二次函数复习课公开课.
- 格式:ppt
- 大小:224.50 KB
- 文档页数:4
《二次函数复习》教学设计教学目标1、掌握二次函数的图象及其性质,能灵活运用数形结合知识解一些实际问题2、通过学生亲自经历巩固二次函数相关知识点的过程,体会数形结合思想、化归思想.3、经历探索二次函数相关题目的过程,培养学生的逻辑推理和直观形象和建模等核心素养。
教学重点和难点重点:二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.难点:二次函数性质的灵活运用,能把相关应用问题转化为数学问题.教学过程一、观察图形,梳理基础知识(一)、二次函数的图象及其性质设计意图:通过一个具体二次函数,请学生说出尽可能多的结论,主要让学生回忆二次函数有关基础知识.同学们之间可以相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.对应练习1. 抛物线y= 4(x+2)2+5的对称轴是______2. y= x2-4的图象与y轴的交点坐标是()A(2,0) B(-2,0) C(0,4) D(0,-4)3.已知抛物线 y=0.3(x-4)2-3的部分图象,图象再次与x轴相交时的坐标是()A(5,0) B(6,0)C(7,0) D(8,0)4. 二次函数图象如图,若点A(-3,y1 ),B(-4,y2 )是它的图象上两点,则 y1与 y2的大小关系是 ( ) A. y1 < y2 B. y1 = y2 C. y1 > y2 D.不能确定(二)由函数表达式到函数图象1、如何画出函数y=x2-2x-3的图象?2、如何做到快速、准确?3、五点定位法,怎样求出这五个点的坐标?4、粗略感知图象的位置——二次函数的系数a、b、c及b2-4ac对抛物线位置的影响5、二次函数的系数对它的图象有什么影响?设计意图: 由数到形,见“数”想到“形”,用数表达---------用形释义 对应练习1.已知二次函数 的图象如图,则abc 0.2.二次函数的图象如图所示,则下列关于a 、b 、c 的关系判断正确的是( )A .ab <0 B. bc <0 C .a+b +c >0 D .a -b 十c <0(三)由函数图象到函数表达式的确定c bx ax y ++=2设计意图:由形到数,见“形”不忘“数”,由浅入深,循序渐进。