH FH EF === ①223DH DE EH =-当04t ≤<时如图,重叠部分为EPQ △ 此时EQ t = PQ DH ∥①EPQ EDH ∽ ①PQ EQ DH EH= 即34PQ t = ①34PQ t = ①2133248S t t t =⨯= 当48t ≤<时如图,重叠部分为四边形PQC B '' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=- 8FC t '=-①PB DE '∥①PB F DCF '∽ ①2PB F DCF S B F SCF ''⎛⎫= ⎪⎝⎭又183122DCFS =⨯⨯=①212128PB F S t '-⎛⎫= ⎪⎝⎭ ①()231216PB F S t '=-①DH BC ⊥ 90A B C '''∠=︒①A C DH ''∥①C QF HFD '∽①2C QF HFD S C F S HF ''⎛⎫= ⎪⎝⎭ 即2814432C QF S t '-⎛⎫= ⎪⎝⎭⨯⨯ ①()2388C QF S t '=-①()()22233331283168162PB F C QF S S S t t t t ''=-=---=-++当 812t ≤<时如图,重叠部分为四边形PFB ' 此时BB CC t ''== PB DE '∥①12B F BC CF BB t ''=+-=-①PB DE '∥①PB F DCF '∽①2PB F DCF S B F S CF ''⎛⎫= ⎪⎝⎭ 即212128PB FS t '-⎛⎫= ⎪⎝⎭①()231216PB F S S t '==-综上 ()()()()22230483334816231281216t t S t t t t t ⎧≤<⎪⎪⎪=-++≤<⎨⎪⎪-≤<⎪⎩①符合题意的函数图象是选项A .故选:A .【点睛】此题结合图像平移时面积的变化规律 考查二次函数相关知识根据平移点的特点列出函数表达式是关键 有一定难度.6.(2023·辽宁·统考中考真题)如图,60MAN ∠=︒ 在射线AM AN 上分别截取6AC AB == 连接BC MAN ∠的平分线交BC 于点D 点E 为线段AB 上的动点 作EF AM ⊥交AM 于点F 作EG AM ∥交射线AD 于点G 过点G 作GH AM ⊥于点H 点E 沿AB 方向运动 当点E 与点B 重合时停止运动.设点E 运动的路程为x 四边形EFHG 与ABC 重叠部分的面积为S ,则能大致反映S 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分三种情况分别求出S 与x 的函数关系式 根据函数的类型与其图象的对应关系进行判断即可.【详解】解:①60MAN ∠=︒ 6AC AB ==①ABC 是边长为6的正三角形①AD 平分MAN ∠①30MAD NAD ∠=∠=︒ AD BC ⊥ 3CD DB ==①当矩形EFGH 全部在ABC 之中 即由图1到图2 此时03x <≤①EG AC ∥①30MAD AGE ∠=∠=︒①30NAD AGE ∠=∠=︒①AE EG x ==在Rt AEF 中 60EAF ∠=︒ ①33EF AE =①23S = ①如图3时 当AE AF GE AF AF CF AC +=+=+= 则162x x += 解得4x = 由图2到图3 此时34x <≤如图4 记BC EG 的交点为Q ,则EQB △是正三角形①6EQ EB BQ x ===-①()626GQ x x x =--=- 而60PQG ∠=︒ ①)3326PG QG x ==-①PQG EFHG S S S =-矩形())231263262x x =-⨯-- 233123183x =+- ①如图6时 6x = 由图3到图6 此时46x <≤如图5 同理EKB △是正三角形①6EK KB EB x ===- 162FC AC AF x =-=- 3EF x = ①EKCF S S =梯形1136622x x ⎛⎫=-+- ⎪⎝⎭ 23333x x =+ 因此三段函数的都是二次函数关系 其中第1段是开口向上 第2段 第3段是开口向下的抛物线 故选:A .【点睛】本题考查动点问题的函数图象 求出各种情况下S 与x 的函数关系式是正确解答的前提 理解各种函数所对应的图象的形状是解决问题的关键.7.(2023·黑龙江大庆·统考中考真题)如图1 在平行四边形ABCD 中 120ABC ∠=︒ 已知点P 在边AB 上 以1m/s 的速度从点A 向点B 运动 点Q 在边BC 上 3m /s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处 此时两点都停止运动.图2是BPQ 的面积()2m y 与点P的运动时间()s t 之间的函数关系图象(点M 为图象的最高点),则平行四边形ABCD 的面积为( )A .212mB .23mC .224mD .2243m【答案】C【分析】根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a = 作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F ,则可得33m AF AB == ))333m PE PB AB PA a t =-=- 从而得到22334216PBQa St a ⎛⎫=--+ ⎪⎝⎭ 根据PBQS的最大值为3求出a 的值 从而得到4m 43m 23m AB BC AF ===,, 最后由平行四边形的面积公式进行计算即可得到答案.【详解】解:根据题意可得:3BC = 3AP t BQ t ==, 设m AB a =,则3m BC a =作PE BC ⊥交CB 的延长线于点E 作AF BC ⊥交CB 的延长线于点F120ABC ∠=︒ 60ABF ∴∠=︒33m AF AB ∴== ))333m PE AB PA a t ==-=- )2221133333322444216PBQa SBQ PE t a t t at t a ⎛⎫∴=⋅⋅=-=-+=--+ ⎪⎝⎭ 由图象可得PBQS 的最大值为323316a ∴=解得:4a =或4a =-(舍去) 4a ∴=4m 43m 23m AB BC AF ∴===,,∴平行四边形ABCD 的面积为:2432324m BC AF ⋅=故选:C .【点睛】本题主要考查了平行四边形的性质 解直角三角形 二次函数的图象与性质 熟练掌握平行四边形的性质 二次函数的图象与性质 添加适当的辅助线构造直角三角形 是解题的关键.8.(2023·辽宁·统考中考真题)如图,在Rt ABC △中 90ACB ∠=︒ 30A ∠=︒ 3cm AB =.动点P 从点A 出发 以1cm/s 的速度沿射线AB 匀速运动 到点B 停止运动 同时动点Q 从点A 出发 3cm/s 的速度沿射线AC 匀速运动.当点P 停止运动时 点Q 也随之停止运动.在PQ 的右侧以PQ 为边作菱形PQMN 点N 在射线AB .设点P 的运动时间为()s x菱形PQMN 与ABC 的重叠部分的面积为()2cm y ,则能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】先证明菱形PQMN 是边长为x 一个角为60︒的菱形 找到临界点 分情况讨论 即可求解. 【详解】解:作PD AC ⊥于点D 作⊥QE AB 于点E由题意得AP x = 3AQ x = ①3cos30AD AP =⋅︒= ①12AD DQ AQ ==①PD 是线段AQ 的垂直平分线 ①30PQA A ∠=∠=︒①60QPE ∠=︒ PQ AP x == ①132QE AQ x == PQ PN MN QM x ==== 当点M 运动到直线BC 上时此时 BMN 是等边三角形 ①113AP PN BN AB ==== 1x = 当点Q N 运动到与点C B 、重合时①1322AP PN AB === 32x = 当点P 运动到与点B 重合时 ①3AP AB == 3x = ①当01x <≤时 233y x x ==当312x <≤时 如图,作FG AB ⊥于点G 交QM 于点R则32BN FN FB x ===- 33FM MS FS x ===- )333FR x =- ①())2231373939333332y x x -⋅--=+当332x <<时 如图,作HI AB ⊥于点I则3BP PH HB x ===- )33HI x =- ①())21333393332y x x =⋅--= 综上 y 与x 之间函数关系的图象分为三段 当01x <≤时 是开口向上的一段抛物线 当312x <≤时 是开口向下的一段抛物线 当332x <≤时 是开口向上的一段抛物线 只有选项A 符合题意 故选:A .【点睛】本题主要考查了动点问题的函数的图象 二次函数的图形的性质 等边三角形的性质 菱形的性质 三角形的面积公式 利用分类讨论的思想方法解答和熟练掌握抛物线的性质是解题的关键.9.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中 O 为原点 35OA OB == 点C 为平面内一动点 32BC =连接AC 点M 是线段AC 上的一点 且满足:1:2CM MA =.当线段OM 取最大值时 点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555C .612,55⎛⎫⎪⎝⎭D .6125,555 【答案】D【分析】由题意可得点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫ ⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E 先证OAM DAC ∽ 得23OM OA CD AD == 从而当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时 CD 取得最大值 然后分别证BDO CDF ∽ AEM AFC ∽ 利用相似三角形的性质即可求解.【详解】解:①点C 为平面内一动点 32BC = ①点C 在以点B 为圆心32为半径的OB 上 在x 轴的负半轴上取点350D ⎛⎫⎪ ⎪⎝⎭连接BD 分别过C M 作CF OA ⊥ ME OA ⊥ 垂足为F E①35OA OB ==①AD OD OA =+=95①23OA AD = ①:1:2CM MA = ①23OA CMAD AC==①OAM DAC ∠∠= ①OAM DAC ∽ ①23OM OA CD AD == ①当CD 取得最大值时 OM 取得最大值 结合图形可知当D B C 三点共线 且点B 在线段DC 上时CD 取得最大值①35OA OB == OD =35①BD =()222235153522OB OD ⎛⎫++ ⎪ ⎪⎝⎭①9CD BC BD =+= ①23OM CD = ①6OM =①y 轴x ⊥轴 CF OA ⊥ ①90DOB DFC ∠∠==︒ ①BDO CDF ∠∠= ①BDO CDF ∽①OB BDCF CD=153529=解得185CF =同理可得 AEM AFC ∽①23ME AM CF AC ==23185= 解得125ME =①22221256565OE OM ME ⎛⎫=-- ⎪ ⎪⎝⎭①当线段OM 取最大值时 点M 的坐标是65125⎝⎭,故选D .【点睛】本题主要考查了勾股定理 相似三角形的判定及性质 圆的一般概念以及坐标与图形 熟练掌握相似三角形的判定及性质是解题的关键.10.(2023·广东深圳·统考中考真题)如图1 在Rt ABC △中 动点P 从A 点运动到B 点再到C 点后停止 速度为2单位/s 其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为( )A 155B 427C .17D .53【答案】C【分析】根据图象可知0=t 时 点P 与点A 重合 得到15AB = 进而求出点P 从点A 运动到点B 所需的时间 进而得到点P 从点B 运动到点C 的时间 求出BC 的长 再利用勾股定理求出AC 即可. 【详解】解:由图象可知:0=t 时 点P 与点A 重合 ①15AB =①点P 从点A 运动到点B 所需的时间为1527.5s ÷= ①点P 从点B 运动到点C 的时间为11.57.54s -= ①248BC =⨯=在Rt ABC △中:2217AC AB BC += 故选C .【点睛】本题考查动点的函数图象 勾股定理.从函数图象中有效的获取信息 求出,AB BC 的长 是解题的关键.11.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD 中 60A ∠=︒ 4AB = 动点M N 同时从A 点出发 点M 以每秒2个单位长度沿折线A B C --向终点C 运动 点N 以每秒1个单位长度沿线段AD 向终点D 运动 当其中一点运动至终点时 另一点随之停止运动.设运动时间为x 秒 AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是( )A .B .C .D .【答案】A【分析】连接BD 过点B 作BE AD ⊥于点E 根据已知条件得出ABD △是等边三角形 进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒ 当04t <<时 M 在AB 上 当48t ≤<时 M 在BC 上 根据三角形的面积公式得到函数关系式【详解】解:如图所示 连接BD 过点B 作BE AD ⊥于点E 当04t <<时 M 在AB 上菱形ABCD 中 60A ∠=︒ 4AB = ①AB AD =,则ABD △是等边三角形 ①122AE ED AD === 33BE AE =①2,AM x AN x ==①2AM ABAN AE== 又A A ∠=∠ ①AMN ABE ∽ ①90ANM AEB ∠=∠=︒ ①223MN AM AN x - ①21332y x x x =当48t ≤<时 M 在BC 上①1123322y AN BE x x =⨯=⨯ 综上所述 04t <<时的函数图象是开口向上的抛物线的一部分 当48t ≤<时 函数图象是直线的一部分 故选:A .【点睛】本题考查了动点问题的函数图象 二次函数图象的性质 一次函数图象的性质 菱形的性质 勾股定理 等边三角形的性质与判定 相似三角形的性质与判定 熟练掌握以上知识是解题的关键. 12.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中 4AB = 动点M N 分别从点A B 同时出发 沿射线AB 射线BC 的方向匀速运动 且速度的大小相等 连接DM MN ND .设点M 运动的路程为()04x x ≤≤ DMN 的面积为S 下列图像中能反映S 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据ADMDCNBMNABCD S S S SS=---正方形 求出S 与x 之间函数关系式 再判断即可得出结论.【详解】解:ADMDCNBMNABCD S S SSS=---正方形1114444(4)(4)222x x x x =⨯-⨯-⨯---21282x x =-+ 21(2)62x =-+ 故S 与x 之间函数关系为二次函数 图像开口向上 2x =时 函数有最小值6 故选:A .【点睛】本题考查了正方形的性质 二次函数的图像与性质 本题的关键是求出S 与x 之间函数关系式 再判断S 与x 之间函数类型.13.(2023·河南·统考中考真题)如图1 点P 从等边三角形ABC 的顶点A 出发 沿直线运动到三角形内部一点 再从该点沿直线运动到顶点B .设点P 运动的路程为x PBy PC= 图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A .6B .3C .43D .23【答案】A【分析】如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时 PB PC = 23AO = 易知30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为3 可知23AO OB == 过点O 作OD AB ⊥ 解直角三角形可得cos303AD AO =⋅︒= 进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发 沿直线运动到三角形内部一点O 再从点O 沿直线运动到顶点B .结合图象可知 当点P 在AO 上运动时1PB PC= ①PB PC = 3AO =又①ABC 为等边三角形①60BAC ∠=︒ AB AC =①()SSS APB APC △≌△①BAO CAO ∠=∠①30BAO CAO ∠=∠=︒ 当点P 在OB 上运动时 可知点P 到达点B 时的路程为43①3OB = 即23AO OB ==①30BAO ABO ∠=∠=︒过点O 作OD AB ⊥①AD BD =,则cos303AD AO =⋅︒=①6AB AD BD =+=即:等边三角形ABC 的边长为6故选:A .【点睛】本题考查了动点问题的函数图象 解决本题的关键是综合利用图象和图形给出的条件.2二 解答题14.(2023·四川绵阳·统考中考真题)如图,已知①ABC 中 ①C =90° 点M 从点C 出发沿CB 方向以1cm /s的速度匀速运动 到达点B 停止运动 在点M 的运动过程中 过点M 作直线MN 交AC 于点N 且保持①NMC =45° 再过点N 作AC 的垂线交AB 于点F 连接MF 将①MNF 关于直线NF 对称后得到①ENF 已知AC =8cm BC =4cm 设点M 运动时间为t (s ) ①ENF 与①ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中 能否使得四边形MNEF 为正方形?如果能 求出相应的t 值 如果不能 说明理由(2)求y 关于t 的函数解析式及相应t 的取值范围(3)当y 取最大值时 求sin ①NEF 的值.【答案】(1)85(2)⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y (3310 【详解】试题分析:(1)由已知得出CN =CM =t FN ①BC 得出AN =8﹣t 由平行线证出①ANF ①①ACB 得出对应边成比例求出NF =12AN =12(8﹣t ) 由对称的性质得出①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t 由正方形的性质得出OE =ON =FN 得出方程 解方程即可(2)分两种情况:①当0<t ≤2时 由三角形面积得出2124y t t =-+ ①当2<t ≤4时 作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH 得出GH =23NF =13(8﹣t ) 由三角形面积得出21(8)12y t =-(2<t ≤4) (3)当点E 在AB 边上时 y 取最大值 连接EM ,则EF =BF EM =2CN =2CM =2t EM =2BM 得出方程 解方程求出CN =CM =2 AN =6 得出BM =2 NF =12AN =3 因此EM =2BM =4 作FD ①NE 于D由勾股定理求出EB 22EM BM +=25 求出EF =12EB 5 由等腰直角三角形的性质和勾股定理得出DF 的长 在Rt①DEF 中 由三角函数定义即可求出sin①NEF 的值.试题解析:解:(1)能使得四边形MNEF 为正方形 理由如下:连接ME 交NF 于O 如图1所示:①①C =90° ①NMC =45° NF ①AC ①CN =CM =t FN ①BC ①AN =8﹣t ①ANF ①①ACB ①84AN AC NF BC == =2 ①NF =12AN =12(8﹣t ) 由对称的性质得:①ENF =①MNF =①NMC =45° MN =NE OE =OM =CN =t ①四边形MNEF 是正方形 ①OE =ON =FN ①t =12×12(8﹣t ) 解得:t =85即在点M 的运动过程中 能使得四边形MNEF 为正方形 t 的值为85(2)分两种情况:①当0<t ≤2时 y =12×12(8﹣t )×t =2124t t -+ 即2124y t t =-+(0<t ≤2) ①当2<t ≤4时 如图2所示:作GH ①NF 于H 由(1)得:NF =12(8﹣t ) GH =NH GH =2FH ①GH =23NF =13(8﹣t ) ①y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t - 即21(8)12y t =-(2<t ≤4) 综上所述:⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31643121)20(24122t t t t t t y .(3)当点E 在AB 边上时 y 取最大值 连接EM 如图3所示:则EF =BF EM =2CN =2CM =2t EM =2BM ①BM =4﹣t ①2t =2(4﹣t ) 解得:t =2 ①CN =CM =2 AN =6 ①BM =4﹣2=2 NF =12AN =3 ①EM =2BM =4 作FD ①NE 于D ,则EB 22EM BM +2242+=5 ①DNF 是等腰直角三角形①EF =12EB 5 DF =22 NF 32 在Rt①DEF 中 sin①NEF =DF EF 3225310【点睛】本题是四边形综合题目 考查了正方形的判定与性质 相似三角形的判定与性质 勾股定理 三角函数 三角形面积的计算 等腰直角三角形的判定与性质等知识 本题综合性强 有一定难度. 15.(2023·吉林·统考中考真题)如图,在正方形ABCD 中 4cm AB = 点O 是对角线AC 的中点 动点P Q 分别从点A B 同时出发 点P 以1cm/s 的速度沿边AB 向终点B 匀速运动 点Q 以2cm/s 的速度沿折线BC CD -向终点D 匀速运动.连接PO 并延长交边CD 于点M 连接QO 并延长交折线DA AB -于点N 连接PQ QM MN NP 得到四边形PQMN .设点P 的运动时间为x (s )(04x <<) 四边形PQMN 的面积为y (2cm )(1)BP 的长为__________cm CM 的长为_________cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式 并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时 直接写出x 的值.【答案】(1)()4x - x(2)()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)43x =或83x = 【分析】(1)根据正方形中心对称的性质得出,OM OP OQ ON == 可得四边形PQMN 是平行四边形 证明ANP CQM ≌即可(2)分02x <≤ 24x <≤两种情况分别画出图形 根据正方形的面积 以及平行四边形的性质即可求解 (3)根据(2)的图形 分类讨论即可求解.【详解】(1)解:依题意 1AP x x =⨯=()cm ,则()4PB AB AP x cm =-=-①四边形ABCD 是正方形①,90AD BC DAB DCB ∠=∠=︒∥①点O 是正方形对角线AC 的中点①,OM OP OQ ON ==,则四边形PQMN 是平行四边形①MQ PN = MQ NP ∥①PNQ MQN ∠=∠又AD BC ∥①ANQ CQN ∠=∠①ANP MQC ∠=∠在,ANP CQM 中ANP MQC NAP QCM NP MQ ∠=∠⎧⎪∠=∠⎨⎪=⎩①ANP CQM ≌①()cm MC AP x ==故答案为:()4x - x .(2)解:当02x <≤时 点Q 在BC 上由(1)可得ANP CQM ≌同理可得PBQ MDN ≌①4,2,PB x QB x MC x =-== 42QC x =-则222MCQ BPQ y AB S S =--()()164242x x x x =--⨯--241216x x =-+当24x <≤时 如图所示则AP x = 224AN CQ x CB x ==-=-()244PN AP AN x x x =-=--=-+①()44416y x x =-+⨯=-+综上所述 ()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩(3)依题意 ①如图,当四边形PQMN 是矩形时 此时90PQM ∠=︒①90PQB CQM ∠+∠=︒①90BPQ PQB ∠+∠=︒①BPQ CQM ∠=∠又B BCD ∠=∠①~BPQ CQM ①BP BQ CQ CM= 即4242x x x x-=- 解得:43x =当四边形PQMN 是菱形时,则PQ MQ =①()()()22224242x x x x -+=+-解得:0x =(舍去)①如图所示 当PB CQ =时 四边形PQMN 是轴对称图形424x x -=- 解得83x = 当四边形PQMN 是菱形时,则4PN PQ == 即44x -+= 解得:0x =(舍去)综上所述 当四边形PQMN 是轴对称图形时 43x =或83x =. 【点睛】本题考查了正方形的性质 动点问题 全等三角形的性质与判定 矩形的性质 平行四边形的性质与判定 菱形的性质 轴对称图形 熟练掌握以上知识是解题的关键.三 填空题16.(2023·陕西·统考中考真题)如图,在矩形ABCD 中 3AB = 4BC =.点E 在边AD 上 且3ED = M N 分别是边AB BC 上的动点 且BM BN = P 是线段CE 上的动点 连接PM PN .若4PM PN +=.则线段PC 的长为 .。
动点问题专题训练1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ········································································································ (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒,∴515443Q CQ v t===厘米/秒.······················································································ (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇. ··················································· (12分)2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; 顶点的平行(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为四边形的第四个顶点M 的坐标.2。
人教版八年级数学上册数学动点问题专题练习(详细参考答案附后)1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;2、点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB 于点E,交CA的延长线于点F。
(1)如图(1),请观察AF与AE,它们相等吗?并证明你的猜想。
(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明。
3、如图,己知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点。
如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3)。
(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD 与△CQP全等?人教版八年级数学上册数学动点问题专题练习参考答案1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;解:(1)根据三角形三边之间的关系可知AB> BC -AC AB<AC+BC∴AB> 12 -9 AB<12+9即:3<AB<21(2)①∵PC=AC=9 t=v÷s=9÷2=4.5(秒)②△ABC的周长一半=(AB+ AC+BC)÷2=(15+9+12)÷2=36÷2=18(cm)当P从点C往点B运动至9cm处时,点P与点A的连线恰好将△ABC的周长分成相等的两部分。
初中数学动点问题综合测试卷
一、单选题(共5道,每道20分)
1.已知:如图,线段AB的长为18厘米,动点P从点A出发,沿AB以2厘米/秒的速度向点B运动,动点Q从点B出发,沿BA以1厘米/秒的速度向点A运动.P,Q两点同时出发,当点P到达点B时,点P,Q同时停止运动.设点P运动的时间为t秒,用t表示线段PQ的长度为_____,若P,Q 两点相距6厘米,则经过的时间t=______.( )
A.当时,PQ=18-3t;当时,PQ=3t-18,t=4
B.当时,PQ=18-3t;当时,PQ=3t-18,t=8
C.当时,PQ=18-3t;当时,PQ=3t-18,t=4或t=8
D.当时,PQ=18-3t;当时,PQ=3t-18,t=4或t=8
答案:C
试题难度:三颗星知识点:动点问题
2.已知:如图,在长方形ABCD中,AB=DC=6,AD=BC=12,点E为边AD上一点,且AE=10.动点P从点B出发,沿BC边向终点C以每秒2个单位的速度运动,连接AP,DP.设点P运动时间为t秒.若运动到某一时刻,△DCP≌△CDE,则t的值为( )
A.10
B.5
C.2
D.1
答案:B
试题难度:三颗星知识点:动点问题
3.已知:如图,在长方形ABCD中,AB=6厘米,BC=9厘米,点P从点A出发,沿AB边向点B以1厘米/秒的速度移动,同时点Q从点B出发沿BC边向点C以2厘米/秒的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动,设点P的运动时间为t秒,连接PQ,DQ.若△DCQ≌△QBP,则t的值为( )
A.2
B.
C.3
D.0
答案:C
试题难度:三颗星知识点:动点问题
4.已知:如图,在△ABC中,AB=AC=18厘米,BC=12厘米,点D为AB的中点.点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点以a厘米/秒的速度匀速运动.设运动时间为t秒,若某一时刻△BPD与△CQP全等,则t的值与相应的点Q的运动速度a为( )
A.t=1,a=3
B.t=2,a=
C.t=1,a=3或t=2,a=
D.t=1,a=或t=2,a=3
答案:C
试题难度:三颗星知识点:动点问题
5.已知:如图,在等边△ABC中,AB=10,D为边BC上一点,且BD=8.动点P从点B出发沿BC-CA方向以每秒2个单位的速度向点A运动,连接AD,AP,BP.设点P运动时间为t秒.若△ABP和△ADC 全等,则t的值为( )
A.1
B.9
C.1或9
D.4或9
答案:C
试题难度:三颗星知识点:动点问题。