当前位置:文档之家› 轧钢车间加热炉设计

轧钢车间加热炉设计

轧钢车间加热炉设计
轧钢车间加热炉设计

轧钢车间加热炉设计

创建时间:2008-08-02

轧钢车间加热炉设计(design of reheating furnace for rolling mill)

对型钢、中厚板、热轧带钢及线材等轧钢厂坯料加热炉的设计。设计内容包括炉型选择、确定装出料方式与炉子设施的平面布置、炉子加热能力与座数选择、炉温制度与炉型结构选择、炉子供热负荷计算及其分配比例、炉子尺寸设计以及炉子的检测与自动化操作。

炉型选择轧钢车间加热炉主要有推钢式加热炉和步进式加热炉两大类型。一般在设计前期根据原料和燃料、生产规模与产品大纲、车间布置、加热与轧制工艺要求以及整个轧制线的装备水平等原始条件综合考虑选择。步进式加热炉始建于20世纪60年代中期,与传统的推钢式加热炉相比,具有加热质量好、热工控制与操作灵活、劳动环境好等优点,特别是炉长不受推钢长度的限制,可以提高炉子的容量和产量,更适应当代轧机向大型化、高速化与现代化发展的需要。步进式加热炉在配合连铸坯热装时有明显的优越性,一般采用炉底分段传动方式,即在连铸开始浇铸时停止向炉内装料,而炉子仍按轧制节奏连续出钢,炉子装料侧一段炉底空出,当热连铸坯送到后即迅速装入炉内,尽量减少热坯的散热损失,同时集中加热热连铸坯可以有效地提高炉子产量和降低燃料消耗。推钢式加热炉和步进式加热炉的主要技术经济指标,如单位炉底面积产量和热耗,基本相同或相近,但步进式加热炉的最高小时产量则可大大超过推钢式加热炉,热耗也较低。步进式加热炉的钢坯在炉时间短,其钢坯氧化烧损率、脱碳率及废品率低于推钢式加热炉。步进梁式加热炉的冷却水消耗量比推钢式加热炉约多一倍,因此水系统投资要高一些,对操作及维护水平的要求也较高。

现在新建的具有经济规模的各类轧钢厂基本上都选用了步进式加热炉;一些老厂如美国底特律钢厂热轧车间、法国索拉克和恩西俄厂的热轧车间、日本和歌山热连轧厂与鹿岛厚板厂以及加拿大汉密尔顿的多发斯科厂等,在改建或扩建中都选用了步进式加热炉替代原有的推钢式加热炉。中国在70年代设计和建设步进式加热炉,但当前轧钢加热炉,特别是中小型轧钢厂推钢式加热炉仍较多,这与中国的原燃料条件等多种因素有关,加热短小钢锭不能采用步进式加热炉。

设计加热炉时还要决定炉子的热工制度、结构型式、主要技术经济指标、燃烧装置的型式与数量、排烟和余热利用方式、出渣方式等。

装出料方式与炉子设施的平面布置按照工艺要求确定加热炉的装出料方式及炉子在车间的位置。炉子的平面布置设计,包括燃烧系统管道设施、排烟系统及热回收设施、冷却水与汽化冷却系统、排渣设施以及炉子区域操作检修平台等的平面布置。炉子仪表室及计算机房的位置、尺寸及炉子设施占用的轧钢跨、原料跨等按设计要求确定。

装出料方式装料方式有端装和侧装两种,出料方式也有端出和侧出之分。(1)端装料。其结构一般用炉后辊道上料,中小型加热炉也有用固定台架、活动台架上料的。(2)侧装料。分辊道装料和推入机装料。辊道装料用于步进式炉,由安装在炉内后端的悬臂辊道将坯料送入炉内,由炉后推钢杆将其推到固定梁上,也有直接由步进梁托到固定梁上的;推入机装料借炉外辊道将坯料送至炉侧装料门前再用侧推入机推到炉内的固定炉床上,由炉后推钢机向前推送,可用于推钢式炉与步进式炉。(3)端出料。有重力滑坡式出料及托出机出料两种。滑坡式结构用得比较普遍,炉内滑道与炉前出料辊道高差约1.2~2m,用斜坡滑道连接,滑坡俯角约32。~35。,坯料可借自重克服摩擦阻力滑至炉前辊道上,辊道对面设缓冲器。各部尺寸及斜坡与辊道之间的弧形滑板设计多凭经验确定。这种结构的主要缺点是:出料口低于炉内坯料表面,炉子易吸

入大量冷风,热损失大;当坯料较重或结构尺寸角度不合适时,易砸坯辊道与缓冲器;长料在下滑时容易歪斜而卡在滑坡上。坯料断面较小时也不宜采用端出料。现代大型板坯加热炉已采用托出机出料,可避免上述缺点。(4)侧出料。其结构分用侧出钢机推出及悬臂辊出料两种。前者用于推钢式和步进式两种型式的加热炉,后者只用于步进式炉。侧出料结构比较严密,没有吸冷风或冒火的弊病,炉内气氛容易控制并且节能,适用于加热坯料断面较小及合金钢的加热炉。板坯加热炉一般不采用侧出料,因为发生粘钢时很难处理。有些国家用悬臂辊道侧出料的步进式板坯加热炉,坯料宽。500~600mm。用侧推方式装料与出料时占地面积大,当车轧zha间炉子座数多于两座时很难布置。

炉内装料可以单排或双排(包括单排装长料和双排装短料),这要根据坯料长度范围、单炉产量、车间占地以及投资经济合理与节能等因素确定。

炉子设施的平面布置炉子两侧净空尺寸及各种平台、梯子的设置,要满足生产操作与检修的要求并符合有关的安全规定,要考虑“回炉坯”运送设施的位置。

煤气、重油、蒸汽、空气及冷却水系统的设计与布置,要考虑生产控制功能完备,检修方便,符合安全规定,不妨碍交通和吊车操作及设备检修等多种因素。

地下烟道要尽量缩短,换热器前后一般不设旁通烟道,尽可能不采用多座炉子合用一座烟囱。换热器的位置要考虑更换吊装方便及清扫位置,热风放散管应引出厂房,避免在车间内产生热污染与噪音。

炉子加热能力与座数选择炉子加热能力包括单炉小时产量和车间炉子总加热能力。

单座炉子小时产量的计算理论计算法是根据所选定的炉型、炉温制度及钢料受热条件,用钢材加热理论公式计算钢料所需的加热时间。炉内装料量除以加热时间等于炉子小时产量,加热时间乘以所要求的炉子小时产量即为炉内所需的装料量,根据装料量即可求出炉子有效长度。由于炉子加热的坯料规格、钢种较多,可按工艺要求选定代表规格进行计算。加热方坯的步进式炉,炉内坯料之间留有间隙,能改善受热条件,缩短加热时间,但炉内装料量亦随之减少。理论分析表明,在步进底式炉中,当坯料间隙与方坯边长比为0.35~0.5时炉子产量最大,相当于无间隙布料时的105%~108%,在步进梁式炉中,该比值在0.2~0.3时炉子产量最大,相当于无间隙布料时的103%。工程设计常用经验指标即单位有效炉底面积的小时产量(简称炉底强度)计算炉子产量。70年代初期,由于轧钢技术的不断改进,新建和改造轧机的产量大幅度提高,但未能按同样幅度提高加热炉的产量,为了满足轧机产量,常用提高加热炉温和炉尾排烟温度来强化操作,有时炉底强度甚至高达900~1000kg/(m2?h),使热耗量大为增加。70年代发生世界能源危机之后,加热炉设计采取了许多节能措施,其中之一是尽量延长炉子不供热段的长度,充分利用烟气预热钢料,因此相应降低了炉底强度。80年代以来,设计加热炉通常采用的炉底强度参考指标见表。

在选用上列指标时,要具体分析影响产量的各种有利与不利因素,如加热坯料的钢种、厚度、装料温度、要求的加热温度与均匀性、炉型与温度制度、燃料的热值与空气预热温度等。热装料时不适用上列指标,可用理论公式计算钢坯的加热时间来确定炉子产量或有效

炉长。冷热料混装时,冷料加热时间并不能缩短,所以仍需考虑炉子的小时产量与轧机能力的平衡。

车间炉子总加热能力的确定要按照轧制不同品种的小时产量和年工作小时进行计算。在轧钢生产中当坯料和产品规格品种变化时,轧机小时产量的波动幅度较大,如果加热炉按满足轧机最大小时产量设计,则低产量生产时会浪费燃料并引起操作困难。因此在通过对轧制线产量进行平衡计算后,在轧机的作业率和负荷率能够满足年产量的情况下,可以按满足大多数品种的小时产量设计加热炉,对于少数小时产量大的品种,炉子能力限制轧机产量是可以容许的。至于配有多座加热炉的大产量轧机,在确定炉子总加热能力时,则应更多考虑高产品种的要求,因为在低产量时可以减少开炉座数来适应。

要求在设计中预留增加加热能力时,可以考虑预留增加加热炉座数的位置,或者有意加长炉子的预热段。

炉温制度与炉型结构选择这是加热炉设计首先要确定的重要问题,它直接影响炉子的主要技术性能。选定时要考虑炉温制度、单面加热或双面加热、炉型曲线与供热段(点)布置。

炉温制度对于加热坯料厚度较小或对坯料加热内外温差要求不严的中小型加热炉,多采用两段式炉温制度,即只有加热段和不供热的预热段。对于坯料厚度较大或温差要求比较严格的加热炉则采用三段式炉温制度,即在出料段再设一个均热段,其温度低于加热段而略高于坯料表面温度,供热强度很小,以使坯料表面与中心温差缩小到允许范围。按三段式炉温制度设计的加热炉也可以按两段式炉温操作。大产量的板坯、型钢及高速线材加热炉均采用三段式加热炉。单面加热或双面加热加热厚度小于90~100mm的坯料时,可选用单面加热工艺,即选用没有下加热的推钢式炉或步进底式炉,其单位炉底面积小时产量适中而热耗较低;加热厚度大于100mm的坯料时,可以选用双面加热工艺,即选用上下加热的推钢式炉或步进梁式炉。由于步进梁式炉坯料有间隙,120~130mm的方坯或圆坯也可采用单面加热。由于炉内滑道间距(纵水管或步进梁与固定梁)等结构上的限制,短坯料不能采用双面加热,推钢式炉坯料长度应大于1000mm,步进梁式炉坯料长度宜大于2500mm,否则其下表面遮蔽大、受热差且运行不可靠,容易发生“掉道”事故。中国加热50~60mm方坯的小型推钢式加热炉也多采用上下加热方式,主要是考虑炉底清渣方便,避免炉底结渣带来的一系列问题。为了避免水管“黑印”对小坯料的不利影响及节约燃料,还有采用无水冷滑道(如用棕刚玉滑轨)两面加热的推钢式炉,其坯料断面尺寸不大于75mm×75mm,滑轨寿命为6~12个月。高速

线材轧机加热炉的坯料长度为12~22m,冷料进炉时单面受热易变形弯曲,要求两面受热,常采用进料端

为步进梁的梁底组合式步进炉。

炉型曲线与供热段(点)布置它与上述两个内容相对应且与燃料种类有关。两段式加热炉主要靠端部

轴向烧嘴供热,下加热采用轴向烧嘴或侧烧嘴,产量较大的炉子还需要增加上部侧烧嘴。加热段炉膛较高,以保证燃料燃烧空间和增加辐射传热的需要;预热段炉膛较低,以增强对流传热。直接烧煤的中小型推钢

式加热炉只能采用两段式炉温制度,单面加热的由端部(头炉)供热,两面加热的还有一个下部供热点(腰炉)。三段式加热炉均热段供热能力较小。均热段与上下加热段之间的炉顶有一个“压下”区(即炉顶略有下降),且炉底有一个凸台以减少两段之间的温度干扰。产量较大、炉体较长的三段式炉,供热负荷很大,往往要

增设第二个上下供热段。大型板坯加热炉多采用上下六点供热,有些烧煤气的加热炉均热段采用炉顶平焰

烧嘴供热或上加热全部采用炉顶烧嘴的平顶式加热炉。这种炉型供热点多,操作灵活,但结构及控制复杂,投资较高。

炉子供热负荷计算及其分配比例炉子供热负荷计算有热耗指标法与热平衡法。(1)热耗指标法。参照类似炉子的高产热耗指标示或热平衡测定数据分析选定,热耗指标常用的计量单位为kJ/kg或MJ/t或标煤kg/t,其中分母为加热炉料的重量。高产热耗指标乘以炉子最大小时产量即为炉子的最大供热负荷(kJ /h或MJ/h)。高产热耗指标是按加热炉满负荷生产下的加热量与燃料消耗量统计计算的,它低于包括炉

子待料、待轧、保温及修炉后升温等消耗在内的月或年平均热耗指标。两者的差异随轧制工艺与生产制度

不同而异,它反映着生产管理与炉子操作水平的高低以及炉子设备自身热性能的优劣。生产管理较好的车间,两者的比值约为0.73~0.85。90年代初世界较好的平均热耗指标是:中小型加热炉为1590~2000kJ /kg,线材与开坯加热炉为1380~1800kJ/kg,热连轧板加热炉为1460~1885kJ/kg,中厚板加热炉为1800~2300kJ/kg。世界一些先进的型钢、厚板热连轧机步进式炉的平均热耗可降到1170~1320kJ/kg,高速线材轧机加热炉为1050~1170kJ/kg。中国80年代设计中通常采用的年平均热耗指标为小型及线材

加热炉为1500~2000kJ/kg,中型加热炉为1700~2100kJ/kg,大型及厚板加热炉为1800~2540kJ/kg。中小型燃煤加热炉的热耗指标比上述指标约高30%~50%。(2)热平衡法。按炉子最大产量计算炉子的热

平衡,可求出该生产条件下的炉子最大燃料消耗量即最大供热负荷。

炉子供热负荷的分配比例是:炉子供热的设备能力按炉子最大供热负荷的115%~130%选用,主要

是考虑各供热段比例调整的灵活性以及个别烧嘴损坏的减量因素,实际供热量仍不大于所计算的最大供热量。两段式加热炉上下供热比例一般为40:60。典型的三段式加热炉供热比例为:均热段15%~25%,上加热20%~35%,下加热40%~60%。

炉子尺寸设计主要指炉子的长、宽及各段炉膛的长度与高(深)度尺寸。

加热炉的名义炉底面积等于炉膛宽度乘以有效炉底长度。

(1)炉膛宽度。根据坯料长度与装料排数确定,料排间和料排与炉墙间的空隙取0.15~0.3m。轧zha(2)炉长。有效炉底长度系指钢料在炉内有效加热所占的长度,根据炉子产量计算确定。端装侧出料的

炉子为炉尾砌体外缘至出料门中心线的距离;端装端出料的炉子为炉尾砌体外缘至出料滑坡折点的距离,

用托出机出料的炉子则算至钢坯在炉内最后位置的前端线;侧装料的炉子,其炉尾从侧装料门或辊道中心

线算起。炉子全长指前后端墙砌体外缘间的距离。

推钢式加热炉推钢时会产生拱钢现象,其炉长受允许推钢长度的限制,因此须校核。推钢长度等于

有效炉长加上炉尾至推钢机推头工作位置间的距离。炉子允许推钢长度与钢料的厚度、外形、圆角、平直度、推力、推钢速度及炉底状况等因素有关,目前尚无理论计算方法,一般采用最大推钢长度与最小坯料

厚度之比,即允许用推钢比的经验值来判断与校核。一般方坯可取200~250,板坯取250~300,原料条件较好时可超过上述比值。推钢机推力等于料排坯料重量乘其与炉底间的摩擦系数p。当为单面加热实炉底时u=0.8~1.0,当为双面加热水冷滑道有均热实炉底时u=0.55~0.6,当为全架空炉底时u=0.5,当为棕刚玉无水冷滑轨时,u=0.55。

步进式炉炉长无上述限制,但炉子过长时跑偏量也将增大。

(3)炉膛高度与炉子内型。它们直接影响炉子的加热能力和热量利用,目前设计尚无可靠的计算公式或指标,主要是根据类似炉子的经验来确定。炉子各段长度一般可根据钢材加热计算中各段加热时间的比例及类似炉子的实际情况决定,两段式加热炉的加热段和预热段长度各约占有效炉长的一半,产量较小的炉子加热段长度比例也要小一些,三段式加热炉均热段长度约占有效炉长的15%~25%,加热段占25%~40%,预热段占35%~50%;多点供热加热炉均热段和加热段总长可占70%以上。炉膛高度(或深度),指炉底滑道或固定梁顶面到炉顶或炉底表面之间的距离,在炉宽已定,各段长度比例相对稳定的条件下,它是决定炉膛空间大小、炉型曲线是否合适的关键尺寸。影响炉膛高度与炉型曲线的因素较多,根据理论分析与实践验证,炉膛空间大小应保证燃料的充分燃烧和被炉气充满,它随燃料种类、燃烧方式及热负荷的不同而异。在带入炉内同样热量条件下,低热值煤气的废气量要大于高热值煤气的,因此需要较大空间;燃重油和天然气的炉子炉膛一般较小;有焰燃烧时,火焰对钢料传热比例较无焰燃烧时大,此时炉膛高度要尽量保证火焰接近钢料而不应追求加大炉壁面积的作用。炉膛空间大小还应保证在既定的热负荷范围内炉膛压力分布合理,炉头与炉尾的压差要小。

炉子的检测与自动化操作加热炉要装设热工检测仪表。各段炉温指示或记录、换热器前烟温指示或记录、预热空气(煤气)温度指示、重油温度指示、燃料总流量记录、空气总流量指示、出料段炉膛压力指示、燃料与空气总管压力指示,煤气与空气低压信号等,均为必要的检测项目。有条件时应采用自动化仪表或微机实现自动控制。步进式炉的步进机械,采用可编程序控制器(PLC)实现手动、半自动和自动操作,装出料炉门与推钢机等应采用电气连锁。80年代以来,由于计算机的发展与普及,加热炉开始采用数学模型以优化炉子的操作。

相关词条:

轧钢车间加热炉设计冶金工厂工业炉设计

轧钢生产工艺流程介绍

轧钢生产工艺流程介绍 1、棒材生产线工艺流程 钢坯验收f加热f轧制f倍尺剪切f冷却f剪切f检验f包装f计量f入库 (1)钢坯验收=钢坯质量是关系到成品质量的关键,必须经过检查验收。 ①、钢坯验收程序包括:物卡核对、外形尺寸测量、表而质量检查、记录等。 ②、钢坯验收依据钢坯技术标准和内控技术条件进行,不合格钢坯不得入炉。 (2)、钢坯加热 钢坯加热是热轧生产工艺过程中的重要工序。 ①、钢坯加热的目的 钢坯加热的目的是提高钢的塑性,降低变形抗力,以便于轧制;正确的加热工艺,还可以消除或减轻钢坯内部组织缺陷。钢的加热工艺与钢材质量、轧机产量、能量消耗、轧机寿命等各项技术经济指标有直接关系。 ②、三段连续式加热炉 所谓的三段即:预热段、加热段和均热段。 预热段的作用:利用加热烟气余热对钢坯进行预加热,以节约燃料。(一般预加热 到 300?450°C) 加热段的作用:对预加热钢坯再加温至1150?1250°C,它是加热炉的主要供热段,决定炉子的加热生产能力。 均热段的作用:减少钢坯内外温差及消除水冷滑道黑印,稳定均匀加热质量。 ③、钢坯加热常见的几种缺陷 a、过热钢坯在高温长时间加热时,极易产生过热现象。钢坯产生过热现象主要表现在钢的组织晶粒过分长大变为粗晶组织,从而降低晶粒间的结合力,降低钢的可塑

性。过热钢在轧制时易产生拉裂,尤其边角部位。轻微过热时钢材表面产生裂纹, 影响钢材表而质M和力学性能。 为了避免产生过热缺陷,必须对加热温度和加热时间进行严格控制。 b、过烧 钢坯在高温长时间加热会变成粗大的结晶组织,同时晶粒边界上的低熔点非金属化 合物氧化而使结晶组织遭到破坏,使钢失去应有的强度和塑性,这种现象称为过 烧。 过烧钢在轧制时会产生严重的破裂。因此过烧是比过热更为严重的一种加热缺陷。 过烧钢除重新冶炼外无法挽救。 避免过烧的办法:合理控制加热温度和炉内氧化气氛,严格执行正确的加热制度和 待轧制度,避免温度过高。 ( C、温度不均 钢坯加热速度过快或轧制机时产量大于加热能力时易产生这种现象。温度不均的钢坯,轧制时轧件尺寸精度难以稳定控制,且易造成轧制事故或设备事故。 避免方法:合理控制炉温和加热速度;做好轧制与加热的联系衔接。 d、氧化烧损 钢坯在室温状态就产生氧化,只是氧化速度较慢而己,随着加热温度的升高氧化速度加快,当钢坯加热到1100-1200°C时,在炉气的作用下进行强烈的氧化而生成氧化铁皮。氧化铁皮的产生,增加了加热烧损,造成成材率指标下降。 减少氧化烧损的措施:合理加热制度并正确操作,控制好炉内气氛。 e、脱碳 钢坯在加热时,表面含碳量减少的现象称脱碳,易脱碳的钢一般是含碳量较高的优

毕业设计-电加热炉控制系统设计

密级: NANCHANGUNIVERSITY 学士学位论文THESIS OF BACHELOR (2006 —2010年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

轧钢车间加热炉设计

轧钢车间加热炉设计 创建时间:2008-08-02 轧钢车间加热炉设计(design of reheating furnace for rolling mill) 对型钢、中厚板、热轧带钢及线材等轧钢厂坯料加热炉的设计。设计内容包括炉型选择、确定装出料方式与炉子设施的平面布置、炉子加热能力与座数选择、炉温制度与炉型结构选择、炉子供热负荷计算及其分配比例、炉子尺寸设计以及炉子的检测与自动化操作。 炉型选择轧钢车间加热炉主要有推钢式加热炉和步进式加热炉两大类型。一般在设计前期根据原料和燃料、生产规模与产品大纲、车间布置、加热与轧制工艺要求以及整个轧制线的装备水平等原始条件综合考虑选择。步进式加热炉始建于20世纪60年代中期,与传统的推钢式加热炉相比,具有加热质量好、热工控制与操作灵活、劳动环境好等优点,特别是炉长不受推钢长度的限制,可以提高炉子的容量和产量,更适应当代轧机向大型化、高速化与现代化发展的需要。步进式加热炉在配合连铸坯热装时有明显的优越性,一般采用炉底分段传动方式,即在连铸开始浇铸时停止向炉内装料,而炉子仍按轧制节奏连续出钢,炉子装料侧一段炉底空出,当热连铸坯送到后即迅速装入炉内,尽量减少热坯的散热损失,同时集中加热热连铸坯可以有效地提高炉子产量和降低燃料消耗。推钢式加热炉和步进式加热炉的主要技术经济指标,如单位炉底面积产量和热耗,基本相同或相近,但步进式加热炉的最高小时产量则可大大超过推钢式加热炉,热耗也较低。步进式加热炉的钢坯在炉时间短,其钢坯氧化烧损率、脱碳率及废品率低于推钢式加热炉。步进梁式加热炉的冷却水消耗量比推钢式加热炉约多一倍,因此水系统投资要高一些,对操作及维护水平的要求也较高。 现在新建的具有经济规模的各类轧钢厂基本上都选用了步进式加热炉;一些老厂如美国底特律钢厂热轧车间、法国索拉克和恩西俄厂的热轧车间、日本和歌山热连轧厂与鹿岛厚板厂以及加拿大汉密尔顿的多发斯科厂等,在改建或扩建中都选用了步进式加热炉替代原有的推钢式加热炉。中国在70年代设计和建设步进式加热炉,但当前轧钢加热炉,特别是中小型轧钢厂推钢式加热炉仍较多,这与中国的原燃料条件等多种因素有关,加热短小钢锭不能采用步进式加热炉。 设计加热炉时还要决定炉子的热工制度、结构型式、主要技术经济指标、燃烧装置的型式与数量、排烟和余热利用方式、出渣方式等。 装出料方式与炉子设施的平面布置按照工艺要求确定加热炉的装出料方式及炉子在车间的位置。炉子的平面布置设计,包括燃烧系统管道设施、排烟系统及热回收设施、冷却水与汽化冷却系统、排渣设施以及炉子区域操作检修平台等的平面布置。炉子仪表室及计算机房的位置、尺寸及炉子设施占用的轧钢跨、原料跨等按设计要求确定。 装出料方式装料方式有端装和侧装两种,出料方式也有端出和侧出之分。(1)端装料。其结构一般用炉后辊道上料,中小型加热炉也有用固定台架、活动台架上料的。(2)侧装料。分辊道装料和推入机装料。辊道装料用于步进式炉,由安装在炉内后端的悬臂辊道将坯料送入炉内,由炉后推钢杆将其推到固定梁上,也有直接由步进梁托到固定梁上的;推入机装料借炉外辊道将坯料送至炉侧装料门前再用侧推入机推到炉内的固定炉床上,由炉后推钢机向前推送,可用于推钢式炉与步进式炉。(3)端出料。有重力滑坡式出料及托出机出料两种。滑坡式结构用得比较普遍,炉内滑道与炉前出料辊道高差约1.2~2m,用斜坡滑道连接,滑坡俯角约32。~35。,坯料可借自重克服摩擦阻力滑至炉前辊道上,辊道对面设缓冲器。各部尺寸及斜坡与辊道之间的弧形滑板设计多凭经验确定。这种结构的主要缺点是:出料口低于炉内坯料表面,炉子易吸

轧钢液压系统油温过高的原因及预防优选稿

轧钢液压系统油温过高的原因及预防 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

轧钢液压系统油温过高的原因及预防 1、液压油油温过高的危害 ①液压油粘度、容积效率和液压系统工作效率均下降,泄漏增加,甚至使设备无法正常工作。 ②液压系统的零件因过热而膨胀,破坏了相对运动零件原来正常的配合间隙,导致摩擦阻力增加、液压阀容易卡死,同时,使润滑油膜变薄、机械磨损增加,结果造成泵、阀、马达等的精密配合面因过早磨损而使其失效或报废。 ③加速橡胶密封件老化变质,寿命缩短,甚至丧失其密封性能,使液压系统严重泄漏。 ④油液汽化、水分蒸发,容易使液压元件产生穴蚀;油液氧化形成胶状沉积物,易堵塞滤油器和液压阀内的小孔,使液压系统不能正常工作。因此,液压油油温过高会严重影响设备的正常运转、降低液压元件的使用寿命,并增加设备的维修成本,降低了工作效率,严重时还会造成设备停机。 2、液压油油温过高的原因及预防措施 (1)油品选择不当

油的品牌、质量和粘度等级不符合要求,或不同牌号的液压油混用,造成液压油粘度指数过低或过高。若油液粘度过高,则功率损失增加,油温上升;如果粘度过低,则泄漏量增加,油温升高。 预防措施:选用油液应按设计院推荐的牌号及设备所处的工作环境、气温因素等来确定。当液压元件和系统保养不便时,应选用性能好的抗磨液压油。 (2)污染严重 工作现场环境恶劣,随着机器工作时间的增加,油中易混入杂质和污物,受污染的液压油进入泵、马达和阀的配合间隙中,会划伤和破坏配合表面的精度和粗糙度,使泄漏增加、油温升高。 预防措施:一般在累计工作1000多小时后换油。换油时,注意不仅要放尽油箱内的旧油,还要替换整个系统管路、工作回路的旧油;加油时最好用120目以上的滤网,并按规定加足油量,使油液有足够的循环冷却条件。如遇因液压油污染而引起的突发性故障时,一定要过滤或更换液压系统用油。 (3)液压油箱内油位过低 若液压油箱内油量太少,将使液压系统没有足够的流量带走其产生的热量,导致油温升高。 预防措施:在实际操作和保养过程中,严格遵守操作规程中对液压油油位的规定。 (4)液压系统中混入空气

步进式加热炉说明书

钛棒步进式加热炉使用说明书

目录 1 产品概况 2 结构与工作原理 3 安装 4 调试 5 维护与修理 6 随机文件 一.产品概述 1.1用途 主要用于钛棒锻前的补充加热。

1.2主要技术参数 a.额定功率:100KW b.额定温度:1050℃ c.炉温均匀性:±10℃(炉子进出口250㎜除外) d.控温精度:±1℃ e.控温区数:2区 f.炉膛有效尺寸:1500×1400×400㎜ g.装炉量:12根 h.规格:ф60—ф115—1000/600mm i.装料间距:130mm j.提升高度:60㎜ k.送料行程:70--100㎜ l.外型尺寸:~2500×2000×2000㎜ m.重量:~4.5t 1.3工作环境条件 1.3.1海拔不超过1000m; 1.3.2环境温度在5~40℃范围内; 1.3.3使用地区最湿月每日最大相对湿度的月平均值不大于90%,同时该月 每日最低温度的月平均值不高于25℃; 1.3.4周围没有导电尘埃,爆炸性气体及能严重损坏金属和绝缘的腐蚀性气 体; 1.3.5没有明显的振动和颠簸。 二.结构与工作原理 步进加热炉主要由炉体、电热元件、步进梁机构及电控系统组成。 2.1炉体 炉体由炉壳、炉衬等组成。 ·炉壳由型钢与钢板焊接而成,外侧板为普碳钢,厚5㎜,筋为角钢63×63×5。炉壳支撑为可调节支撑座,便于炉体水平和高度的调整。 ·炉衬为复合结构,侧墙为轻质粘土砖+硅酸铝纤维结构,厚度均为300㎜。

炉底采用保温砖和轻质粘土砖砌筑,厚度为320㎜。 ·炉顶为轻质硅酸铝纤维模块吊挂结构,厚度均为300㎜,炉盖为可拆式。 ·炉头进料口应安装有装料板,与感应加热炉衔接,棒料出来后自行滚落到出口轧机槽中。 ·炉前后装有炉门,气缸驱动(气源由甲方提供)。 2.2电热元件 采用性能良好的铁铬铝电阻丝制造,长寿命设计,表面负菏~1.2W/㎝2,电热元件布置炉膛两侧墙,充分考虑炉温均匀性,对电热元件进行合理布置,全部功率分2区布置,每区功率约50KW,电阻丝绕成螺旋状,安放在炉墙搁丝砖上。 2.3步进机构 步进梁机构由步进梁、固定梁、提升机构、步进机构组成。 ·步进梁和固定梁为耐热钢铸造加工而成,梁上有锯齿形料槽,用于棒料的定位,锯齿间距为130㎜。 步进梁(2根)和固定梁(2根)材质为Cr25Ni20Si2。厚度20mm。 ·步进梁通过梁上焊制的立柱穿过炉底固定在移动小车上,炉底上开有4个长孔,以便立柱能够自由移动。 ·固定梁支座砌筑在炉底衬内,固定梁固定在支座上,固定梁与步进梁之间留有20㎜宽间隙,每个梁间留有膨胀缝,可减少梁变形。 ·斜块式提升机构与移动机构配合运动使小车实现上升、前移、下降、后移矩形运动,完成棒料的输出。 ·小车的移动均由炉体下部的气缸驱动。 2.4控制系统 2.4.1主要控制任务 (1)炉内温度的精密控制 (2)各动作部分工作状态手动控制 (3)温度参数的显示 (4)故障报警 2.4.2技术特点 (1)温度控制:主要由高精度日本进口控温仪表SR3与大功率风冷可控硅模块

加热炉工培训讲义.doc

加热炉工培训讲义 第一章 传热原理 1.1 传热及传热的方式 1.1.1 传热:不同温度的两个物体放在一起,不久便发现高温物体的温度降低了,低温物体的温度升高了。这说明有一部分热量从高温物体传到了低温物体。这种现象称为传热。 1.1.2 传热的方式:分对流传热、传导传热、辐射传热三种方式。 1.2 对流传热 1.2.1 定义:依靠流体(液体或气体)本身流动而实现的热传递叫做对流传热。 1.2.2 自然对流传热:由于流体受热后体积膨胀、比重减小而上升,或流体冷却后体积收缩、比重增加而下降所产生的对流传热叫自然对流传热。 1.2.3 强制对流传热:依靠外力强制流动来实现的热量传递叫强制对流传热。 1.3 传导传热 1.3.1 定义:物体通过接触,并没有发生物质的相互转移而传递热量的方式叫传导传热。 1.3.2 导热系数:单位厚度上存在1℃温差时所导热的热流值来衡量不同物质导热性能的差异,称为导热系数。千卡/米*时*摄氏度 1.3.3 传导热流的计算公式:()21t t s q -=λ 式中:q ——温降方向上的热流,千卡/平方米*时 λ——导热系数,千卡/米*时*摄氏度 s ——物体厚度,米 21t t -——物体厚度上的温差,摄氏度。 1.4 辐射传热 1.4.1 定义:物体间依靠电磁波互相辐射传导热量的方式叫辐射传热。辐射传热无需中间介质,热量传递不仅由高向低也由低向高的方式互相传递热量。 1.4.2 气体辐射传热:加热炉燃烧气体中CO 2、H 2O 、SO 2气体能够吸收和辐射能量。这种气体的辐射传热对钢料的加热很重要,特别是采用煤气无烟燃烧的加热炉,火焰的绝大部分是靠燃烧产物中CO 2和水蒸气辐射传热传给钢料的。 1.5 热量在炉内的传递 加热炉的烧嘴燃烧时,火焰中的热量靠对流和辐射方式传给炉壁和钢坯。对流传热主要取决于贴近炉壁或钢坯表面的炉气流速。为避免局部过热,火焰一般不宜冲着炉壁或钢坯,钢坯只与火焰的边缘接触,因此对流传热强度不大。 火焰对钢坯的辐射传热有两个途径,一个是钢坯直接接受火焰的辐射热;另一个是以炉壁为介质传递热量。炉壁的作用一方面是反射来自火焰的辐射热,另一方面是吸收辐射热提高自身温度,再将热量辐射给钢坯。因此炉内仍以辐射传热为主。

加热炉论文

探讨加热炉的主要节能措施及制约因素 潘诚 (塔里木油田公司塔西南石化厂炼油二车间新疆泽普844804) 摘要:本文介绍了加热炉主要的节能途径、主要技术措施及应注意的问题,并阐述了进一步提高加热炉节能水平的制约因素。 关键词:炼油装置加热炉节能热效率 1 前言 自燃料气单价从今年4月1日起由0.51元每方涨到0.81元每方后,加热炉就成了重整装置的能耗大户,其节能措施对于提高装置的节能水平具有重要意义。 本文重点介绍加热炉一些主要节能途径;探讨节能途径的主要技术措施。以及提高加热炉节能水平的制约因素:降低排烟温度,要考虑经济性和露点腐蚀;过分降低炉外壁温度,会导致费用过高;预热空气温度过高对环保不利。提出了进一步提高加热炉节能水平的建议;开发新的余热回收工艺。 2 加热炉节能的主要途径 炼油装置加热炉的节能措施比一般工业炉要灵活得多,这是由于它所加热的工艺介质在经过后续设备完成蒸馏或其他加工过程之后,产品需要冷却到一定温度才能送出下一个装置,冷的原料和热的产品之间往往要进行复杂的热交换。另外,一个装置内常常不只有一台加热炉,还有各种其他设备,它们之间在热能利用方面往往是可以互补的。这就有可能也有必要首先把加热炉同整个装置结合在一起,全面考虑和优化,以便采取综合节能措施。 2.1 优化换热流程,降低加热炉热负荷 炼油装置的特点是:加热炉的热负荷随换热流程的不同而改变。优化换

热流程、降低加热炉热负荷,是减少燃料消耗、降低装置能耗最直接、最有效的措施。以本装置重整炉为例:重整进料前的精制油温度即冷路温度57℃,,经过一组利用反应器出口余热为能量的换热器E1201和E1202后精制油被加热到400℃,然后再经过四合一炉进一步将已有一定温度的(400℃)油气加热到480℃。经过换热流程的优化,原油换热终温(即四合一炉入口温度)从57℃提高到了400℃,重整炉热负荷几乎减少了近80%,取得了显著成果。 2.2 加热炉与其他设备联合回收余热 炼油装置的产品,有一些是要经过空冷才能送出下一个单元的。如果将这些空气冷却器排出来的热空气(例如本装置重整空气冷却器下方或附近的环境温度一般都有50~60℃甚至更高)收集起来供给炉子作燃烧空气或者用来加热冷油,那么就可以回收一部分热能,从而降低装置的能耗。常见的有用热油式空气预热器代替空冷器,将原来空冷的油品引入热油式空气预热器,冷却后送出下一个单元。 2.3 提高加热炉热效率[1] 热效率是衡量加热炉先进性的一个重要指标,其高低关系着炼油装置能耗的高低。可用简化的热效率平衡表达式描述: η=(1- Q1- Q2- Q3)×100% 式中:η为加热炉热效率;Q 为排烟损失占加热炉总供热的比值,是 1 为不完全燃烧损失占加热炉总供热的比排烟温度和过剩空气系数的函数;Q 2 为散热损失占加热炉总供热的比值。 值;Q 3 2.3.1 降低排烟温度以减少排烟损失[2] 排烟损失在加热炉的热损失中占极大的比例:当炉子热效率较高(例如90%)时,排烟损失所占比例为70%~80%;当炉子热效率较低(例如70%)时,所占比例高达90%以上。 降低排烟温度和降低过剩空气系数都能减少排烟损失。降低排烟温度的主要措施有以下几种:① 减小末端温差,即减小排烟温度与被加热介质入对流室温度之差。这项措施涉及到一次投资和运转费用的权衡问题,应该由

轧钢工艺(完整版)详解

轧钢工艺(完整版)详解

铜陵市富鑫钢铁有限公司 编号:FX-08-2011 版本/修订:1/1轧钢工艺技术操作规程 起草: 审核: 批准: 受控状态: 分发号: 二〇一二年六月十六日修订即日起颁布实施

铜陵市富鑫钢铁有限公司 轧钢工艺技术操作规程 1、棒材(钢筋混凝土用热轧带肋钢筋)生产工艺流程 2、原料种类及验收标准 2.1、原料种类:150*150*3000mm, 2.2、钢坯执行标准:GB1499.2—2007 YB/T2011—2004 3、加热炉基本工艺技术要求及工艺参数 3.1、加热炉主要参数 形式:双蓄热推钢式连续加热三段式加热炉 外形尺寸: 长3200mm 宽500mm 有效尺寸: 长2840mm 宽3600mm 合 加热 轧 轧 切头尾 热共轧 分段剪切 热检 冷却 取力学实验 冷检 包装 定尺剪切 不合格 废钢库 称重 成品 库 出厂 用户

3.2、加热炉点火前的准备工作 点火前应对炉子进行全面的系统地检查和煤气防烛实验,并严格执行公司《煤气系统操作管理规程》,点火前15分钟启动风机,提起烟道闸板,开启所有的仪表控制系统并检查无异后进行加热炉正常操作。 3.3、加热制度 为使钢筋产品质量得到控制,加热炉温度应分段控制如下:HRB500、HRB 500E控制温度为: φ12-φ18控制温度为预热段600℃-700℃加热段1180℃-1200℃均热段1150℃-1180℃ φ20-φ22控制温度为预热段630℃-750℃加热段1200℃-1230℃均热段1180℃-1200℃ φ25控制温度为预热段650℃-800℃加热段1220℃-1250℃ 均热段1180℃-1230℃ φ28 控制温度为预热段750℃-850℃加热段1220℃-1250℃均热段1220℃-1250℃ HRB400HRB400E控制温度为: φ12-φ18控制温度为预热段550℃-650℃加热段1150℃-1200℃均热段1150℃-1180℃ φ20-φ22控制温度为预热段600℃-700℃加热段1180℃-1220℃均热段1150℃-1180℃ φ25控制温度为预热段600℃-750℃加热段1200℃-1230℃ 均热段1150℃-1220℃ φ28控制温度为预热段700℃-850℃加热段1200℃-1250℃ 均热段1200℃-1250℃ 为使钢筋终轧温度控制在1000-1100℃,钢坯出炉温度应控制在1150℃-1200℃,即均热段的温度为1150℃-1200℃. 头炉炉膛压力应保持微正压,防止冷风吸入。 为保护不用的烧嘴,空气蝶阀应有1/5开度。 开轧前15-25分钟升温,待轧时间超过15分钟,炉温要根据炉

钢式轧钢加热炉原料加热炉区设备维护操作规程(DOC 49页)(完美版)

原料加热炉区设备维护操作规程 热送区设备说明 设备用途: 送区设备用于推钢式轧钢加热炉连铸钢坯进料和出料使用。 本设备承接由车运来的成组或单只连铸坯,然后再自动控制系统的控制下实现钢坯从移钢机台架到如炉辊道运输,推钢机将钢坯推入加热炉内。加热炉出钢端在摩擦式出钢机推动下钢坯进入出炉辊道。 设备组成及说明: 热送区设备是由热坯移钢机、如炉辊道、固定挡板、推钢机、出钢机、出炉辊道。 一、热坯移钢机 技术参数: 电机:型号YZR280S-6,,5KW,AC380V,50HZ,969r/min 钢坯规格:165×165×9000 最大移送能力:4根胚 移动速度:0.37m/s 减速器传动比:i=90 链轮直径:∮647.22 链条节距:200 设备说明: 移动机由传动装置、链轮、链条、托板、接近开关及钢结构

等组成。 功能说明: 位置:布置在炼钢厂连铸车间出坯跨内。 车间钢坯将连铸坯成组或单只吊入移钢机尾部移钢台架上,链式移钢机传动链上布置有前后两个拨爪,分别推动尾部连铸坯并拢和前部钢坯进入移钢辊道,当前部拔爪前钢坯都进入移钢辊道后,链式移钢机将尾部的钢坯运送至入炉辊道上。 操作准备与操作说明: 工作前: 1、检查各润滑点是否有足够的润滑油; 2、检查油、电、线路是是否正确、畅通; 3、检查电线是否紧固,功能是否与说明书一致; 4、检查动作是否到位,如有必要应调整行程开关与继电器等。维护说明: 1、每班清除氧化皮及脏杂物; 2、各班各稀油润滑点加油一次,保证充盈的润滑油; 3、各减速机必须定期换油; 4、定期对电、油逐一检查,是否符合设计紧固程度,必要时应重新连接紧固,必须保证正确与畅通。 5、定期检查所有紧固件是否到达设计标准,必要时应及时更换。 6、定期检查润滑液应根据油位及时补足。 二、入炉棍道及固定挡板

浅析步进式加热炉

辽宁科技大学 实习论文 题目:浅析步进式加热炉 课程名称:实习 院系:材料与冶金学院 专业:热能与动力工程 班级:热能09·3 姓名:宫琛琛 学号: 120093206086 2012年 09月 19日

一、步进式加热炉的起源与发展 步进式加热炉是机械化炉底加热炉中使用较为广泛的一种,是取代推钢式加热炉的主要炉型。步进式加热炉始建于20世纪60年代中期,这种炉子已存在多年,因受耐热钢使用温度的限制,开始只用在温度较低的地方,适用范围有一定的局限性。随着轧钢工业的发展,对加热产品质量、产量、自动化和机械化操作计算机控制等方面的日益提高,在生产中要求在产量和加热时间上有更大的灵活性,这就要求与之相适应的炉子机构也应具有很大的灵活性,以适应生产的需要,基于上述原因,传统的推钢式加热炉已难于满足要求。而与传统的推钢式加热炉相比,步进式加热炉具有加热质量好、热工控制与操作灵活、劳动环境好等优点,特别是炉长不受推钢长度的限制,可以提高炉子的容量和产量,更适应当代轧机向大型化、高速化与现代化发展的需要。经过改造后的步进炉结构,采用了步进床耐火材料炉底或水冷步进梁的措施,已能应用于高温加热。目前,合金钢的板坯、方坯、管坯甚至钢锭等轧制前的加热已有不少采用步进炉加热,使用效果较好。它的炉长不受推钢比的限制,大型步进炉生产率高达420万吨/年。 70年代以来,国内外新建的许多大型加热炉大都采用了步进式加热炉,不少中小型加热炉也常采用这种炉型。现在新建的具有经济规模的各类轧钢厂基本上都选用了步进式加热炉;一些

老厂如美国底特律钢厂热轧车间、法国索拉克和恩西俄厂的热轧车间、日本和歌山热连轧厂与鹿岛厚板厂以及加拿大汉密尔顿的多发斯科厂等,在改建或扩建中都选用了步进式加热炉替代原有的推钢式加热炉。但当前轧钢加热炉,特别是中小型轧钢厂推钢式加热炉仍较多,这与中国的原燃料条件等多种因素有关。 步进式加热炉的炉底基本由活动部分和固定部分构成。按其构造不同又有步进梁式、步进底式和步进梁、底组合式加热炉之分。一般坯料断面大于(120×120)mm2多采用步进梁式加热炉,钢坯断面小于(100×100)mm2多采用步进底式加热炉。 二、步进式加热炉的工作原理 步进式加热炉是靠炉底或步进梁的升降进退来带动料坯前进的,其工作原理如下:起始位置,活动炉底在坯料下面最低位置,坯料两端架在炉内的固定炉底上,以后在活动炉底升起将坯料托起,接着活动炉底下降将坯料放在固定炉底上,最后活动炉底又回复到原来位置,由上可知,活动炉底运动的轨迹为一个矩形,它运动一个循环的时间叫“周期”,它运动一次使坯料前行的距离叫“行程”。 步进炉加热的特点是:步进炉可以采取坯料之间分开的加热方式,这样加热速度快而且内外温度均匀。除此之外,步进式加热炉的装出料装置也是加热炉的重要部分。鞍钢厚板厂的步进梁式加热炉板坯装出炉程序及PLC联锁条件在设计原则上有利于提高生产率,合理节能且安全可靠。

高线轧钢车间工程项目设备安装施工组织设计(DOC 54页)

高线轧钢车间工程项目设备安装施工组织设计(DOC 54页)

目录 第一章工程概况 (2) 第一章组织机构及劳动力配置 (4) 第一章工程施工进度计划 (7) 第一章主要机具计划 (10) 第一章主要施工方案 (12) 第一章质量保证措施 (117) 第一章现场安全、文明施工管理 (143) 第一章文明施工 (147)

工程概况 1.1 简介 XXX 有限公司63 万吨/年高线轧钢车间工程项目,是*钢为了扩大生产规模,增加产量品种,同时为了利用现有设备资源,在二炼钢3#连铸机后一条年生产63 万吨线材生产线。 1.1.1 产品及生产规模 年产φ5.5~φ20mm 圆钢和螺纹钢线材63 万吨。 钢种为碳素钢、优质碳素钢、弹簧钢、焊条钢、冷墩钢和低合金钢。 线材卷重为2.1 吨。 1.1.2 坯料 由3#连铸机供给,规格为150×150×12000mm,单重约2.1 吨。1.1.3 轧线主要设备:轧制线由粗、中轧机、飞剪、预精轧机、精轧机、斯太尔摩线、集卷装置、P/F、打捆机、卸卷机等设备组成。其设备均为全新制造,设备总重为2300 吨,φ5.5~φ6.5 轧制保证速度120m/s(最小和最大辊径均保证),φ7.0~φ20 规格为150 吨/小时。 1.2 生产工艺

钢坯由二炼钢通过热送辊道(热送)和电动平车(冷送)送入高线车间,加热炉前设提升装置、上料台架(两个)、剔废装置、稳重装置。根据不同钢种的加热制度要求,连铸坯在加热炉中加热至1050~1150℃。加热炉为端进侧出推钢式加热炉(汽化冷却)。辊道输送、液压推钢机进钢,出钢机出钢。钢坯通过出炉辊道和设在粗轧机前的夹送辊进入轧机进行轧制。夹送辊前设有一台剔废装置。剔废装置对不合格钢坯进行剔除。粗轧机组、中轧机组分别由6 架轧机组成,平立交替布置,采用无扭自动控制微张力轧制。粗轧机组和中轧机组后各设有一台飞剪,对轧件进行切头、切尾及事故碎断。中轧机组出的轧件经导管和侧活套器进入 2 架平立轧机和 4 架(MORGAN 供货)悬臂辊轧机平立交替布置组成的预精轧机组间设有 2 台立活套、1 台侧活套、4 架悬臂辊平立交替布置间设有 3 台立活套,对轧件进行无扭、自动控制无张力轧制。预精轧机组轧出的轧件经精轧前水箱(两段)控制水冷,保证进精轧机的轧件温度。再经3#飞剪切头(配套转辙器和碎断剪用于事故碎断[MORGAN 设计]),侧活套器、夹送辊喂入10

轧钢加热炉使用说明书[1]

60t/h推钢式加热炉 操 作 说 明 书 贰零壹壹年肆月

目录 第一章主要设备简介 (1) 第二章加热炉烘炉操作说明 (3) 1烘炉作业组织体系 (3) 2加热炉烘炉作业的前提条件 (3) 3加热炉N2置换作业要领 (4) 4加热炉送煤气作业要领 (5) 5助燃空气系统的点火准备 (5) 6加热炉点火及升降温操作 (6) 7烘炉升温管理 (7) 8烘炉过程中的安全事项 (9) 9烘炉中可能发生的事故及对策 (12) 10烘炉期间安全保卫制度 (13) 11烘炉用的工器具 (14) 12附件 (15) 第三章加热炉操作通则 (17) 第四章设备维护 (18) 第五章 WINCC监控系统操作说明............ 错误!未定义书签。

第一章主要设备简介 1.1.加热炉一座 ●炉型:端进、侧出推钢式加热炉。 ●用途:钢坯轧制前加热。 ●有效炉子面积(有效长×内宽):21.458×6.6m2 ●标准坯尺寸:(160~150)2×6000mm ●加热钢种:普碳钢,低合金钢 ●坯料入炉温度:室温 ●出钢温度:1180~1200℃。 ●额定产量:60t/h 1.2.燃料 ●燃料种类:发生炉煤气 ●燃料低发热值:发生炉煤气1350×4.18kj/m3 ●额定煤气消耗量:16050 m3/h。 ●单位热耗:1296kj/kg。 ●空气消耗量:20000m3/h。 ●废气量:33000m3/h。 ●废气排放温度:≤150℃。 ●氧化烧损:≤1.0%。 ●供热方式:烧嘴式燃烧,二侧墙供热

1.3.空气热预 1.3.1.烧嘴布置 空气、煤气混合式烧嘴,该烧嘴称为组合式烧嘴.全炉共22组烧嘴,其中两侧烧嘴18只,端头烧嘴4只,上下加热,上加热8组,下加热10组。 1.3. 2.烧嘴结构 由于加热炉采用发生炉煤气加热,烧嘴采用内煤气外空气布置的方式,因此该炉采用空煤气组合式烧嘴,在高温段每一个立柱间距内设置壹组空煤气烧嘴。 1.4.鼓风机 风机的进口设调节阀,用于风机启动时关闭进风口和正常生产时调节风压和风量,两台风机一用一备 为降低风机噪音,风机入口配消音器,风机房出口1m处噪音小于85分贝。 空气经冷风总管至预热器预热在经热风总管至烧嘴。 型号/数量:9-26No11.2D 二台 流量:24126~36189 m3/h。 风机全压:7747~7009Pa。 转速:1470r/nin。 配用电机型号/功率:Y315S-4,110kw 380V

轧钢加热炉

轧钢车间加热炉设计 design of reheating furnace for rolling mill zhagong ehejian Jiarelu sheji 轧钢车l’ed加热炉设计(design of reheating furnaee for rolling mill)对型钢、中厚板、热轧带钢及线材等轧钢厂坯料加热炉的设计。设计内容包括炉型选择、确定装出料方式与炉子设施的平面布置、炉子加热能力与座数选择、炉温制度与炉型结构选择、炉子供热负荷计算及其分配比例、炉子尺寸设计以及炉子的检测与自动化操作。炉型选择轧钢车间加热炉主要有推钢式加热炉和步进式加热炉两大类型。一般在设计前期根据原料和燃料、生产规模与产品大纲、车间布置、加热与轧制工艺要求以及整个轧制线的装备水平等原始条件综合考虑选择。步进式加热炉始建于20世纪60年代中期,与传统的推钢式加热沪相比,具有加热质量好、热工控制与操作灵活、劳动环境好等优点,特别是炉长不受推钢长度的限制,可以提高炉子的容量和产量,更适应当代轧机向大型化、高速化与现代化发展的需要。步进式加热炉在配合连铸坯热装时有明显的优越性,一般采用炉底分段传动方式,即在连铸开始浇铸时停止向炉内装料,而炉子仍按轧制节奏连续出钢,炉子装料侧一段炉底空出,当热连铸坯送到后即迅速装入炉内,尽量减少热坯的散热损失,同时集中加热热连铸坯可以有效地提高炉子产量和降低燃料消耗。推钢式加热炉和步进式加热炉的主要技术经济指标,如单位炉底面积产量和热耗,基本相同或相近,但步进式加热炉的最高小时产量则可大大超过推钢式加热炉,热耗也较低。步进式加热炉的钢坯在炉时间短,其钢坯氧化烧损率、脱碳率及废品率低于推钢式加热炉。步进梁式加热炉的冷却水消耗量比推钢式加热炉约多一倍,因此水系统投资要高一些,对操作及维护水平的要求也较高。现在新建的具有经济规模的各类轧钢厂基本上都选用了步进式加热炉;一些老厂如美国底特律钢厂热轧车间、法国索拉克和恩西俄厂的热轧车间、日本和歌间炉子座数多于两座时很难布置。山热连轧厂与鹿岛厚板厂以及加拿大汉密尔顿的多发炉内装料可以单排或双排(包括单排装长料和双斯科厂等,在改建或扩建中都选用了步进式加热炉替排装短料),这要根据坯料长度范围、单炉产量、车间代原有的推钢式加热炉。中国在70年代设计和建设步占地以及投资经济合理与节能等因素确定。进式加热护,但当前轧钢加热炉,特别是中小型轧钢厂炉子设施的平面布置炉子两侧净空尺寸及各种推钢式加热炉仍较多,这与中国的原燃料条件等多种平台、梯子的设置,要满足生产操作与检修的要求并符因素有关,加热短小钢锭不能采用步进式加热炉。合有关的安全规定,要考虑“回炉坯”运送设施的位置。设计加热炉时还要决定炉子的热工制度、结构型煤气、重油、蒸汽、空气及冷却水系统的设计与布式、主要技术经济指标、燃烧装置的型式与数量、排烟置,要考虑生产控制功能完备,检修方便,符合安全规和余热利用方式、出渣方式等。定,不妨碍交通和吊车操作及设备检修等多种因素。装出料方式与炉子设施的平面布置按照工艺要地下烟道要尽量缩短,换热器前后一般不设旁通求确定加热炉的装出料方式及炉子在车间的位置。炉烟道,尽可能不采用多座炉子合用一座烟囱。换热器的子的平面布置设计,包括撼烧系统管道设施、排烟系统位置要考虑更换吊装方便及清扫位置,热风放散管应及热回收设施、冷却水与汽化冷却系统、排渣设施以及引出厂房,避免在车间内产生热污染与噪音。炉子区域操作检修平台等的平面布置。炉子仪表室及炉子加热能力与座数选择炉子加热能力包括单计算机房的位置、尺寸及炉子设施占用的轧钢跨、原料炉小时产量和车间炉子总加热能力。跨等按设计要求确定。单座炉子小时产量的计算理论计算法是根据

液压系统的课程设计

《现代机械工程基础实验1》(机电)之 机械工程控制基础综合实验 指导书 指导教师:董明晓逄波 山东建筑大学 机电工程学院 2013.7.4 一、过山车项目 1、过山车(Roller coaster,或又称为云霄飞车),是一种机动游乐设施,常见于游乐园和主题乐园中。过山车通常采用液压弹射器提速。弹射系统由高速液压缸、活塞式蓄能器以及大流量高速开关阀等三部分组成液压系统原理图如下:

2、过山车机械结构设计方案图 3、该方案的应用坦克仿真驾驶平台的起伏效果、混凝土搅拌机、塔式起重机、车辆驱动传动系统,液压起升平台 4过山车液压节能回收装置。液压系统设计中的节能问题主要是降低系统的功率损失,液压系统的功率损失会使系统的总效率下降、油温升高、油液变质,导致液压设备发生故障。因此,设计液压系统时必须多途径的考虑怎样降低系统的功率损失。其设计如图所示。

二.坦克系统 1、如何驱动庞然大物-坦克,主要依靠液压系统的驱动,导向,制动。机械液压双工 率流向机构,使得来自发动机的动力分两路,流向驱动轮的两侧。其行走系统 液压原理图 2、由于军事工业的需要,为了使坦克更好的适应作战环境(沟壑,险滩等路面凹凸 不平,)有时为了需要不得不从空中运输,从空中迫降,显而易见,处理好减 震已经迫在眉睫。坦克液压减震系统原理图

3、液压式减震器的结构同吸入式泵基本相似,。当履带遇到凸起的路面受到冲击时, 缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。液压减震系统机械结构图 4、设计一个减震系统,使得生鸡蛋从5米高的地方下落能够完好

轧钢加热炉使用说明书

3t/h推钢式加热炉 操 作 说 明 书 贰零壹叁年拾一月

目录 第一章主要设备简介 (2) 第二章加热炉烘炉操作说明 (3) 1、加热炉烘炉作业的前提条件 (3) 2、天然气系统点火前的吹扫和放散 (4) 3、助燃空气系统的点火准备 (4) 4、加热炉点火及升降温操作 (5) 5、烘炉升温管理 (6) 6、烘炉过程中的安全事项 (9) 7、烘炉中可能发生的事故及对策 (11) 8、烘炉期间安全保卫制度 (12) 9、烘炉用的工器具............................ 错误!未定义书签。第三章加热炉操作通则 (13) 第四章设备维护 (14) 1. 炉体维护 (14) 2. 天然气系统维护 (15) 3. 现场环境要求 (15) 第五章附件 (15)

第一章主要设备简介 1、加热炉一座 ●炉型:端进、侧出推钢式加热炉。 ●用途:钢坯轧制前加热。 ●有效炉子面积(有效长×内宽):17.052×2.552m2 ●标准坯尺寸:80×80×2000mm或φ80×2000mm ●加热钢种:纯镍、精密合金、高温合金、耐蚀合金等 ●坯料入炉温度:室温 ●出炉温度:~1250℃。 ●额定产量:3t/h 2、燃料 ●燃料种类:天然气 ●燃料低发热值:8500×4.18kJ/Nm3 ●额定燃气消耗量:300Nm3/h。 ●空气消耗量:3000Nm3/h。 ●废气量:3300Nm3/h。 ●供热方式:烧嘴式燃烧,炉头端墙及炉顶供热 3、烧嘴布置 全炉共8套烧嘴,其中端烧嘴(低压燃气烧嘴)2只,炉顶烧嘴(平焰烧嘴)6只,烧嘴能力均为50Nm3/h。 第2页共18页

毕业设计-电加热炉控制系统设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2006 —2010 年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

加热炉毕业设计论文

加热炉毕业设计论文 This manuscript was revised on November 28, 2020

目录

1.文献综述 加热炉的概念及分类 加热炉的概念 加热炉是将物料或工件加热的设备。在冶金工业中,加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉。 加热炉的分类 在冶金行业中,一般可把加热炉分为室式加热炉和连续加热炉。 (1)室式加热炉 室式加热炉用于金属坯或锭锻压前的加热。物料加热时不移动;炉内不分段,要求各处炉温均匀,对于大钢锭加热采用周期性的温度制度(即炉温按时间分为预热期、加热期、均热期等)。室式加热炉有两种:固定炉底室式炉和车底式炉。(2)连续加热炉 广义来说,包括推钢式炉、步进式炉、转底式炉、分室式炉等连续加热炉。连续加热炉多数用于轧制前加热金属料坯,少数用于锻造和热处理。主要特点是:料坯在炉内依轧制的节奏连续运动,炉气在炉内也连续流动;一般情况,在炉料的断面尺寸、品种和产量不变的情况下,炉子各部分的温度和炉中金属料的温度基本上不随时间变化而仅沿炉子长度变化。本设计主要研究推钢式连续加热炉。 1)推钢式连续加热炉简介 推钢式连续加热炉靠推钢机完成炉内运料任务的连续加热炉。料坯在炉底或在用水冷管支撑的滑轨上滑动,在后一种情况下可对料坯实行上下两面加热。炉底水管通常用隔热材料包覆,以减少热损失。为减小水冷滑轨造成的料坯下部的“黑印”,近年来采用了使料坯与水管之间具有隔热作用的“热滑轨”。有的小型连续加热炉采用了由特殊陶质材料制成的无水冷滑轨,支撑在由耐火材料砌筑的基墙上,这种炉子叫“无水冷炉”。 2)推钢式连续加热炉的发展 一段式:是最古老的形式简单的的连续炉。现在几乎不用,钢坯沿着炉子单面加热,因此钢坯的上下面的温差很大。因炉温一段控制,操作不灵活。 二段式:为了弥补上述一段式的缺点,使用水冷滑轨。钢坯上下两面加热,提高了单位炉底面积的的产量,炉温上下两段控制,均热炉的炉温不单独控制,因此也和一段式操作不灵活。

相关主题
文本预览
相关文档 最新文档