二次多项式与线性方程组经典习题
- 格式:docx
- 大小:36.84 KB
- 文档页数:5
(完整版)二元二次方程解法练习题(四种方法)引言二元二次方程是一个常见的数学问题,解决这类问题可以帮助我们进一步理解二次方程的性质和求解方法。
本文将介绍四种不同的方法来解决二元二次方程,并提供相应的练题,以帮助读者巩固所学的知识。
方法一:代入法代入法是一种简单直接的解法,通过将一个方程的解代入到另一个方程中,从而求得未知数的值。
以下是一个代入法的例子:例题:求解方程组\begin{align*}3x^2-4y^2&=5 \\x+y&=3\end{align*}解法:1. 将第二个方程中的 $x$ 替换为 $3-y$,得到新的方程 $3(3-y)^2-4y^2=5$。
2. 将该方程整理并解得 $y=1$。
3. 将 $y=1$ 代入第二个方程,解得 $x=2$。
因此,该方程组的解为 $x=2$,$y=1$。
练题:1. 求解方程组\begin{align*}2x^2-3y^2&=4 \\x+y&=2\end{align*}2. 求解方程组\begin{align*}4x^2-5y^2&=8 \\2x+y&=3\end{align*}方法二:消元法消元法是另一种常用的解法,通过将两个方程相加或相减,并适当选择系数,使得其中一个未知数的系数相同而相消,从而求解另一个未知数。
以下是一个消元法的例子:例题:求解方程组\begin{align*}2x^2-3y^2&=4 \\5x-2y&=1\end{align*}解法:1. 将第二个方程乘以 2,得到 $10x-4y=2$。
2. 将第一个方程乘以 5,得到 $10x^2-15y^2=20$。
3. 将第三步的方程与第二步的方程相减,得到$15y^2-4y=18$。
4. 解方程 $15y^2-4y=18$,得到 $y=2$。
5. 将 $y=2$ 代入第一个方程,解得 $x=1$。
因此,该方程组的解为 $x=1$,$y=2$。
多项式练习题带答案一、选择题1. 下列哪个表达式不是多项式?A. \( x^2 + 3x + 2 \)B. \( 5x - 3 \)C. \( \frac{x}{2} \)D. \( 2x^3 - 4x^2 + 7 \)答案:C2. 多项式 \( P(x) = ax^3 + bx^2 + cx + d \) 中,如果 \( a = 1 \),\( b = -1 \),\( c = 0 \),\( d = 2 \),则 \( P(x) \) 可以表示为:A. \( x^3 - x^2 + 2 \)B. \( x^3 - x^2 - 2 \)C. \( x^3 + x^2 + 2 \)D. \( x^3 - x^2 + 2x \)答案:A3. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),那么 \( f(1) \) 的值是:A. 0B. 1C. 2D. 3答案:B二、填空题1. 多项式 \( 2x^3 - 5x^2 + 3x - 4 \) 的次数是 ______ 。
答案:32. 如果 \( g(x) = x^4 - 3x^3 + 5x^2 - 2x + 1 \),那么 \( g(0) \) 的值是 ______ 。
答案:13. 多项式 \( h(x) = 4x^2 - 7x + 2 \) 与 \( x - 3 \) 的乘积是\( 4x^3 - \) ______ 。
答案:7x^2 + 10x - 6三、解答题1. 给定多项式 \( f(x) = 3x^3 - 2x^2 + 5x - 1 \),求 \( f(-1) \) 的值。
解:将 \( x = -1 \) 代入 \( f(x) \) 中,得到\( f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) - 1 = -3 - 2 - 5 - 1 = -11 \)。
2. 已知 \( p(x) = 2x^3 + ax^2 + bx + c \),其中 \( p(1) = 5 \),\( p(-1) = -1 \),求 \( a \),\( b \),\( c \) 的值。
第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii iij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i nj j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。
实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。
规范二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只1,-1,0,称为二次型的规范型。
二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。
线性方程组 练习题一、选择题.1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A.1或2B. -1或-2C.1或-2D.-1或2.2. 设A 是s n ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( ).A.A 的行向量组线性无关B.A 的列向量组线性无关C.A 的行向量组线性相关D.A 的列向量组线性相关3.设12m α,α,,α均为n 维向量,则下列结论中正确的是( ).AA.若对任一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++≠ααα,则12m α,α,,α线性无关 .B.若12m α,α,,α线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++=ααα . C.若11220m m k k k +++=ααα,则12m α,α,,α线性相关 .D.若向量组12m α,α,,α()3≥m 中任意两个向量都不成比例,则12m α,α,,α线性无关.4.向量[]11,1,1T α=-,[]22,,0T k α=,[]3,2,1Tk α=,k 为( )时,向量组1α,2α,3α线性相关.DA.3k ≠且2k ≠-B. 2k ≠-C.3k ≠D.3k =或2k =-5. 向量组s ααα 21,(2≥s )线性无关的充分必要条件是( ).(D ) A.s ααα 21,均不为零向量 B. s ααα 21,中任意两个不成比例 C.s ααα 21,中任意1-s 个向量线性无关D.s ααα 21,中任意一个向量均不能用其余1-s 个向量线性表示6.齐次线性方程组355⨯⨯1=A x 0解的情况是( ).A.无解B.仅有零解C.必有非零解D.可能有非零解,也可能没有非零解.7.设n 元齐次线性方程组的系数矩阵的秩()3R n =-A ,且123,,ξξξ为此方程组的三个线性无关的解,则此方程组的基础解系是( ). A. 12312,2,32+- -ξξξξξ B. 122331,,+-+ ξξξξξξ C.122132-2,-2,32+-+ ξξξξξξ D. 12231324,2+,++ - ξξξξξξ8.要使T 1(1,0,2)=ξ,T 2(0,1,1)=-ξ都是线性方程组=Ax 0的解,只要A 为( ).A. (211)-;B. 201011⎛⎫ ⎪⎝⎭;C. 102011-⎛⎫ ⎪-⎝⎭;D. 011422011-⎛⎫ ⎪-- ⎪ ⎪⎝⎭. 9.已知12,ββ是=Ax b 的两个不同的解,12,αα是相应的齐次方程组=Ax 0的基础解系,12,k k 为任意常数,则=Ax b 的通解是( ). A. 12()k k 12112-+++2ββααα B. 12()k k 12112++-+2ββαααC.12()k k 12112-+-+2ββαββD. 12()k k 12112++-+2ββαββ10.设n 阶矩阵A 的伴随矩阵*≠A 0 若1234,,,ξξξξ是非齐次线性方程组Ax =b 的互不相等的解,则对应的齐次线性方程组Ax =0的基础解系是( ). A.不存在 B.仅含一个非零解向量 C.含有两个线性无关的解向量; D.含有三个线性无关的解向量11.设有齐次线性方程组Ax =0和Bx =0,其中A ,B 均为m n ⨯矩阵,现有4个命题:① 若Ax =0的解均是Bx =0的解,则()()R R ≥A B ② 若()()R R ≥A B ,则Ax =0的解均是Bx =0的解 ③ 若Ax =0与Bx =0同解,则()()R R =A B ④ 若()()R R =A B ,则Ax =0与Bx =0同解 以上命题正确的是( ).A. ①,②B. ①,③C.②,④D.③,④12.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()=AB x 0( ). A.当n m >时仅有零解 B. 当n m >时必有非零解 C.当m n >时仅有零解 D.当m n >时必有非零解13.设A 是n 阶矩阵,α是n 维列向量. 若秩T0⎛⎫= ⎪⎝⎭αAα秩()A ,则线性方程组( ).A.=αAx 必有无穷多解B.=αAx 必有惟一解C.T0y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭αAαx 0仅有零解 D.T0y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭αAαx0必有非零解14.已知34⨯矩阵A 的列向量组线性无关,则=)(T A r ( ). A.1 B.2 C.3 D.415.设321,,ααα为齐次线性方程组0=Ax 的一个基础解系,则下列可作为该方程组基础解系的是( ).A.2121,,αααα+B. 133221,,αααααα+++C.2121,,αααα-D. 133221,,αααααα---16.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ). A. 1 B. 2 C. 3 D. 417.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( ). A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs+βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =018..设矩阵A 的秩为r ,则A 中( ). A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为019.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ).A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解20.设n 阶方阵A 不可逆,则必有( ).A.秩(A)<nB.秩(A)=n -1C.A=0D.方程组Ax=0只有零解21.设n 维向量12,αα线性相关,则必定( ).A. 12,αα中有一零向量B. 矩阵12=(,)A αα的秩r A =1C. 12,αα的对应元素成比例D.1α不可由2α线性表示22.设A 为m n ⨯阶矩阵,非齐次线性方程组AX=b 对应的导出组AX=0,如果m n <,则( ).A.AX=b 必有无穷解B.AX=b 必有惟一解C.AX=0必有非零解D.AX=0必有惟一解23.n 元线性方程组AX=0有非零解的充要条件为( ).A.()R A n =B. 0A ≠C.0A =D.以上都不对24.线性方程组AX B =有解的充要条件是( ).A.()r A >0B. ()()r A r A =C. ()()r A r AB ≠D.()r A n =25.n 元线性方程组AX=b 有解的充要条件为( ). A.()(,)R A R A b = B. ()(,)R A R A b n == C.()(,)R A R A b n =< D.()(,)R A R A b n =≤26.向量组T T )0,1,0(,)0,0,1(21==αα,下列向量中可以由21,αα线性表出的是( ).A .T )3,2,1(B .T )3,2,0(C .T )3,0,1(D .T )0,2,1(27.设向量组A 能由向量组B 线性表示,则( ).A .)()(A RB R ≤ B .)()(A R B R <C .)()(A R B R =D .)()(A R B R ≥28.设A 为n m ⨯矩阵,则有( ). A .若n m <,则b Ax =有无穷多解B .若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量C .若A 有n 阶子式不为零,则b Ax =有唯一解D .若A 有n 阶子式不为零,则0=Ax 仅有零解29.设1α、2α是对应非齐次方程组Ax =b 的解,β是对应齐次方程组的解,则b Ax =一定有一个解是( ).A.1α+2αB.1α-2αC.β+1α+2αD.121233+-ααβ30.21γγ,是n 元非齐次方程组b Ax =的两个不同的解,且1)(-=n A r ,则 0=Ax 的通解为( ).A. )(1R k k ∈γB. )(2R k k ∈γC. )()(21R k k ∈+γγD. )()(21R k k ∈-γγ二、填空题.1. 设向量α=(1, 2, 0, 4)T , β=(3,1,-1,7)T ,向量γ满足2α-γ=β, 则γ=____________.2.已知向量α=(1, 2, 4, 0)T , β=(-3,2,6,2)T ,向量γ满足3α+2γ=β, 则γ= .3.向量组α=(1, -2, 3)T , β=(2,-4,a)T 线性相关,则=a .4.向量组()12341,0,1,(2,1,0),(0,1,1),(1,1,1)TT T T αααα====则向量线性 .5.当______=t 时,向量组)2,1,3(),3,2,1(),,3,2(-t 线性相关.6.设向量组T T T a )1,1,2(,),2,1(,)3,1,1(321-==-=ααα线性相关,则=a .7.设向量组T )0,0,1(1=α,T )0,1,0(2=α,则向量组21,αα的秩是 .8.矩阵⎪⎪⎭⎫⎝⎛-----100110111的秩等于__________.9.若R )(1234,,,4αααα=,则向量组123,,ααα是线性________.10.已知矩阵⎪⎪⎪⎭⎫⎝⎛--=a A 00011002011的秩)(A r =2,则=a ______.11.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=a a A 10012002011的秩)(A r =2,则=a ______.12.若齐次线性方程组1212 3 060x x x x λ-=⎧⎨-+=⎩有非零解,则λ= .13.当_________时候,n 元线性方程组0=Ax 有非零解,这里A 是n 阶方阵.14.设21ξξ,是非齐次线性方程组b Ax =的解向量,则21ξξ-是方程组______的解向量.15.方程组⎩⎨⎧=-=-003221x x x x 的基础解系是 .16.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a .17.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a= .18.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .19. 设A 是m ×n 矩阵,A 的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .20.设齐次线性方程组01443=⨯⨯X A ,其系数矩阵的秩)(A r =2,则方程组的基础解系包含______个线性无关的解向量.21.有三维列向两组1α=()100T,()2110αT=,()3111αT=,()123βT=,且有112233βχαχαχα++=,123χχχ=_____ ,=_____,=_____22.若n 个 n 维列向量线性无关,则由此n 个向量构成的矩阵必是______ 矩阵.23.若向量组)()()()(12341,1,3,2,4,5,1,1,0,2,2,6,αααα===-=则此向量组的秩是______,一个极大无关组是______.24.已知向量组()()()1231,2,1,1,2,0,,0,0,4,5,2t ααα=-==--的秩为2,则t =____.25.当方程的个数等于未知数的个数时,=Ax b 有惟一解的充分必要条件是 .26.线性方程组121232343414,,,x x a x x a x x a x x a +=⎧⎪+=⎪⎨+=⎪⎪+=⎩有解的充分必要条件是 .27.设n 阶方阵A 的各行元素之和均为零,且()1R n =-A ,则线性方程组=Ax 0的通解为 .28.设A 为n 阶方阵,||0=A ,且kj a 的代数余子式0kj A ≠(其中,1k n ≤≤;1,2,,j n =),则=Ax 0的通解 .29.设11222221231111211111,,11n nn n n n n x a a a x a a a x a a a x ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A x b ,其中,(;,1,2,,)i j a a i j i j n ≠≠=,则非齐次线性方程组T =A x b 的解是=x .30.设方程123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多个解,则a = .三、判断题.1.零向量一定可以表示成任意一组向量的线性组合. ( )2. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关.( ) 3.若=0时,,则向量组线性无关.( )4.若向量组与均线性无关,则,线性无关.( )5.方程个数小于未知量个数的线性方程组必有无穷解.( )6.同秩的两个向量组未必等价. ( )7.向量组中某向量能被其余向量表示,则去掉它不影响它的秩. ( )8.向量组中某向量不能被其余向量表示,则去掉它后向量组的秩必改变. ( )9.3个未知量,5个方程组成的方程组中,必有一个方程能被其余的方程线性表示. ( )10.不同秩的两个向量组必不等价. ( ) 11.向量组的向量各加一个分量,其秩不变. ( ) 12.方程组中自由未知量是唯一确定的.( ) 13.向量组12121,,,,,,s s a a a a a a -与等价,则向量组12,,,s a a a 线性相关.( ) 14.设12,ηη是齐次线性方程组AX=0的基础解系,则1212,3ηηηη--+也是AX=0的基础解.( )15.用列初等变换可以求解线性方程组,也可以用行初等变换求解线性方程组.( ).16.若A 为6阶方阵,齐次线性方程组AX =0的基础解系中解向量的个数为2,则R(A)=2.( )17.若n 维向量12,αα线性相关,则必定12,αα的对应元素成比例.( ) 18.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m A =.( ) 19.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m <A .( ) 20.设21,αα是齐次线性方程组0=AX 的解,那么12αα+也是该方程组0=AX 的解.( )21.设21,αα是非齐次线性方程组=AX b 的解,那么12αα+也是该方程组=AX b 的解.( )22.对于任意的矩阵A ,一定有T r r =()()A A .( )23.向量组123,,ααα中,任意两个向量均线性无关,则123,,ααα线性无关.( )24.设A 是m n ⨯矩阵,如果A 的n 个列向量线性无关,则()r A n =.( ) 25,设12,αα是n 维向量,且112212312,2,35βααβααβαα=-=+=+,则123,,βββ 必线性相关.( )26.设0Ax =是Ax b =的导出组,其中A 是m n ⨯矩阵,若()r A m =, 则Ax b =有解.( )请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ 同时成立.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.3.利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x ,当λ取何值时有解?并求出它的解.9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .13.求一个齐次线性方程组,使它的基础解系为:T T )0,1,2,3(,)3,2,1,0(11==ξξ.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.4. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .试证明s s k k k x ηηη+++= 2211也是它的解.5.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题24知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n k k ).第三章 线性方程组一、选择题.1.C2.D3.A4.D5.D6.C7.A8.A9.B 10.B 11.B 12.D 13.D 14.C 15.B. 16.C 17.D 18.C 19.A 20.A 21.C 22.C 23.B 24.B 25.A 26.D 27.D 28.D 29.D 30.D二、填空题.1. (-1,3,1,1)T2.(-3,-2,-3,1)T3. 64.相关5. 56.-47.28.39.无关 10.0 11.212.2 13. 0A = 14.0=Ax 15.⎪⎪⎪⎭⎫ ⎝⎛111 16.1 17.-1018.η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 19.n-r 20. 2 21.-1,-1,3 22.可逆 23.1,233;,ααα 24.3 25.||0≠A 26.43210a a a a -+-=.27.T 11(1,1,,1)1k k ⎛⎫⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.T (1,0,0,,0)=x . 30.-2部分题详解:25.解 因为()()R R n ==A A b 是=Ax b 有惟一解的充要条件.故由()R n =A 可得||0≠A .26.解 对方程组的增广矩阵施行初等行变换()12341100011000111001a a a a ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭B A b 12341231100011000110000a a a a a a a ⎛⎫⎪ ⎪→ ⎪ ⎪⎪-+-⎝⎭. 所以方程组有解的充要条件是()()R R =A B ,即43210a a a a -+-=.27.解 令111⎛⎫⎪⎪= ⎪ ⎪⎝⎭x ,显然x 满足方程组,又因为()1R n =-A ,所以()1n R -=A ,即方程组的基础解系中有一个向量,通解为T 11(1,1,,1)1k k ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.解 因为0=A ,又0kj A ≠,所以()1R n =-A ,并且有11220, ;||0, i k i k in kn i k a A a A a A i k ≠⎧+++=⎨==⎩.A所以()T12,,,k k kn A A A 是方程组的解,又因为()1R n =-A ,可知方程组的通解为()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.解 T (1,0,0,,0)=x . 30. -2三、判断题.1.√2. √3. √ 4.× 5.×6. ×7.×8. √9.√ 10.× 11.×12.√ 13.√ 14.√ 15.× 16.×17.√ 18.√ 19.× 20.√ 21.×22.√ 23.× 24.√ 25.√26.√请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立. 解 (1) 设)0,,0,0,1(11==e a032====m a a a满足m a a a ,,,21 线性相关,但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ 原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111其中m e e ,,1 为单位向量,则上式成立,而 m a a ,,1 ,m b b ,,1 均线性相关.(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m a a a取m b b ,,1 为线性无关组满足以上条件,但不能说是m a a a ,,,21 线性无关的. (4) T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r . 二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解: (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫ ⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202013. 利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.解 (1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r r r --- ⎪⎪⎪⎪⎪⎭⎫⎝⎛53105310321043173125 2334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .解 (1)3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫ ⎝⎛--000032198204121~ 秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫ ⎝⎛---0000189903121~秩为2,最大线性无关组为T Ta a 21,.5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x 故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1)对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2)对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解. 当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解. 当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解. 此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.解⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛----=---120010501121~225010501121~122313112123131223b a b a b a A r r r r r r(1)当2,02-≠≠+a a 即时,3)()(==A r A r ,方程组解唯一; (2)当12,01,02=-==-=+b a b a ,即时,32)()(<==A r A r ,方程组解有无穷多解; (3)当12,01,02≠-=≠-=+b a b a ,即时,3)(2)(=<=A r A r ,方程组无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000019719141019119201~367824531232初等行变换A所以原方程组等价于⎪⎪⎩⎪⎪⎨⎧+-=+-=4324311971914191192x x x x x x取2,143==x x 得0,021==x x 取19,043==x x 得7,121==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=19071,210021ξξ(3)原方程组即为1212)1(------=n n x x n nx x取0,11321=====-n x x x x 得n x n -=取0,114312======-n x x x x x 得1)1(+-=--=n n x n取0,12211=====--n n x x x x 得2-=n x所以基础解系为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--=-21100010001),,,(121n n n ξξξ12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .解:由于2)(=B R ,所以可设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=43211001x x x x B 则由⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--=00001001825931224321x x x xAB 可得 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛592280200802301003014321x x x x ,解此非齐次线性方程组可得唯一解 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2125212114321x x x x ,故所求矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2125212111001B .13.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解:显然原方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x ,(R k k ∈21,)即⎪⎪⎩⎪⎪⎨⎧=+=+==14213212213223k x k k x k k x k x 消去21,k k 得⎩⎨⎧=+-=+-023032431421x x x x x x 此即所求的齐次线性方程组.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.解:由于矩阵的秩为3,134=-=-r n ,一维.故其对应的齐次线性方程组的基础解系含有一个向量,且由于321,,ηηη均为方程组的解,由 非齐次线性方程组解的结构性质得:齐次解齐次解齐次解=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-+-=+-6543)()()()()(22121321ηηηηηηη为其基础解系向量,故此方程组的通解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,)(R k ∈15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解:(1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=2100013011080101322351211250011~初等行变换B⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴0111,20138ξη(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----=00000221711012179016124211635113251~初等行变换B ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴2011,0719,002121ξξη五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明:设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解,则4321,,,b b b b 线性相关. 综合得证. 2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明: 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k 因为0110011011≠= 故方程组只有零解,则021====r k k k 所以r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.证明: (1)反证法,假设r n -*ξξη,,,1 线性相关,则存在着不全为0的数r n C C C -,,,10 使得下式成立:0110=+++--*r n r n C C C ξξη (1)其中,00≠C 否则,r n -ξξ,,1 线性相关,而与基础解系不是线性相关的产生矛盾。
考研数学二(线性方程组)模拟试卷17(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A是m×n矩阵,r(A)=r.则方程组AX=βA.在r=m时有解.B.在m=n时有唯一解.C.在r<n时有无穷多解.D.在r=n时有唯一解.正确答案:A解析:此题的考点是解的情况的判别法则以及矩阵的秩的性质.在判别法则中虽然没有出现方程个数m,但是m是r(A)和r(A|β)的上限.因此,当r(A)=m 时,必有r(A|β)=r(A),从而方程组有解,A正确.C和D的条件下不能确定方程组有解.B的条件下对解的情况不能作任何判断.知识模块:线性方程组2.A=,r(A)=2,则( )是A*X=0的基础解系.A.(1,-1,0)T,(0,0,1)T.B.(1,-1,0)T.C.(1,-1,0)T,(2,-2,a)T.D.(2,-2,a)T,(3,-3,b)T.正确答案:A解析:由A是3阶矩阵,因此未知数个数n为3.r(A)=2,则r(A*)=1.A*X=0的基础解系应该包含n-1=2个解,A满足.(1,-1,0)T,(0,0,1)T显然线性无关,只要再说明它们都是A*X=0的解.A*A=|A|E=0,于是A的3个列向量(1,-1,0)T,(2,-2,a)T,(3,-3,b)T都是A*X=0的解.由于r(A)=2,a和b不会都是0,不妨设a≠0,则(0,0,a)T=(2,-2,a)T=2(1,-1,0)T也是A*X=0的解.于是(0,0,1)T=(0,0,a)T/a也是解.知识模块:线性方程组3.设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )A.k1η1+k2η2+(ξ1-ξ2)/2.B.k1η1+k2(η1-η2)+(ξ1+ξ2)/2.C.k1η1+k2(ξ1-ξ2)+(ξ1-ξ2)/2.D.k1η1+k2(ξ1-ξ2)+(ξ1+ξ2)/2.正确答案:B解析:用排除法.先看特解.(ξ1-ξ2)/2是AX=0的解,不是AX=β的解,从而A,C都不对.(ξ1+ξ2)/2是AX=β的解.在看导出组的基础解系.在B中,η1,η1-η2是AX=0的两个解,并且由η1,η2线性无关容易得出它们也无关,从而可作出AX=0的基础解系,B正确.在D中,虽然η1,ξ1-ξ2都是AX=0的解,但不知道它们是否无关,因此D作为一般性结论是不对的.知识模块:线性方程组4.设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则( )正确.A.对任何数c1,c2,c3,c1γ1+c2γ2+c3γ3都是AX=β的解;B.2γ1-3γ2+γ3是导出组AX=0的解;C.γ1,γ2,γ3线性相关;D.γ1-γ2,γ2-γ3是AX=0的基础解系.正确答案:B解析:Aγi=β,因此A(2γ1-3γ2+γ3)=2β-3β+β=0,即2γ1-3γ2+γ3是AX=0的解,B正确.c1γ1+c2γ2+c3γ3都是AX=β的解c1+c2+c3=1,A缺少此条件.当r(A)=n-2时,AX=0的基础解系包含两个解,此时AX=β存在3个线性无关的解,因此不能断定γ1,γ2,γ3线性相关.C不成立.γ1-γ2,γ2-γ3都是AX=0的解,但从条件得不出它们线性无关,因此D不成立.知识模块:线性方程组5.设A是m×n矩阵,则下列命题正确的是A.如m<n,则AX=b有无穷多解.B.如Ax=0只有零解,则Ax=b有唯一解.C.如A有n阶子式不为零,则Ax=0只有零解.D.Ax=b有唯一解的充要条件是r(A)=n.正确答案:B解析:如m<n,齐次方程组Ax=0有无穷多解,而线性方程组可以无解,两者不要混淆,请举简单反例.如Ax=0只有零解,则r(A)=n,但由r(A)=n推断不出r(a|b)=n,因此Ax=b可以无解.例如前者只有零解,而后者无解.故B 不正确.关于D,Ax=b有唯一解r(A)=r(A|b)=n.由于r(A)=n r(A|b)=n,例子同上.可见D只是必要条件,并不充分.C为何正确?除用排除法外,你如何证明.知识模块:线性方程组6.设A是5×4矩阵,A=(η1,η2,η3,η4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是AX=0的基础解系,则A的列向量组的极大线性无关组可以是A.α1,α3.B.α2,α4.C.α2,α3.D.α1,α2,α4.正确答案:C解析:由Aη1=0,知α1+α2-2α3+α4=0.①由Aη2=0,知α2+α4=0.②因为n-r(A)=2,故必有r(A)=2.所以可排除D.由②知,α2,α4线性相关.故应排除B.把②代入①得α1-2α3=0,即α1,α3线性相关,排除A.如果α2,α3线性相关,则r(α1,α2,α3,α4)=r(-2α3,α2,α3,-α2)=r(α2,α3)=1与r(A)=2相矛盾.所以选C.知识模块:线性方程组填空题7.已知方程组总有解,则λ应满足_________.正确答案:λ≠1且λ≠解析:对任意b1,b2,b3,方程组有解铮r(A)=3 |A|≠0.而由可知λ≠1且λ≠知识模块:线性方程组8.四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是_________.正确答案:(1,1,1,1)T+k(0,1,2,3)T解析:由(α2+α3)-2α1=(α2-α1)+(α3-α1)=(2,3,4,5)T-2(1,1,1,1)T=(0,1,2,3)T,知(0,1,2,3)T是Ax=0的解.又秩r(A)=3,n-r(A)=1,所以Ax=b的通解是(1,1,1,1)T+k(0,1,2,3)T.知识模块:线性方程组9.设A=,A*是A的伴随矩阵,则A*x=0的通解是_________.正确答案:k1(1,4,7)T+k2(2,5,8)T解析:因为秩r(A)=2,所以行列式|A|=0,并且r(A*)=1.那么A*A=|A|E=0,所以A的列向量是A*x=0的解.又因r(A*)=1,故A*x=0的通解是k1(1,4,7)T+k2(2,5,8)T.知识模块:线性方程组10.已知方程组的通解是(1,2,-1,0)T+k(-1,2,-1,1)T,则a=________.正确答案:3解析:因(1,2,-1,0)T是Ax=b的解,则将其代入第2个方程可求出b=1.因(-1,2,-1,1)T是Ax=0的解,则将其代入第1个方程可求出a=3.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。
线性代数习题景德镇陶瓷学院信息工程学院第一章 行列式习题1、若排列x 1 x 2……x n-1 x n 的逆序数为I ,问排列x n x n-1……x 2 x 1的逆序数是多少?2、选择i 与k ,使(1)1274i56k9成偶排列 (2) 1i25k4897成奇排列3、计算排列2K ,1,2K-1,2,2K-2,3……K+1,K 的逆序数,并讨论它的奇偶性。
4、在六阶行列式中,项:a 23a 31a 42a 56a 14a 65,a 32a 43a 14a 51a 66a 25各应带什么符号5、根据行列式定义,计算:()x x x x x x f 111123111212-=中X 4与X 3的系数。
6、计算行列式D=2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a7、计算行列式D=nx x x nx x x nx x x n n n +++++++++ 212121222111注:n 阶行列式计算的常用方法有:(1)按定义展开:直接用定义展开计算;(2)三角化:即利用行列式的基本性质,使行列式主对角线一侧的元素都变为零(如第9题);(3)拆子列:利用行列式的性质50,将行列式化为两个较简单的行列式来计算。
(如第7、8、10题);(4)递推法:设法找出n 阶行列式D n 与低阶行列式的关系(往往要用归纳法验证),再递推求出D n 的值。
(如第8题);(5)降阶法:利用行列式按行(列)展开定理,将行列式降阶后求解; (6)应用范德蒙行列式:将行列式变形,化成范德蒙行列式。
具体计算n 阶行列式时应根据行列式特点单独或综合运用上述方法。
8、证明:6 D n =βαβααββααββα++++10000010001000 =βαβα--++11n n9、计算nD (333)...............3 (33)33...3233 (331)=10、计算行列式yy x x -+-+111111111111111111、求一个二次多项式f(x),使f(1)=0,f(2)=3,f(-3)=28。
线性代数总结汇总+经典例题线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
题型一:有效数字1,的首位数字x 1,x *的相对误差不超过0.5×10-5,至少要保留几位有效数字.(2010-2011)1*1151211||10100.5102226n n r x n e x n ---=≤⨯=⨯≤⨯⨯≥=解答:设至少要保留位有效数字,则有解得, n 5.7取位有效数字.2,0.5×10-4,至少要保留几位有效数字?(2009-2010)3,已知21.787654为有效数,确定其绝对误差界与相对误差界.(2007-2008)*6*118711||102111||1010102224n r e e x ----=⨯=⨯=⨯=⨯⨯解答:4,已知30.49876为有效数,确定其绝对误差界.(2006-2007B) 5,设有效数x=12.4567,确定x 的绝对误差界.(2004-2005)题型二:插值多项式1,已知f(x)的函数值:f(0)=-2, f(1)=1, f(2)=5, 用反插值法求f(x)=0在[0,2]内的近似根x *.(2010-2011)11111202012012010210122021()()()()()()()()()()()()()()()()()(2)(5)(2)(1)012(12)(15)(52)(51)2991422884y y y y y y y y y y y y y L y f y f y f y y y y y y y y y y y y y y y y y y ----------=⋅+⋅+⋅------+-+-=+⨯+⨯+-+-=+-解答:对y=f(x)的反函数x=f 进行二次插值2*229(0)42y x L ≈=故,2,已知f(x)的如下函数值及导数值:f(-1)=1, f(0)=2, f ’(0)=3, f(1)=7; (1),建立不超过3次的埃尔米特插值多项式H 3(x);(2),x ∈[-1,1], 确定用H 3(x)代替f(x)的误差界(已知|f (4)(x)|≤M 4,x ∈[-1,1]).(2010-2011)32001001201232233)),(0,1,2)()()[,]()[,,]()()1(1)2(1)(0)232()()(1)(0)(1)232()'(i i H x f x i N x f x f x x x x f x x x x x x x x x x x x H x N x k x x x x x k x x H ===+-+--=++++-=++=++--=+++-解答:(1),满足插值条件((的二次插值多项式为:也可用拉格朗日插值法满足题设插值条件的插值多项式为:2323(4)23443)43(31)'(0)'(0)3()232()(2),(1)(0)(1),(1,1)4!1||=4!496x x k x H f H x x x f R x x x M M R ζζ=++-===+++--∈-≤⨯由得:k=0故:误差(x)=则误差界(x)3,已知f(x)的函数值:f(0)=2, f(1)=4, f(2)=9, 写出二次拉格朗日插值多项式及余项.(2009-2010)4,已知f(x)的如下函数值及导数值:f(1)=1, f(2)=2, f ’(1)=3, f(3)=9; (1),建立不超过3次的埃尔米特插值多项式;(2)计算f(1.6)的近似值;若M 4=0.5,估计f(1.6)的误差界.(已知|f (4)(x)|≤M 4).(2009-2010)5,写出满足条件H(0)=1, H(1)=0, H ’(1)=1, H(2)=1的三次插值多项式,并给出误差估计式.(2008-2009B)6,已知一组数据,求函数f(x)=0的根.(2008-2009B)7,已知f(x)的如下函数值及导数值:f(0)=1, f(1)=3, f ’(1)=1, f(2)=9, (1),建立不超过3次的埃尔米特插值多项式,写出误差估计式;(2),计算f(1.8)的近似值:若M 4=1,估计f(1.8)的误差界.(已知|f (4)(x)|≤M 4).(2007-2008)8,已知f(x)的如下函数值及导数值:f(1)=2, f(2)=4, f ’(2)=5, f(3)=8, (1),建立不超过3次的埃尔米特插值多项式;(2),计算f(2.5)的近似值:若M 4=0.5,估计f(2.5)的误差界.(已知|f (4)(x)|≤M 4).(2006-2007)9,已知f(x)的如下函数值表选取合适的插值节点,用二次插值多项式计算f(0.35)的近似值.(2005-2006) 10,已知f(x)=sinx 的如下函数值表用插值多项式计算sin1.8, 并估计误差界.(2004-2005)11,用f(x)的关于互异节点集112{}{}n ni i i i x x -==和的插值多项式g(x)和h(x)构造出关于节点集1{}ni i x =的插值多项式.(2005-2006)(课后习题)-11111121111{}(),()(){}(),()()()()))()())]()n n i i i i n n n n n n n n n n n n n n q x q x g x x x x x x x x x g A x x g x ==------=----=-解答:法一:设关于节点集x 的插值多项式为则与有共同插值节点x ,则设:q(x)=g(x)+Aw w f(x (x )由q(x )=f(x 得,w w 故:q(x)=g(x)+[f(x (x )w 法二:设q(x)=g(x)+1-122311111()()(){}()()()()(),01()=()[()()]()[()()]()()()()()()[()()]=-n n i i n n n n n n n n n n x g x h x B g x h x B x x x x x x B x x x g x h x BAx x g x h x Bq x f x h x Ah x g x x x g x h x BA B -=---=---≠----===+--Aw 由于和有共同插值节点x ,则存在常数,使得则,w 故:q(x)=g(x)+由得得1111()[()()]()n n x x x x h x g x x x ----则:q(x)=g(x)+12,(1),已知f(x)的如下函数值:f(0)=1,f(1)=3,f(3)=5,写出二次拉格朗日插值多项式L 2(x);(2),若同时已知:f ’(1)=1,用待定系数法求埃尔米特插值多项式H 3(x);(3),当(3)(4)1|()|2|()|4,[0,3]f x f x x ≤≤≤≤∈及3时,x 不取节点,[0,3]x ∈,求32()()||()()f x H x f x L x --的上界.(2011-2012)题型三:最佳平方逼近多项式及最小二乘法1,已知函数值表:用二次多项式y=C 0+C 1X+C 2X 2按最小二乘法拟合改组数据,并求平方逼近误差.(2010-2011)(2005-2006)()000102030410111213142021222324012()()()()()11111()()()()()21012()()()()()4101401210,5010010010034T T T T x x x x x A x x x x x x x x x x y A AC A y c c c ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛ ⎪ ⎪ ⎪⎝⎭⎝解答:法一:线性拟合的法方程组为:即()()01222*20000100011402583,0,3575833570581358||||=(y,y)-Y 01210402023531701(,)0,(,)(T c c y x C x xx δϕϕϕαϕαϕϕϕα⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭===-=-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭====解得:c 则平方逼近误差:法二:构造首项系数为的正交多项式:(x)=1(x)=x-111211021100002*22022220,)0(,)(,)2,()()2(,)(,)46583()()0(2)(,)514357(,)8||||=(y,y)-(,)35i i i i i i i i ix x y x x x x y ϕϕϕϕϕβααϕβϕϕϕϕϕϕϕϕϕδϕϕ======----==++-=-=∑∑(x)(x)=x 则,平方逼近误差:2,求21()1f x x =+在区间[0,1]上的一次最佳平方逼近多项式及平方逼近误差(去权函数ρ(x)=x).(2009-2010) 3,通过实验获得以下数据:请用最小二乘法求形如y=a+bx 2的经验公式.(2008-2009)T T A AC A y =解析:4,利用正交多项式的性质构造首项系数为1的正交多项式1{()}i i g x ∞=,有下列公式:010111()1()()()()(),(1,2,...)k k k k k g x g x x g x x g x g x k ααβ+--==-=--=其中:111(,),(0,1,2...)(,)(,),(1,2...)(,)k k k k k k k k k k xg g k g g g g k g g αβ---==== (1),求[0,1]上首项系数为1的正交多项式(权函数ρ(x)=1),g 0(x),g 1(x),g 2(x) (2),以上述正交多项式为基,求sinx 在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2008-2009B)(2004-2005)010000110001201111211021102110000*010001(1),()1(,)11,()(,)221()(,)121(,)2()2(,)11,()()()()(,)126(,)(,)(2),()(,)(g x xdx xg g g x x x g g dx x x dx xg g g g x dx g g g x x g x g x x x g g g f g f x g g g g αααβαβϕ=====-=--===-===--=-+=+⎰⎰⎰⎰解答:21212211120020111222000222*220(,),)(,)11()sin ()sin sin 11621()()1126()()260.00746 1.09130.23546(,)||||(,)0.000623.(,)i i i ig f g g g g g x x xdx x xdx xdx x x x dx x dx x x dx x x f g f f f g g ϕ=+-+-=⋅+⋅-+⋅-+--+=-+--=-=⎰⎰⎰⎰⎰⎰∑平方逼近误差:5,以正交多项式为基,求函数21()1f x x =+在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2007-2008)(权函数ρ(x)=x,(2011-2012))20120122201201()1,(),(),111()2,()1,()2242211112234211113454111112224561.0656,0.503x x x x x f In f f In C F In c c c In ϕϕϕπϕϕϕπ=====-=-=⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭==-解答:法一:取解得,,,正规方程组为:H 即:解得:c c 2*222*00001000111110110002,0.07423() 1.06560.503020.07423=(f,f)-F 0.000029041()11(,)223,()1(,)332(,)8(,)1,(,)15(,)T n p x x x C g x xg g g x x x g g xg g g g g g g g δαααβ=-=--======-=-====c 故二次最佳平方逼近多项式:平方逼近误差:法二:构造首项系数为的正交多项式:221100*201220120011222*1882163()()()()()()15318510(,)(,)(,)()()()() 1.06560.503020.07423(,)(,)(,)=(f,f)-F 0.00002904T n g x x g x g x x x x x f g f g f g p x g x g x g x x x g g g g g g C αβδ=--=---=-+=++=--=则:平方逼近误差:6,通过实验获得以下数据:请用最小二乘法求形如v =的经验公式,并求平方误差.(2006-2007)01:c c v=+解答转化题型四:代数精确度1,确定参数α,使求积公式20()[(0)()]['(0)'()]2hhf x dx f f h h f f h α≈++-⎰的代数精确度尽可能高,并求其代数精确度.(2010-2011)23322442320()1,,()1(),=121()()(0)(03)2121()()0+)(04)212()[(0)()]['(0)'()]2h h h f x x f x f x x h f x x f x dx h h h h f x x f x dx h h h hf x dx f f h h f f h αα====++-=≠+-≈++-⎰⎰⎰解答:令显然成立令得又时:时:(故具有三次代数精确度.2,确定参数A 1,A 2,使求积公式12()()(0)()3hh hf x dx A f h A f f h -≈-++⎰的代数精确度尽可能高,并求其代数精确度.(2009-2010)3,建立高斯型求积公式1211221()()()x f x dx A f x A f x -≈+⎰.(2009-2010)23121211311221122411221133511221121200010001,232513()1(,)0,()(,)xA A x dxA x A x x dxA x A x x dxA x A x x dxx A Ag xxg gg x x xg gααα----+==+==+==+===-=======-=⎰⎰⎰⎰解答:法一:已知求积公式有3次代数精确度,令f(x)=1,x,x得解上述方程组得:x法二:构造二次正交多项式1111110022110021211222112111221121(,)(,)30,(,)(,)53()()()()5()0,11,331()[(3xg g g gg g g gg x x g x g x xg x xx x x xA x dx A x dxx x x xx f x dx f fβαβρ---=====--=-==-=--=⋅==⋅=--≈+⎰⎰⎰令得高斯点: x故高斯型求积公式为:方法三:设[-1,1]上权(x)2221221122122121122221122331122212121().223()0,+0,5352()0,0,053().52:325()()(),(g x x ax bbx g x dx bax xg x dx ag x xA AA x A xA x A xA x A xx x x x x x c x c xϕϕ--=++===-⋅====-+=+=+=+==--=++⎰⎰=x,首项系数为1的二次正交多项式为则有:即即所以剩下步骤同法二.法四显然222221122111122212211221112221222332211122211221112221122112)()0()()()()()()()2230,535()()()()()20,053(),5xA x A x A x c x c A x c x c A x A x c A x A x c A AccA x x A x x A x A x c A x A x c A x A xccx xϕϕϕϕϕϕ==+=+++++=+++++=+==-+=+++++====-剩下步骤同法二.4,确定求积公式()()(0)()hh f x dx Af h Bf Cf h -≈-++⎰中的参数A,B,C ,使其代数精度尽量高,并指出其代数精确度.(2008-2009B) 5,确定求积公式10211123()()()()343234f x dx f f f ≈-+⎰的代数精确度.(2006-2007B) 6,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度10120113()()()()424f x dx A f A f A f ≈++⎰.(2005-2006) 7,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度101()()(0)()hh f x dx A f h A f A f h --≈-++⎰.(2004-2005) 8,已知h>0,建立高斯型求积公式:21122()()()hhx f x dx A f x A f x -≈+⎰.(2011-2012)题型五:求积公式的最少节点数1,设定积分320x e dx -⎰,问用复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2010-2011)(4)2244(4)461(),()16301[]||()|101801801696017.0519.x xS f x e f x e b a h f h f h b ahη---==--=-≤⋅=<-=解答:复化辛普森公式截断误差:|R 解得:h<0.176,n>故应取个节点 2,设定积分130x e dx -⎰,问用复化梯形求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2009-2010)(2)3322(2)261(),()9101[]||()|10121891622.8.x x T f x e fx eb a h f h f h b ahη---==--=-≤⋅=<-=解答:复化梯形公式截断误差:|R 解得:h<0.357,n>故应取4个节点3,给定积分20cos2xdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (注:2(2)4(4)[](),[](),[,]122880T S b a b a R f h f R f h f a b ηηη--=-=-∈)(2008-2009B) 4,给定积分140x e dx -⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(2007-2008) 5,给定积分21Inxdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (已知:2(2)4(4)1212[](),[](),,(,)12180T S b a b a R f h f R f h f a b ηηηη--=-=-∈)(2006-2007) 6,用积分82122dx In x=⎰计算In2,要使所得近似值具有7位有效数字,问用复化辛普森求积公式至少需要取多少个节点?(2005-2006)4(4)8(4)52(4)-744(4)4-7[](),[2,8]18011122,(),()223|()|,[2,8]817[]102631[]||()|101801808802820.04472,S S S b a R f h f In dx f x f x x x xf x x R f b a h R f h f h h n hηηη-=-∈===≤∈≤⨯-=-≤⋅=≤⨯-≤≥=⎰解答:复化辛普森公式截断误差公式:则使所得的近似值具有位有效数字,即令:|134.2137故至少需要取个节点.7,用积分6213dx In x=⎰计算In3,要使所得近似值具有5位有效数字,问用复化梯形求积公式至少需要取多少个节点?(2004-2005)8,对于定积分10()I f x dx =⎰,当M 2=1/8,M 4=1/32,用11点的复化辛普森(Simpson)求积公式求I 的截断误差为R s [f],用n 个节点的复化梯形求积公式求I 的截断误差为R T [f],要使R T [f]≤R s [f],n 至少是多少?(M 2=max|f ”(x)|,M 4=max|f (4)(x)|,[0,1]x ∈).(2011-2012)题型六:Doolittle 分解及方程组求解1,求矩阵212454635⎛⎫⎪ ⎪⎪-⎝⎭的Doolittle 分解.(2010-2011)212100212454210030635321001LU ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪== ⎪ ⎪⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭解答:A=2,求矩阵114103241⎛⎫⎪- ⎪⎪⎝⎭的Doolittle 分解.(2009-2010)3,设线性方程组123410135114152410162116x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪⋅= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2007-2008&2005-2006)12341234101013101311000132114124100013224101119162116210001313191,,,)(5,0,11,)13,,,)(1,1,1,1).T TT T A LU LY b y y y UX Y x x x --⎛⎫⎛⎫--⎛⎫ ⎪⎪- ⎪ ⎪⎪-⎪=== ⎪⎪--- ⎪ ⎪⎪ ⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭==---==--解答:由得:(y 由得:(x4,设线性方程组123411415101312410762118x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪ ⎪⋅=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2006-2007)5,设线性方程组:12312312323153478113x x x x x x x x x ++=+-=-++=-(1),对方程组的系数矩阵A 作Doolittle 分解; (2),利用上述分解结果求解该线性方程组.(2004-2005)6,用高斯顺序消去法求解线性方程组:13241234242532431737x x x x x x x x x x +=+=+++=+=.(2010-2011)4321102051020510205010130101301013=124317022312002160103701037000242,2,1, 1.x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭====解答:增广矩阵回代求解:x7,用高斯顺序消去法求解线性方程组:1231231233472212320x x x x x x x x x -+=-+-=---=.(2009-2010)题型七:条件数及范数1,求线性方程组1212391078981510x x x x x --=+==的系数矩阵A 的条件数cond 1(A),并说明其含义.(2010-2011)1111191008900015910089010015()||||||||19193611A A cond A A A A b ----⎛⎫ ⎪= ⎪⎪⎝⎭⎛⎫ ⎪-- ⎪= ⎪⎪⎪⎝⎭==⨯=解答:系数矩阵条件数远大于,这说明当和有小扰动时会引起解的较大误差,即该方程组是病态的.2,设矩阵15000910089A ⎛⎫ ⎪=-- ⎪⎪⎝⎭,求cond ∞(A).(2009-2010)3,设三阶对称矩阵A 的特征值分别为:-2,1,3,求||A||2及cond 2(A).(2007-2008)2121222||||3||||()|||||||| 3.A A cond A A A --========解答:则:4,若n 元线性方程组Ax=b 为病态的,可以得到关于系数矩阵A 的什么性质.(2006-2007)5,若111123124A ⎛⎫⎪= ⎪⎪⎝⎭,求cond 1(A).(2005-2006)求cond ∞(A).(2004-2005)6,设1231032475A -⎛⎫⎪=-- ⎪⎪-⎝⎭,求1||||||||A A ∞与.(2007-2008)7,若1234A ⎛⎫= ⎪⎝⎭,求谱半径()A ρ.(2005-2006) 52ρ解答:最大特征值:(A)=题型八:雅可比迭代与高斯-赛德尔迭代1,写出求解方程组1231231237321241021534818x x x x x x x x x -+=--=--=的雅可比迭代公式,并说明其收敛性.(2010-2011)(1)()()123(1)()()213(1)()()312(0)1(3212)71(4215)101(3418)87324102348.k k k k k k k k k J x x x x x x x x +++=-+=--++=--++-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭解答:雅可比迭代公式为:x 雅可比迭代法迭代矩阵:B 严格对角占优,故求解该方程组的雅可比迭代法关于任意初始向量x 收敛 2,设有方程组:132********2112212x x x x x x x -=+=-++=,讨论用雅可比迭代法和高斯-赛德尔迭代法解此方程组的收敛性.(2010-2011)112330200030000202100002000121221000200020031()0021102||0,=0=-J J J L D U B D L U E B B λλλλρ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪- ⎪⎝⎭-=解答:A=雅可比迭代矩阵:得,()<1,故用雅可比迭代法解答此方程组对任意(0)1123(0)20031-()00211001211||0,=012-S S S B D L U E B B λλλλρ-⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪ ⎪⎝⎭-===初始向量x 都收敛.高斯赛德尔迭代矩阵:得,()<1,故用高斯赛格尔迭代法解答此方程组对任意初始向量x 都收敛.3,写出求解方程组:123123123532124721535818x x x x x x x x x -+=--=--=的高斯-赛德尔迭代公式,并说明收敛性.(2009-2010)4,用雅可比迭代法求解以313132323A ⎛⎫⎪= ⎪ ⎪-⎝⎭为系数矩阵的线性方程组时,确定其收敛性.(2009-2010)5,设线性方程组123123123221162222x x x x x x x x x -+=-+-=--+=-,讨论分别用雅可比迭代法和高斯-赛德尔迭代法解此线性方程组的收敛性,若收敛,请给出迭代格式.(2008-2009B)6,设线性方程组:1231231232215202225x x x x x x x x x +-=-++=++=-(1),证明求解该方程组的雅可比迭代法关于任意初始向量收敛;相应的高斯-赛德尔迭代法不是关于任意初始向量收敛; (2),取(0)(0,0,0)T x=,用雅可比迭代法进行求解,要求(1)()5||||10k k x x +--<.(2007-2008)11231123022()101220||0,===0)1022()023002||0,0,2,)1-J J J S S S D L U E B D L U E λλλλρλλλλρ---⎛⎫ ⎪=-+=-- ⎪⎪--⎝⎭-=<-⎛⎫⎪=-+=- ⎪⎪⎝⎭-====>解答:(1):B B 解得:,(B B 解得:(B 所以用雅可比迭代法解此方程组对任意初始向量都收敛,而用高斯赛德尔迭代法解此方程组不是对任意初始向量都收敛.(2):(1)()()123(1)()()213(1)()()312(0)(1)(2)(3)(4)2215202225(0,0,0)(15,20,25)(105,60,35)(205,160,65)(205,160,65)k k k k k k k k k T T T TTx x x xx x x x x x x x x +++=-+-=--+=---==--=--=-=-雅可比迭代公式:x 当时,计算得:(精确解).7,设线性方程组:123123123821027325431111x x x x x x x x x ++=--++=-+=-(1),写出求解该方程组的雅可比迭代法的迭代公式和高斯-赛德尔迭代法的迭代公式,并确定其收敛性; (2),取(0)(0,0,0)T x=,用高斯-赛德尔迭代法计算x (3).(2006-2007)8,设线性方程组Ax=b 的系数矩阵232131t A t t ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,其中t<0,问t 取何值时雅可比迭代法关于任意初始向量都收敛.(2006-2007)12122223021()0310422||()0=0=-,=)12||<1,t<-2,or t>20, 2.J J J t t D L U t t t t E B t t ttt t λλλλλλρ-⎛⎫-- ⎪ ⎪ ⎪=-+=-- ⎪ ⎪ ⎪- ⎪⎝⎭-=-=<<<-解答:雅可比迭代矩阵B 得,,雅可比迭代法对于任意初始向量都收敛,则(B 即:得又故9,1),设线性方程组:121232343243430424x x x x x x x +=+-=-+=-写出求解该方程组的雅可比迭代法的迭代公式,并确定该迭代法的收敛性;2),设线性方程组:123123123104413410811481025x x x x x x x x x ++=++=++=写出求解该方程组的高斯-赛德尔迭代法的迭代公式,并确定该迭代法的收敛性.(2004-2005)10,给定方程组:1231231232251223x x x x x x x x x +-=++=++=(1),用三角分解法解此方程组;(2),写出解此方程组的雅可比迭代公式,说明收敛性;取初始向量x 0=(0,0,0)T,当21||||10k k x x -+-<时,求其解.(2011-2012)11,设()21253sin 3421sincos 43tan 5k k k k k k k Ak k k kk⎛⎫- ⎪+ ⎪ ⎪= ⎪+⎪⎪⎪⎭,求()lim k k A →∞.(2007-2008)()020lim 021205K k A →∞⎛⎫⎪= ⎪ ⎪⎝⎭解答: 12,若()()11,lim 1sin sin k k k k k k AA k k k k →∞⎛⎫⎪+=⎪ ⎪⎪⎝⎭求.(2004-2005) ()01lim 10K k A →∞⎛⎫= ⎪⎝⎭解答: 题型九:非线性迭代1,设计一个算法求.(2008-2009B)101125(),0.2k k kx x x +=+>解答:牛顿迭代公式:x2,给出用牛顿法求围.(2010-2011)661556'5"4"*00001050517001701170[5]66()170,()60,()300()()0,.1170(5)61170()(5)6k k k k k kx x x x x x x x f x x f x x f x x x f x f x x x x x x g x x x +=-=-=-=+=-=>=>>⋅><=+=+解答:的正根.由牛顿迭代法得迭代公式:当故此时收敛到当0<设'611*01850()(5)0,()0,6:0,.0.x g x x g x g xx x x x x ∈=-<∈>=>>∈>故故回到前段.所以当迭代公式也收敛到综上:3,给出用牛顿法求近似值的迭代公式,并给出初值的取值范围.(2009-2010) 解答:方法同上.4,设φ(x)=x+c(x 2-5),当c 为何值时,x k+1=φ(x k ),(k=0,1,2…)产生的序列{x k }收敛于c 为何值时收敛最快?(2010-2011)2''**1**'*5),||<1,||<110,0;.k k cx x c ϕϕϕϕϕ+-=-<<<<解答:(x)=x+c(x (x)=1+2cxx (x )收敛,则有(x )即1+2cx 又当(x )=0,即5,设2()(3)x x c x ϕ=+-,应如何选取常数c 才能使迭代1(),(0,1,2)k k x xk ϕ+==具有局部收敛性?C 取何值时,这个迭代收敛最快?取x 0=2,c =计算()x ϕ的不动点,要求当61||10k k x x -+-<时结束迭代.(2004-2005)****21*2'****'**1(),(3)()(3)()|1|12|1,11,0,,033(2),()0+0,6(3),k kkx x x x c xx x x c x xcx cx x c or cxxϕϕϕϕ++==+-==+-<+<-<<=<<<<==±±解答:(1),令x收敛于则故要局部收敛,即|又得根据收敛阶定理,当时,迭代至少二阶收敛,即12cx得c=故c=.迭代公式为:212346*433)21.7113248651.7319268031.7320508041.732050808|10,: 1.732050808.k kx xxxxxxx x x-=-=====-<=又因为|故6,方程x3-3x-1=0在x=2附近有一根,构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2009-2010)'2(1.5) 1.765174168,(2.5) 2.040827551[1.5,2.5]()[1.5,2.5]()|0.33,xx xxϕϕϕϕϕ===∈∈=≤<解答:取的邻域[1.5,2.5]当时,又因为|故迭代在[1.5,2.5]上整体收敛.7,已知方程42()440f x x x=-+=有一个两重根0x=,请以初值x0=1.5,用m重根的牛顿迭代法计算其近似值,要求51||10k kx x-+-<.(2008-2009B)(P204例7.7)8,(1),已知方程240xe x+-=在0.6附近有一根x,迭代法214,0,1,2kxkx e k+=-=是否局部收敛?如果不收敛,试构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2),取x 0=0.6,用你所构造的不动点迭代法求解该方程,迭代至x 5. (3),给出牛顿法求围.(2007-2008)2'2'**1'''1(1):()4,()2|()|1,(0),1(4)211(4),()22(4)1(0)2,(1)3()[0,1]21()||(1)|161(4)2x xk k k k x e x e x x x In x In x x x In In x x x In x ϕϕϕϕϕϕϕϕϕϕ++=-=->>=---=-==∈≤=<=-解答:故该迭代公式不是局部收敛的.构造:理由:取邻域[0,1](x)=故又|故迭代式在[0,1]上整体收敛11021324354101(2),(4),21(4)0.61188771521(4)0.61013645921(4)0.61039483321(4)0.61035672221(4)0.61036234421120(3),(),0.2k k k k kx In x x In x x In x x In x x In x x In x x x x x ++=-=-==-==-==-==-==+>.则9,给定方程x 2+x-2=0,[0,2]x ∈,采用迭代公式x k+1=x k +c(x k 2+x k -2),(k=0,1,2…)求其根,问当c 为何值时,迭代法收敛?又当c 为何值时,迭代法收敛最快?(2011-2012)*2'''1,()(2)()1(21)2(1)||1(21)|1,-0.31(1)=03x x x c x x x c x c c ϕϕϕϕ==++-=++=++<<<解答:当|即时,线性收敛当,即c=-时收敛最快.10,给定方程230xx e -=,[3,4]x ∈(1),构造一种线性收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因);(2),构造一种二次收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因).(2011-2012)21111'12102'"0(1),()(3),3.29(3)()(4) 3.8712(),[3,4]23(3),(0,1,2,)[3,4].(2),()3,[3,4](3)0,(4)0()60,()60,[3,4]3k k x x x x In x x x x In x k x f x x e x f f f x x e f x e x x ϕϕϕϕϕ+==≤≤=≤≤∈==∈=-∈><=-<=-<∈=解答:故不动点迭代公式:x 对于任意初值收敛取初值时,牛顿213.6kkx kk k x k x ex x x e +-=--迭代法:收敛,且二次收敛11,方程x 3-x 2-1=0在x=1.5附近有根,建立一个收敛的迭代公式,并证明其收敛性.(2004-2005)122''33312111.51()1(1.3) 1.591715976,(1.6) 1.390625[1.3,1.6]()[1.3,1.6]222(),|()|||0.921.311k k k kx x x x x x x x x x x x x ϕϕϕϕϕϕ++=+==+==∈∈=-=-≤<=+解答:取的邻域[1.3,1.6]故当时,又故迭代公式:在[1.3,1.5]上整体收敛.12,(1),已知方程1020xex +-=在0.09附近有一根x,迭代法1(210),(0,1,2)k k x In x k +=-=是否局部收敛?如果不收敛,请构造一个局部收敛的不动点迭代法,并说明收敛的理由; (2),取x 0=0.09,用局部收敛的迭代法计算x 5;(3),用牛顿法求的近似值,并给出初值的取值.(2006-2007)'''*1''5(1),()(210),()15|()|1,[0,1],|()|>1.11510111(),()51010(0)0.1,(0.12)0.087250323[0,0.12]()[0,0.12]()|kx k x xx In x x xx x x x e x e x e x x x ϕϕϕϕϕϕϕϕϕϕ+-=-=->∈=-=-=-==∈∈≤解答:显然故该迭代公式不是局部收敛的构造:因为取[0,0.12]邻域考察故当时,又|'0.12110.09010.09058257820.09051881530.0905241|(0.12)|||0.1131101151011(2),510110.09,0.090582578510110.090518815510110.09052579651011510k kx k x k e x e x e x x e x e x e x e ϕ++=-<<=-=-==-==-==-==-故迭代公式:在[0,0.12]上整体收敛.57960.09052503151200.090525031110.0905251155102117(3),()30.k k k x e x x x +==-==+>使用迭代公式:进行求解.初值:x13,设方程x 3-3x-1=0在x=2附近有根;1),证明该方程在区间[1.5,2.5]内有唯一根x *;2),确定迭代函数φ(x).当初始值x 0在何区间取值时,迭代公式x k+1=φ(x k ),(k=0,1,2…)收敛到x *,并说明理由.3),写出求解该方程组的牛顿法迭代公式,当初始值x 0在何区间取值时,牛顿法迭代公式收敛到x,并说明理由.取x 0=1.8,用牛顿法迭代公式计算x,要求(1)()4||||10k k x x +--<.4),写出求解该方程的弦截法迭代公式,当初始值在何区间取值时,弦截法迭代公式收敛到x,并说明理由.(2005-2006)3'2'331223(1),()31,()33(1.5) 2.125,(2.5)7.125(1.5)(2.5)0,()0()0,[1.5,2.5][1.5,2.5].(2),3121(3),,3333()3k k k k k k k f x x x f x x f f f f f x f x x x x x x x x x f x x +=--=-=-=⋅<=>∈--+=-=--=-解答:证明:故在[1.5,2.5]内有根.又故方程在区间内有唯一根牛顿法迭代公式:'2"1,()33,()6x f x x f x x-=-=题型十:稳定算法1,对给定的x ,下列两式能否直接计算,说明理由;如果不能,请给出变换算式:(1x ,x 很大;(21,|x|很小.(2010-2011)3(1)x =解答:不能直接计算,因为两个相近的数相减,会产生较大的误差:2,为了提高计算精度,当正数x.(2005-2006)3,给出计算积分10,(0,1,2,10)10nn x I dx n x ==+⎰的递推稳定算法和初值.(2010-2011)1111111000-11110002010101101010101=101011111)11101010(1)11121[].2111)101)220(1)n n n n n n n n n n x x dx x dx x dx I I x x nn n x x x dx dx dx n x n n n n ----+-===-=-++-=<<=+++=+=+++⎰⎰⎰⎰⎰⎰解:I 该算法不稳定,变形得:I 因为(取初值I ((4,设计一种求10x nn I e x dx =⎰(n 为非负整数)稳定的递推算法,包括递推公式,初值的确定;当初值201221e I =⋅时,利用上述稳定的递推公式计算三个连续的积分值.(2011-2012)题型十一:部分证明题1,利用差分的性质证明:12+22+…n 2=n(n+1)(2n+1)/6222()12,g n n n =++证明:设函数对任意的建立差分表:函数g(n)的三阶差分是与n 无关的非零常数,故g(n)是n 的三次多项式:3(1)1,(2)5,(3)14,(4)30111()()14521231(1)(2)(1)(2)(3)(1)(21)14521!2!3!6g g g g n n n g n N n n n n n n n n n n ====---⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭------++=+⋅+⋅+⋅=按等距节点牛顿向前插值公式建立三次插值多项式,则2,证明:n+1个互异节点的插值型求积公式的代数精确度至少为n.(2010-2011)(1)0()(),.(1)!n nb i ai f x x dx n ζ+=-+∏⎰证明:截断误差R[f]=易证 3,若0{()}ni i l x =是关于互异节点0{}ni i x =的拉格朗日插值基函数组,函数0011()()()(),(1)n n f x x l x x l x x l x n =++≥,证明:f(x)≡x.(2009-2010)00110()()()()()()()()n n i i n n i f x L x f x l x x l x x l x x l x f x x=≈==+++≡∑证明:故:4,证明:0101'()[()()]"()2hf x f x f x f h ζ=--,其中h=x 1-x 0,01(,)x x ζ∈.(2009-2010)"'20000"'211001010'"010())()()()2!(),())()()()2!1()[()()]()2f f x x x x x f x x f x f x x x x x hf x f x f x f h ζζζ+-+-==+-+-=--证明:由泰勒公式得f(x)=f(x 令则f(x 整理得: 5,证明:关于互异节点0{}ni i x =的拉格朗日插值基函数0{()}ni i l x =满足恒等式012()()()()1n l x l x l x l x +++≡.(2008-2009B)(2006-2007B)(2004-2005)120(1)(1)1010()1,(),,1=L ()()()()()()()1,()0,()()0(1)!()()()()1n nn n i n i n n n n ni n i f x f x x x x x R x l x f x R x f f x fx R x W x n l x l x l x l x ζ=+++==+=+=≡==+=+++≡∑∑证明:令对在上进行拉格朗日插值,有因故故:6,证明求积公式()[()()]2ba b af x dx f a f b -≈+⎰的截断误差:3"()[](),12f R f b a ηη=--∈其中:(a,b).(2007-2008) (1)001(2)(2)(2)33()()(1)!1,,()()()1"()()()()()()()2!2!2!612n nb i ai b b aa f x x dx n n x a xb f f f f x a x b dx x a x b dx a b b a ζζηηη+=-+===--=--=⋅-=--∏⎰⎰⎰证明:插值型求积公式截断误差R[f]=R[f]=7,设矩阵A 为可逆上三角阵,证明A -1仍为上三角阵,并导出求逆算法.(2006-2007B)8,设x k =a+kh(k=0,1,2;h>0),f(x)的三阶导数连续,证明:2(3)102021'()[()()](),(,)26h f x f x f x f x x h ζζ=-+-∈其中为中值.(2011-2012)001122120201201201021012202112020101222,),,),,)()()()()()()()()()()()()()()()()()()()()()()()()(22x y x y x y x x x x x x x x x x x x x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x x f x f x f x h h h ------=++------------=-+证明:过(((的拉格朗日插值多项式为:L 12'2102(3)201202(3)'''1210122'(3)10202)1()[()()]2()()()()()(),(,)3!()()()[()()()]3!1()[()()](),(,)26x x L x f x f x hf f x L x x x x x x x x x f f x L x x x x x x x h f x f x f x f x x h ηηηζζ==-+-=---∈-=---=-+-∈又故:。
二次多项式与线性方程组经典习题
本文档将介绍一些关于二次多项式与线性方程组的经典题,帮助读者加深理解和掌握相关概念和解题技巧。
题一:二次多项式的因式分解
问题描述
已知二次多项式 $f(x) = ax^2 + bx + c$ 的三个根为 $x_1, x_2, x_3$,其中 $x_1 + x_2 + x_3 = 0$,求二次多项式 $f(x)$ 的因式分解式。
解答步骤
根据韦达定理可知,二次多项式 $f(x)$ 的因式分解式可以表示为:$f(x) = a(x - x_1)(x - x_2)(x - x_3)$。
根据已知条件 $x_1 + x_2 + x_3 = 0$,我们可以设 $x_3 = -(x_1 + x_2)$。
代入因式分解式并展开,可得:$f(x) = a(x - x_1)(x - x_2)(x + x_1 + x_2)$。
因此,二次多项式 $f(x)$ 的因式分解式为 $f(x) = a(x - x_1)(x - x_2)(x + x_1 + x_2)$。
题二:线性方程组的解
问题描述
已知线性方程组如下:
$$
\begin{align*}
2x + 3y &= 5 \\
4x + 5y &= 11 \\
\end{align*}
$$
求该线性方程组的解。
解答步骤
我们可以使用消元法或矩阵法来求解该线性方程组。
消元法
通过将第一行乘以2,并减去第二行的2倍,可以得到一个新的方程组:
$$
\begin{align*}
2x + 3y &= 5 \\
-1y &= -1 \\
\end{align*}
$$
解第二个方程得到 $y = 1$,然后将其代入第一个方程,解得$x = 2$。
因此,该线性方程组的解为 $x = 2$,$y = 1$。
矩阵法
将该线性方程组表示为矩阵形式 $AX = B$,其中:
$$
A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix},
X = \begin{bmatrix} x \\ y \end{bmatrix},
B = \begin{bmatrix} 5 \\ 11 \end{bmatrix}
$$
通过计算矩阵 $A$ 的逆矩阵,我们可以得到解向量 $X$:
$$
X = A^{-1}B
$$
求解可得 $X = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$。
因此,该线性方程组的解为 $x = 2$,$y = 1$。
以上就是关于二次多项式与线性方程组的经典习题的详细解答。
希望通过这些习题的练习,读者可以加深对相关概念和解题技巧的
理解与掌握。