中北大学-电力电子课程设计
- 格式:doc
- 大小:684.00 KB
- 文档页数:9
电力电子类课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理,掌握各类电力电子器件的构造、工作原理及应用场合。
2. 掌握电力电子变换器的基本电路拓扑,了解其功能、性能及在实际应用中的优缺点。
3. 学会分析电力电子电路的静态和动态特性,能够对简单电路进行设计和计算。
技能目标:1. 培养学生运用所学知识分析和解决实际电力电子问题的能力。
2. 提高学生动手实践能力,能够正确搭建和调试基本的电力电子实验电路。
3. 培养学生团队协作能力和沟通表达能力,能够就电力电子技术问题进行有效讨论。
情感态度价值观目标:1. 激发学生对电力电子技术领域的兴趣,培养其探索精神和创新意识。
2. 培养学生严谨、认真、负责的学习态度,使其养成良好的学习习惯。
3. 增强学生的环保意识,认识到电力电子技术在节能减排方面的重要作用,培养其社会责任感。
课程性质:本课程为电力电子类课程的实践性教学环节,旨在培养学生的实际操作能力和创新能力。
学生特点:学生已具备一定的电力电子基础知识,对实际应用有较高的兴趣,动手实践能力较强。
教学要求:结合课本内容,注重理论与实践相结合,强调学生的主体地位,充分调动学生的积极性,提高其分析和解决问题的能力。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 电力电子器件:包括二极管、晶体管、晶闸管、场效应晶体管等基本器件的原理、特性及应用。
2. 电力电子变换器:介绍升压、降压、逆变、斩波等基本变换器的工作原理、电路拓扑及控制方法。
3. 电力电子电路分析与设计:学习静态和动态分析方法,对简单电力电子电路进行设计和计算。
4. 电力电子技术应用:分析电力电子技术在电力系统、新能源、电力传动等领域的应用实例。
教学大纲安排如下:第一周:电力电子器件原理与特性第二周:电力电子器件的应用及选型第三周:电力电子变换器的工作原理及电路拓扑第四周:电力电子变换器的控制方法第五周:电力电子电路的静态分析第六周:电力电子电路的动态分析第七周:电力电子电路设计与计算第八周:电力电子技术应用及发展趋势教学内容与课本关联性:参照教材《电力电子技术》相关章节,结合课程目标,对教学内容进行选择和组织,确保科学性和系统性。
1 引言电力电子技术是研究采用电力电子器件实现对电能的换和控制的科学,是20世纪50年代诞生70年代迅速发展起来的一门多学科互相渗透的综合性技术学科[1]。
这些技术包括以节约能源、提高照明质量为目的的绿色照明技术。
以节约能源、提高运行可靠性并更好地满足产要求为目的的交流变频调速技术以提高电力系统运行的稳定性、可控制性为目的,并可有效节能的灵括、柔性、交流输电技术等等。
随着电力半导体制造技求、徽电子技术、汁算机技术以及控制理论的不断进步。
电力电子技求向着大功率、高频化及智能化方向发展,应用的领域将更加广阔。
八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率导体复合器件表明传统电力电子技术已经进入现代电力电子时代[2]。
电力电子线路的基本形式之一即交流—交流—交流变换电路它是将一种形式的交流电能变换成另一种形式交流电能电路。
交流调压器与常规的交流调压变压器相比它的体积和重量都要小得多。
交流调压器的输出仍是交流电压它不是正弦波其谐波分量较大功率因数也较低[3]。
2 单相交流调压电路的设计2.1 设计目的1.加深理解《电力电子技术》课程的基本理论;2.掌握电力电子电路的一般设计方法,具备初步的独立设计能力;3.学习MATLAB仿真软件及各模块参数的确定。
2.2 要求分析设计一个单相交流调压电路,要求触发角为30度,输入交流U=100V/50HZ。
1. 单相交流调压主电路设计,原理说明;2. 触发电路设计,每个开关器件触发次序与相位分析;3. 保护电路设计,过电流保护,过电压保护原理分析;4. 参数设定与计算包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等可自己添加分析的参数;5. 相关仿真结果。
由以上要求可知该系统设计可分为四个部分:交流调压主电路设计、触发电路设计、保护电路设计及相关计算和波形分析部分。
电力电子 课程设计一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及其在电路中的应用;2. 使学生了解电力电子变换器的工作原理,掌握常见电力电子变换器的电路拓扑及控制方法;3. 引导学生理解电力电子技术在能源转换、电力系统中的应用及发展趋势。
技能目标:1. 培养学生能够运用所学知识分析、设计和搭建简单的电力电子电路;2. 提高学生运用电力电子器件和变换器解决实际问题的能力;3. 培养学生运用电力电子技术进行能源转换和电力系统优化的技能。
情感态度价值观目标:1. 培养学生对电力电子技术产生兴趣,激发学生学习积极性;2. 培养学生具备团队协作、沟通交流的能力,增强合作意识;3. 使学生认识到电力电子技术在节能减排、可持续发展中的重要性,树立环保意识。
分析课程性质、学生特点和教学要求,本课程目标旨在让学生在掌握电力电子基础知识的基础上,提高实际应用能力,培养学生解决实际问题的综合素质。
通过本课程的学习,学生能够具备以下具体学习成果:1. 能够列举并解释常见电力电子器件的原理和特点;2. 能够绘制并分析常见电力电子变换器的电路图;3. 能够运用电力电子技术进行实际案例分析,提出优化方案;4. 能够关注电力电子技术的发展趋势,认识到其在节能环保领域的作用。
二、教学内容本章节教学内容依据课程目标,结合教材,科学系统地组织以下内容:1. 电力电子器件:-PN结、晶体管、晶闸管等基本原理和特性;-电力MOSFET、IGBT等现代电力电子器件的结构和特点。
2. 电力电子变换器:-AC-DC、DC-AC、DC-DC等变换器的工作原理及分类;-常见电力电子变换器电路拓扑及其控制方法。
3. 电力电子技术应用:-电力电子技术在电力系统、新能源发电、电动汽车等领域的应用案例;-电力电子器件和变换器在节能、环保等方面的作用。
教学大纲安排如下:第一周:电力电子器件的基本原理和特性;第二周:现代电力电子器件的结构和特点;第三周:AC-DC、DC-AC变换器工作原理及电路拓扑;第四周:DC-DC变换器及控制方法;第五周:电力电子技术应用及案例分析;第六周:电力电子技术在节能环保领域的贡献及发展趋势。
电力电子的课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理和分类,掌握其工作特性和应用范围。
2. 学习电力电子变换器的基本电路拓扑,理解其工作原理和转换过程。
3. 掌握电力电子器件的驱动与保护方法,了解其在实际电路中的应用。
技能目标:1. 能够运用电力电子器件设计简单的电力变换电路,并进行仿真分析。
2. 学会使用相关软件工具对电力电子电路进行性能评估和故障诊断。
3. 培养动手实践能力,能搭建简单的电力电子实验装置,并进行调试。
情感态度价值观目标:1. 培养学生对电力电子技术的好奇心和探索精神,激发学习兴趣。
2. 增强学生的团队合作意识,培养在小组讨论和实验中积极沟通、协作的能力。
3. 培养学生的节能环保意识,理解电力电子技术在节能减排中的重要作用。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握电力电子基础知识的同时,提高实践操作能力,培养创新思维和团队协作精神。
通过具体的学习成果分解,教师可进行针对性的教学设计和评估,确保课程目标的实现。
二、教学内容本章节教学内容围绕以下三个方面展开:1. 电力电子器件:- 基本原理与分类:讲解电力电子器件的工作原理,如晶闸管、IGBT等,并介绍各类器件的应用范围。
- 工作特性:分析电力电子器件的主要参数,如静态特性、动态特性等。
2. 电力电子变换器:- 基本电路拓扑:介绍常用的电力电子变换器拓扑结构,如AC-DC、DC-AC、DC-DC等,并分析其工作原理。
- 转换过程:讲解不同变换器的工作过程,包括能量转换、电压电流波形等。
3. 器件驱动与保护:- 驱动方法:介绍电力电子器件的驱动技术,如光耦隔离驱动、磁隔离驱动等。
- 保护方法:分析器件保护措施,如过压保护、过流保护等。
教学内容安排与进度:1. 第一周:电力电子器件基本原理与分类,工作特性分析。
2. 第二周:电力电子变换器基本电路拓扑,工作原理讲解。
3. 第三周:器件驱动与保护方法,实际应用案例分析。
目录任务书 (I)1引言 (V)2主电路设计及原理 (V)2.1 总体框架图 (V)2.2三相桥式全控整流电路的原理 (VI)2.3 设计内容和要求 (VI)3 单元电路设计 (VII)3.1 主电路 (VII)3.2 触发电路 (VII)3.3波形观察电路 (VII)3.4设计电路图 (VIII)4 电路分析与参数计算 (VIII)4.1电路分析 (VIII)4.2参数计算 (IX)5 实验波形图 (IX)6 结论 (X)参考文献 (XI)中北大学电子技术课程设计任务书2011/2012 学年第一学期学院:信息与通信工程学院专业:电气工程及其自动化学生姓名:学号:课程设计题目:三相桥式全控整流电路设计起迄日期: 12月19日~ 12月30 日课程设计地点:电气工程系软件实验室指导教师:石喜玲、张颖系主任:王忠庆下达任务书日期: 2011 年 12 月30日中北大学电子技术课程设计第 III 页共XI 页课 程 设 计 任 务 书1.设计目的:1.加深理解《电力电子技术》课程的基本理论2.掌握电力电子电路的一般设计方法,具备初步的独立设计能力3.学习MATLAB 仿真软件及各模块参数的确定2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):设计条件:1.电源电压:三相交流U 2:100V/50Hz 2.输出功率:5000W 3.触发角 30=α 4.纯电阻负载根据课程设计题目和设计条件,说明主电路的工作原理、计算选择元器件参数。
设计内容包括:1.整流变压器额定参数的计算2.晶闸管电流、电压额定参数选择3.触发电路的设计3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:1.根据设计题目要求的指标,通过查阅有关资料分析其工作原理,确定各器件参数,设计电路原理图;2.利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。
3.用示波器模块观察和记录电源电压、触发信号、晶闸管电流和电压,负载电流和电压的波形图。
目录1课程设计的目的与要求 (2)1.1引言 (2)1.2课程设计的目的 (2)1.3课程设计要求 (3)2课程设计方案选择 (3)2.1整流电路 (3)2.2元器件的选择 (3)2.2.1晶闸管 (4)2.2.2 可关断晶闸管 (5)3元器件和电路参数计算 (6)3.1晶闸管的基本特性 (6)3.1.1.静态特性 (6)3.1.2.动态特性 (7)3.2晶闸管基本参数 (8)3.2.1晶闸管的主要参数 (8)4单线桥式半控主电路的设计 (10)4.1电路的结构与工作原理 (10)4.1.1电路结构 (10)4.1.2 工作原理 (10)4.2基本数量关系 (11)4.3建模 (12)4.4 仿真结果 (14)4.5小结 (15)参考文献 (16)1课程设计的目的与要求1.1 引言本方面有很大潜电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。
电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。
微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。
电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。
功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。
电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成力。
大学生电力电子课程设计一、课程目标知识目标:1. 理解电力电子器件的基本工作原理及其在电力转换中的应用;2. 掌握电力电子电路的拓扑结构及其转换控制方法;3. 掌握电力电子器件的选择、电力电路的设计及系统性能分析;4. 了解电力电子技术在新能源领域的应用及其发展趋势。
技能目标:1. 能够运用所学知识进行电力电子器件的选型和电力电路的设计;2. 能够分析并解决电力电子电路在实际应用中遇到的问题;3. 能够运用仿真软件对电力电子电路进行仿真分析,提高实际操作能力;4. 能够通过小组合作,完成电力电子课程设计项目,提高团队协作能力。
情感态度价值观目标:1. 培养学生热爱专业、严谨治学的态度,增强其对电力电子技术的兴趣;2. 培养学生独立思考、敢于创新的精神,提高解决实际问题的能力;3. 增强学生的环保意识,使其认识到电力电子技术在节能减排方面的重要性;4. 培养学生的团队协作精神,提高沟通与交流能力。
本课程针对大学生电力电子课程设计,结合课程性质、学生特点和教学要求,明确了具体、可衡量的课程目标。
通过本课程的学习,旨在使学生在掌握电力电子技术基础知识的基础上,提高实际操作能力和团队协作能力,培养具有创新精神和环保意识的高级专业人才。
二、教学内容1. 电力电子器件原理及其特性- 硅控整流器件、晶体管、场效应晶体管等基本电力电子器件的工作原理和特性;- 教材第1章、第2章内容。
2. 电力电子电路拓扑结构- 单相、三相可控整流电路,逆变电路,直流-直流转换电路等拓扑结构;- 教材第3章内容。
3. 电力电子电路的控制技术- 脉冲宽度调制(PWM)技术;- 教材第4章内容。
4. 电力电子器件的选型和电路设计- 依据实际应用需求,选择合适的电力电子器件;- 教材第5章内容。
5. 电力电子技术在新能源领域的应用- 风能、太阳能发电系统中的电力电子技术;- 教材第6章内容。
6. 电力电子电路仿真分析- 使用相关仿真软件进行电力电子电路的仿真分析;- 教材第7章内容。
三相半波可控整流电路课程设计(中北大学)1000字本设计基于三相半波可控整流电路,旨在通过理论与实践相结合的方式加深对电力电子技术的认识和理解。
下面将从设计背景、设计目的和实验步骤三个方面进行详细介绍。
一、设计背景三相半波可控整流电路是电力电子技术中常用的一种电路,它可以将交流电转换为直流电,实现改变电压、电流、功率等特性的目的。
因此,对于电力电子专业的学生来说,掌握这个电路的原理和实现方法非常有必要。
二、设计目的本课程设计的主要目的是:通过对三相半波可控整流电路的设计与实验,使学生了解以下内容:1.掌握三相交流电的变换方法及其原理。
2.了解半控整流电路的基础知识,如晶闸管的基本工作原理、电路结构等。
3.掌握三相半波可控整流电路的实现方法,并能进行仿真和实验。
4.加深对电力电子技术及其应用的认识和理解。
三、实验步骤1.实验器材三相变压器、三相桥式整流电路、可控硅、电流表、电压表及示波器等。
2.实验步骤(1)将三相变压器的三个相线分别接入三相桥式整流电路的相线输入端,将三个中性线连接起来并接地。
(2)将可控硅的控制端接在电阻电容电路的输出端,将正极接入三相桥式整流电路的正极输出端,负极接在负极输出端。
(3)接通电源,通过调节电阻电容电路中电位器的阻值,控制可控硅的导通和截止,观察电路的输出波形和电流、电压的变化。
(4)根据实验结果,对电路进行仿真和分析,进一步加深对电路原理和特性的认识。
综上所述,三相半波可控整流电路课程设计具有重要的理论和实践意义,可以有效地提高电力电子专业学生的实践能力和综合素质。
电力电子实训课程设计一、课程目标知识目标:1. 学生能理解电力电子器件的基本原理,掌握其工作特性和应用范围。
2. 学生能掌握常见电力电子电路的组成、工作原理及电路分析方法。
3. 学生能了解电力电子装置在实际应用中的注意事项,如散热、电磁兼容等。
技能目标:1. 学生能正确使用电力电子器件,进行简单电路的搭建与调试。
2. 学生能运用所学知识,分析和解决实际电力电子电路中存在的问题。
3. 学生能通过实训课程,提高动手能力,培养实际操作技能。
情感态度价值观目标:1. 学生通过课程学习,培养对电力电子技术的兴趣,提高科技创新意识。
2. 学生能够认识到电力电子技术在节能减排、可持续发展等方面的重要作用,增强环保意识。
3. 学生能够在团队合作中发挥积极作用,培养沟通、协作、解决问题的能力。
本课程针对高年级学生,具有较强的实践性和应用性。
课程设计紧密联系实际,注重培养学生的动手能力和实际操作技能。
在教学过程中,教师应充分关注学生的个体差异,激发学生的学习兴趣,引导学生主动探究,提高学生的综合素质。
课程目标的设定旨在使学生在掌握电力电子技术基本知识的基础上,能够将其应用于实际工作中,为我国电力电子行业的发展做出贡献。
通过对课程目标的分解,有助于教学设计和评估的实施,确保课程目标的达成。
本课程教学内容主要包括以下几部分:1. 电力电子器件原理及其特性:介绍常见的电力电子器件如二极管、晶体管、晶闸管等的工作原理、特性参数及应用场合。
2. 常见电力电子电路:分析整流电路、斩波电路、逆变电路、变频电路等典型电路的组成、工作原理及电路分析方法。
3. 电力电子装置的散热与电磁兼容设计:讲解散热技术、电磁兼容原理,分析实际应用中应注意的问题及解决方法。
4. 电力电子电路的仿真与实验:运用相关软件进行电力电子电路的仿真分析,开展实际电路的搭建、调试与性能测试。
具体教学安排如下:第一周:电力电子器件原理及其特性第二周:整流电路第三周:斩波电路第四周:逆变电路第五周:变频电路第六周:电力电子装置的散热与电磁兼容设计第七周:电力电子电路仿真与实验(上)第八周:电力电子电路仿真与实验(下)教学内容与教材紧密关联,按照教学大纲逐步展开,旨在确保学生能够系统地掌握电力电子技术的基本知识和实践技能。
电力电子的课程设计报告一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及特性,了解其在电力转换中的应用。
2. 使学生了解电力电子电路的基本拓扑结构,能分析简单电力电子电路的工作原理。
3. 引导学生理解电力电子装置的控制策略,了解不同控制方法对电力转换性能的影响。
技能目标:1. 培养学生运用电力电子器件和电路知识,解决实际电力转换问题的能力。
2. 提高学生分析、设计和调试简单电力电子电路的能力。
3. 培养学生运用电力电子控制策略,优化电力转换系统性能的技能。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣和热情,激发学生学习主动性和创新精神。
2. 培养学生严谨的科学态度,注重实践操作的安全性和可靠性。
3. 引导学生关注电力电子技术在节能减排、可持续发展等方面的应用,培养环保意识和责任感。
本课程针对高年级学生,结合电力电子学科特点,注重理论与实践相结合,旨在提高学生的专业知识水平和实践能力。
课程目标具体、可衡量,便于教师进行教学设计和评估,同时充分考虑学生的认知特点,使学生在掌握电力电子技术基本原理的基础上,能够解决实际问题,培养创新精神和实践操作能力。
二、教学内容本章节教学内容主要包括以下三个方面:1. 电力电子器件原理与特性- 基本电力电子器件(如:二极管、晶体管、晶闸管等)的工作原理、特性参数及应用。
- 教材章节:第1章《电力电子器件》。
2. 电力电子电路拓扑结构与分析- 常见电力电子电路拓扑(如:整流电路、逆变电路、斩波电路等)的组成、工作原理及性能分析。
- 教材章节:第2章《电力电子电路》。
3. 电力电子装置控制策略与应用- 电力电子装置控制策略(如:相控、PWM控制等)的原理、实现方法及其对电力转换性能的影响。
- 教材章节:第3章《电力电子装置的控制》。
教学进度安排:1. 课时分配:共12课时,每个部分各4课时。
2. 教学内容逐步深入,从基本器件原理到电路拓扑分析,最后探讨控制策略及其应用。
电力电子技术课程设计说明书三相半波可控整流电路设计学生姓名:李明雨学号:1307044353学生姓名:李秋月学号:1307044357学院:计算机与控制工程学院专业:电气工程及其自动化指导教师:李晓秦鹏2016年 1月中北大学课程设计任务书2015/2016 学年第一学期学院:计算机与控制工程学院专业:电气工程及其自动化学生姓名:李明雨学号:1307044353 学生姓名:李秋月学号:1307044357 课程设计题目:三相半波可控整流电路设计起迄日期: 2015年12月27日~2016年1月8日课程设计地点:德怀楼八层虚拟仿真实验室指导教师:李晓秦鹏学科部副主任:刘天野下达任务书日期: 2015 年 12月 26日课程设计任务书课程设计任务书目录1 引言 (1)2 设计方案论证 (2)2. 1 电路原理图 (2)2.2 设计指标 (2)2.3 工作原理 (2)3 参数的计算 (6)4 触发角参数计算 (7)5 触发电路的设计 (7)6 硬件电路设计及描述 (8)6.1 建立仿真模型 (8)6. 2 仿真结果与分析 (8)7 总结 (10)8 附录 (11)参考文献 (12)1 引言整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。
大多数整流电路由变压器、整流主电路和滤波器等组成。
当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。
其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
随着时代的进步和科技的发展,拖动控制的电机调速系统在工农业生产、交通运输以及日常生活中起着越来越重要的作用,因此,对电机调速的研究有着积极的意义.长期以来,直流电机被广泛应用于调速系统中,而且一直在调速领域占居主导地位,这主要是因为直流电机不仅调速方便,而且在磁场一定的条件下,转速和电枢电压成正比,转矩容易被控制;同时具有良好的起动性能,能较平滑和经济地调节速度。
电力电子课程设计完整版一、教学目标本课程旨在电力电子领域提供一个全面的学习框架,通过深入理解电力电子的基本原理、关键技术和应用实践,使学生能够:1.知识目标:–描述电力电子的基本概念、发展和分类。
–解释电力电子器件的工作原理和特性,包括二极管、晶闸管、GTO、IGBT等。
–阐述电力电子电路的控制策略和设计方法。
–分析电力电子系统的效率、损耗和稳定性问题。
2.技能目标:–能够识别和分析不同类型的电力电子器件和电路。
–设计简单的电力电子转换电路,如AC-DC、DC-DC和DC-AC 转换器。
–运用仿真软件对电力电子系统进行模拟和优化。
–进行电力电子设备的故障诊断和维护。
3.情感态度价值观目标:–培养对电力电子技术在现代社会应用重要性的认识。
–强化节能减排和绿色技术的意识,在设计中考虑可持续性。
–激发对电力电子领域创新的兴趣,以促进技术进步和社会发展。
二、教学内容本课程的教学内容围绕电力电子的基本理论、器件结构、电路设计及其应用展开,具体包括:1.电力电子导论:电力电子的历史、发展趋势和其在现代电力系统中的应用。
2.电力电子器件:各类电力电子器件的结构、工作原理和特性分析。
3.电力电子电路:常用电力电子电路的拓扑结构、控制策略及其性能分析。
4.功率因数校正:功率因数的概念、功率因数校正电路的设计与应用。
5.变频技术:变频器的工作原理、变频技术的应用领域。
6.电力电子仿真:使用仿真工具对电力电子电路进行模拟和分析。
三、教学方法为了提高学生的综合能力和实践技能,本课程将采用多种教学方法:1.讲授法:用于基础理论知识和关键概念的传授。
2.案例分析法:分析具体的电力电子应用案例,加深对理论的理解。
3.实验法:通过实验操作,培养学生的动手能力和问题解决能力。
4.讨论法:分组讨论,促进学生之间的交流与合作,激发创新思维。
四、教学资源为确保高质量的教学效果,将充分利用以下教学资源:1.教材:《电力电子学》及相关辅助教材。
1 绪论《电力电子技术》课程是一门专业技术基础课,电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。
其目的是训练学生综合运用学过的各种变流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力,使学生进一步加深对变流电路基本理论的理解和基本技能的运用,为今后的学习和工作打下坚实的基础。
《电力电子技术》课程设计是配合交流电路理论教学,为自动化专业开设的专业基础技术技能设计,课程设计对自动化专业的学生是一个非常重要的实践教学环节。
通过设计能够使学生巩固﹑加深对变流电路基本理论的理解,提高学生运用电路基本理论分析和处理实际问题的能力,培养学生的创新精神和创新能力。
了解并掌握单相无源逆变的变流方式和工作过程,分析各过程中器件的开通及关断情况,IGBT在一周期内导通180°,电流连续。
1.1IGBT单相电压型半桥无源逆变电路1.1.1单相电压型逆变电路(1)半桥逆变电路电路结构:见图1-1。
工作原理:V1和V2栅极信号各半周正偏、半周反偏,互补。
u o为矩形波,幅值为Um=Ud/2,i o 波形随负载而异,感性负载时,图1-1b,V1或V2通时,i o和u o同方向,直流侧向负载提供能量,VD1或VD2通时,i o和u o反向,电感中贮能向直流侧反馈,VD1、VD2称为反馈二极管,还使i o连续,又称续流二极管。
图1-1单相半桥电压型逆变电路及其工作波形优点:简单,使用器件少。
缺点:交流电压幅值U d/2,直流侧需两电容器串联,要控制两者电压均衡,用于几k W以下的小功率逆变电源。
1.1.2 IGBT绝缘栅双极型晶体管IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
电力电子升降压变换器课程设计[推荐]第一篇:电力电子升降压变换器课程设计[推荐]中北大学电子技术课程设计说明书绪论《电力电子技术》课程是一门专业技术基础课,电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。
其目的是训练学生综合运用学过的变流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力,使学生进一步加深对变流电路基本理论的理解和基本技能的运用,为今后的学习和工作打下坚实的基础。
《电力电子技术》课程设计是配合变流电路理论教学,为自动化专业开设的专业基础技术技能设计,课程设计对自动化专业的学生是一个非常重要的实践教学环节。
通过设计能够使学生巩固、加深对变流电路基本理论的理解,提高学生运用电路基本理论分析和处理实际问题的能力,培养学生的创新精神和创新能力。
斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。
直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。
应用Matlab的可视化仿真工具Simulink建立了电路的仿真模型,在此基础上对升降压斩波Boost—Buck电路进行了较详细的仿真分析。
本文分析了升降压斩波电路的工作原理,又用Matlab对升压-降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。
升降压斩波电路的设计中北大学电子技术课程设计说明书2.1升降压斩波电路工作原理(1)V通时,电源E经V向L供电使其贮能,此时电流为i1。
同时,C维持输出电压恒定并向负载R供电。
(2)V断时,L的能量向负载释放,电流为i2。
负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。
a)原理图b)波形图图(3)升压/降压斩波电路的原理图及波形图数量关系:稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即:中北大学电子技术课程设计说明书⎰当V处于通态时,uLT0uLdt=0=E;当V处于断态时,uL=-uo;于是:Eton=U0toff所以输出电压为: U0=tontαE=onE=E toffT-ton1-α由此可见,改变导通占空比α,就能够控制斩波电路输出电压U。
1 引言高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。
它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。
BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。
2.降压斩波电路的设计目的(1). 通过对降压斩波电路(buck chopper)的设计,掌握buck chopper电路的工作原理,综合运用所学知识,进行buck chopper电路和系统设计的能力。
(2). 了解与熟悉buck chopper电路拓扑、控制方法。
(3). 理解和掌握buck chopper电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。
(4). 具有一定的电力电子电路及系统实验和调试的能力2. 1降压斩波电路的设计内容及要求(1). 设计内容: 对Buck Chopper电路的主电路和控制电路进行设计,参数如下:直流电压E=200V,负载中R=10 ,L值极大,反电动式E1=30V。
(2).设计要求(a)理论设计:了解掌握Buck Chopper电路的工作原理,设计Buck Chopper电路的主电路和控制电路。
包括:IGBT电流,电压额定的选择,画出完整的主电路原理图和控制电路原理图、列出主电路所用元器件的明细表。
(b).仿真实验:利用MATLAB仿真软件对Buck Chopper 电路主电路和控制电路进行仿真建模设计2.2.降压斩波电路主电路基本原理降压斩波电路主电路工作原理图如下:图1 降压斩波电路主电路工作原理图t=0时刻驱动V 导通,电源E 向负载供电,负载电压0U E =,负载电流0i 按指数曲线上升。
t=t1时控制V 关断,二极管VD 续流,负载电压0U 近似为零,负载电流0i 呈指数曲线下降。
电力电子课程设计内容一、教学目标本课程旨在让学生了解和掌握电力电子的基本原理、技术和应用,培养学生对电力电子领域的兴趣和热情,提高学生的科学素养和工程实践能力。
具体目标如下:1.知识目标:通过本课程的学习,学生能够理解电力电子的基本概念、原理和特性,掌握电力电子器件的工作原理和选用方法,了解电力电子技术的应用领域和发展趋势。
2.技能目标:学生能够运用电力电子的基本原理和方法,分析和解决电力电子系统中的实际问题,具备一定的电力电子系统设计和调试能力。
3.情感态度价值观目标:通过本课程的学习,学生能够认识到电力电子技术在现代社会中的重要地位,培养对电力电子技术的敬畏之心,激发学生对科学研究的热情和责任感。
二、教学内容本课程的教学内容主要包括电力电子的基本原理、电力电子器件、电力电子电路和电力电子技术应用四个部分。
具体安排如下:1.电力电子的基本原理:介绍电力电子技术的基本概念、特点和分类,阐述电力电子器件的工作原理和性能参数。
2.电力电子器件:讲解常用的电力电子器件,如晶闸管、GTO、IGBT等,及其选用方法和应用场合。
3.电力电子电路:分析电力电子电路的基本结构和工作原理,包括整流电路、逆变电路、变频电路等。
4.电力电子技术应用:介绍电力电子技术在各个领域的应用实例,如电力系统、交通运输、工业控制等。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。
具体方法如下:1.讲授法:通过教师的讲解,使学生掌握电力电子的基本原理和知识。
2.讨论法:学生进行课堂讨论,培养学生的思考能力和团队协作精神。
3.案例分析法:分析实际案例,使学生更好地理解电力电子技术的应用。
4.实验法:安排实验课程,让学生亲自动手操作,提高学生的实践能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习资料。
2.参考书:提供丰富的参考书籍,拓展学生的知识视野。
中北大学计算机与控制工程学院课设报告《电力工程基础课设》课设名称某机器工厂供配电系统的电气设计专业电气工程与智能控制班级 14070541学号 1407054147姓名袁航指导老师范锦彪崔春生摘要随着经济的发展和现代工业建设的迅速崛起,供电系统的设计越来越全面、系统,工厂用电量迅速增长,对电能质量、技术经济状况、供电的可靠性指标也日益提高,因此对供电设计也有了更高、更完善的要求。
设计是否合理,不仅直接影响基建投资、运行费用和有色金属的消耗量,也会反映在供电的可靠性和安全生产方面,它和企业的经济效益、设备人身安全密切相关。
变电所的设计,必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,结合国情合理地确定设计方案;变电所的设计,必须坚持节约用地的原则。
变电所应建在靠近负荷中心位置,这样可以节省线材,降低电能损耗,提高电压质量,这是供配电系统设计的一条重要原则。
随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。
变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。
关键词:供电系统;变电所设计AbstractWith the economic development and modern industrial building of the rapid rise of the design of the power supply system more and more comprehensive, systematic, and rapid growth of electricity consumption in factories, on the power quality, technical and economic conditions, indicators of the reliability of electricity supply improves, so Design of power supply has been higher and more comprehensive requirements. The design is reasonable, not only directly affects the investment in infrastructure, operation costs and the consumption of non-ferrous metals, will be reflected in the electricity supply reliability and security of production, it is the economic efficiency of enterprises, is closely related to personal safety equipment.The transformer substation design, must embark from the overall situation, has unified planning, according to the load nature, the using electricity capacity, the project characteristic and the local power supply condition, the union national condition determines the design proposal reasonably; The transformer substation design, must insist that saves the land principle. The transformer substation should construct is approaching the load center position, like this may save the wire rod, reduces the electrical energy to lose, improves the voltagequality, this is for an electrical power distribution system design cardinal principle.With high-power technology, and the complexity of the rapid development of the power system in the supply of electricity from power generation in all areas, through the use of new technologies are constantly changing. Substation power system as a key link in the same field of new technologies has been fully developed.Key words : Power supply system ;Transformer substation design目录第一章设计任务及要求 (1)一、设计要求 (1)二、设计依据 (1)三、负荷性质 (1)四、电源 (2)五、设计范围 (2)第二章机械厂的供配电系统电气设计 (3)一、金工车间的计算负荷 (3)1.1 除起重机外的设备组负荷 (3)1.2 起重机负荷 (4)1.3 金工车间照明的负荷 (4)1.4 金工车间总负荷计算 (4)二、全厂计算负荷的确定 (4)2.1 负荷计算的目的 (4)2.2 全厂负荷计算 (5)三、车间变电所变压器的选择 (5)四、确定总降压变电所变压器容量及无功功率补偿 (6)4.1 总变压器容量的确定 (6)4.2 无功功率补偿 (6)五、计算短路电流 (7)5.1 求各元件电抗标幺值 (8)5.2 系统最大运行方式下三相短路电流及短路容量计算 (8)六、高压电气设备选择 (10)6.1 主变压器35kV侧设备 (10)6.2 主变压器10kV侧设备 (10)6.3 10kV馈电线路设备 (11)七、厂区高配电系统线路选择 (11)7.1 主变压器35kV侧引出线 (11)7.2 10kV汇流母线与10kV侧引出线 (12)7.3 10kV配电线路 (12)八.总降压变电所电气主接线 (13)参考文献 (14)第一章设计任务及要求一、设计要求要求根据本厂所能取得的电源以及本厂用电负荷的实际情况,并考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主接线方案以及高低压设备和进出线,确定二次回路方案选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计计算说明书,绘出设计图样。
中北大学-电力电子课程设计
————————————————————————————————作者:————————————————————————————————日期:
中北大学
课程设计任务书
08/09 学年第一学期
学院:信息与通信工程学院
专业:自动化
学生姓名:学号:
课程设计题目:三相桥式全控整流电路设计
起迄日期: 1 月5 日~ 1 月11 日
课程设计地点:中北大学
指导教师:刘长明
系主任:王忠庆
下达任务书日期: 09 年1月 4日
课 程 设 计 任 务 书 1.设计目的:
通过熟练Multisim2001软件,EWB 仿真软件,根据所学电力电子技术课程的知识,设计一个以基础为主带有一定综合性的应用电路并进行仿真。
2.设计内容和要求
一、实验内容:
三相桥式全控整流电路设计:画出三相桥式全控整流电路图,输入交流电压110v ,通过仿真软件观测电阻负载时的α为30°,60°,90°时负载上的输出电压波形及晶闸管端电压的波形;分析其变化原因。
二、实验原理:
(1)仿真电路图由三相电源、六个晶闸管及对应的触发信号源加上四通道示波器一个组成。
(2)对触发脉冲宽度及相位的要求时门极触发脉冲需要大于60的宽脉冲或间隔60的双窄脉冲。
共阴极正组每只晶闸管门极脉冲相位差为120度。
共阳极每只晶闸管的门极脉冲相位差为120。
接在同一项上的晶闸管的门极脉冲的相位差为180度。
接图的方法是保证晶闸管的触发顺序为1-2-3-4-5-6。
(3)在晶闸管需导通的区域仅用初始的一个窄脉冲去触发的方式称“单窄脉冲触发” ,每个元件除了在各自的换流点处有一个脉冲之外,还在60度电角度之后的下一个导通元件的导通时刻补了一个脉冲。
所补的脉冲在电流连续的稳态工作时并不起任何作用,但它却是电路启动及在电流断续时使电路正常工作所不可缺少的,这种触发方式称之为“双窄脉冲触发”。
若把上面的双窄脉冲连成一个宽脉冲,电路当然也可正常工作,这种触发方式称之为“宽脉冲触发” 。
由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。
(4)由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。
为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60(必须小于120°),一般取80°~100°,称为宽脉冲触发。
另一种是在触发某一号晶闸管时,同时给前一号晶闸管补发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。
这种方法称双脉冲触发。
整流输出的电压,也就是负载上的电压。
整流输出的电压应该是两相电压相减后的波形,实际上都属于线电压,波头ab u 、ac u 、bc u 、ba u 、ca u 、cb u 均为线电压的一部分,是上述线电压的包络线。
相电压的交点与线电压的交点在同一角度位置上,故线电压的交点同样是自然换相点,同时亦可看出,三相桥式全控的整流电压在一个周期内脉动六次,脉动频率为6 × 50=300赫,比三相半波时大一倍。
三、三相桥式全控整流电路设计:
1、画出三相桥式全控整流电路图,输入交流电压110v如图所示:
2、电压波形仿真图
a、当α=30°时负载上的输出电压波形及晶闸管端电压的波形分别如图所示:
负载上的电压输出波形
晶闸管端的电压波形
b、当α=60°时负载上的输出电压波形及晶闸管端电压的波形分别如图所示:
负载上的电压输出波形
晶闸管端的电压波形
c、当α=90°时负载上的输出电压波形及晶闸管端电压的波形分别如图所示:
负载上的电压输出波形
晶闸管端的电压波形
四、分析变化原因:
(1)三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。
(2)三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管l、3和5依次导通,因此它们的触发脉冲之间的相位差应为120°。
对于共阳极组触发脉冲的要求是保证晶闸管2、4和6依次导通,因此它们的触发脉冲之间的相位差也是120°。
(3)由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。
(4)三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。
相邻两脉冲的相位差是60°。
(5) 由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。
为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60°(必须小于120°),一般取80°~100°,称为宽脉冲触发。
另一种是在触发某一号晶闸管时,同时给前一号晶闸管补发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。
这种方法称双脉冲触发。
(6)依据上述条件,再根据出发角的不同,即可得出负载电压变化时的波形以及晶闸管端的电压波形,且它们都为线电压。
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:
(1)查阅资料,确定系统设计方案
(2)说明设计原理,电路图,软件仿真结果。
(3)撰写课程设计说明书
课程设计任务书
4.主要参考文献:
《电力电子技术基础》冷增祥,徐以荣编
《现代电力电子技术》张立、赵永健主编
《电力电子与运动控制系统》李鹤轩、张力主编
《现代电力电子技术及应用》王唯平主编
《电力电子变流技术》王兆安、黄俊主编
《电力电子技术》丁道宏主编
5.设计成果形式及要求:
课程设计说明书1份
设计原理分析1份
电路及仿真结果1份
6.工作计划及进度:
09年1月5日收集整理资料,确定控制方案
1月6日~ 1月7日设计电路
1月8日~ 1月9日进行仿真
1月10日撰写课程设计说明书
1月11日答辩
系主任审查意见:
签字:
年月日。