苏教版六年级数学上册知识点总结
- 格式:doc
- 大小:59.50 KB
- 文档页数:5
第一单元长方体和正方体1.两个面相交的线叫做棱,三条棱相交的点叫做顶点。
2.名称相同点不同点关系面棱顶点面的形状面的大小棱长长方体6 12 8一般都是长方形,有时也有两个相对的面是正方形。
相对的面完全相同相对的棱长度相等正方体是特殊的长方体正方体6 12 8 六个面都是正方形六个面完全相同12条棱长都相等长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
长方体的12条棱有3组,每组的四条棱长度相等。
长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4长方体放桌面上,最多只能看到3个面。
3.正方体的展开(不能出现田字格)1)“141型”,中间一行4个正方形,上下各个正方形;2)“231型”,中间3个正方形,上下分别有2个和1个正方形。
3)“222”型,两行只能有1个正方形相连。
4)“33”型,两行只能有1个正方形相连。
4.长方体的表面积就是长方体六个面的总面积。
长方体的表面积= 长×宽×2+长×高×2+宽×高×2 正方体的表面积= 棱长×棱长×6 =(长×宽+长×高+宽×高)×25.在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱、通风管等。
6.体积和容积。
(1)体积:物体所占空间的大小(2)容积:容器所能容纳物体的体积7.常见体积(容积)单位。
(相邻的体积和容积单位的进率时1000)。
常见体积单位:立方厘米、立方分米、立方米;常见容积单位:毫升、升体积与容积单位之间的关系:1立方厘米=1毫升1立方分米=1升8.长方体和正方体的体积。
(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长(3)长方体或正方体的体积=底面积×高第二单元 分数乘法1.分数和整数相乘:用分数的分子和整数相乘的积做分子,分母不变;能约分的要先约分。
一、整数的认识1. 整数的概念2. 整数的比较3. 整数的加减法4. 整数的乘法5. 整数的除法6. 整数的实际应用二、分数的认识1. 分数的基本概念2. 分数的大小比较3. 分数的加减法4. 分数的乘法5. 分数的除法6. 分数的实际应用三、小数的认识1. 小数的基本概念2. 小数的大小比较3. 小数的加减法4. 小数的乘法5. 小数的除法6. 小数的实际应用四、约数和倍数1. 约数的概念2. 倍数的概念3. 最大公约数和最小公倍数4. 约数和倍数在日常生活中的应用五、形状与图形1. 四边形的认识2. 三角形的认识3. 直角三角形、等腰三角形、等边三角形的特点4. 四边形和三角形的周长和面积计算5. 图形的对称性六、数学中的单位1. 长度单位2. 重量单位3. 容积单位4. 时间单位5. 金钱单位七、图表的应用1. 图形的读取与分析2. 柱状图的绘制和分析3. 折线图的绘制和分析4. 饼图的绘制和分析5. 数据的收集和整理八、数学逻辑与推理1. 命题的概念2. 命题的联结词3. 命题的真值表4. 命题的等价变换5. 逻辑推理与实际问题分析以上是苏教版六年级上册数学知识点的主要内容归纳。
在学习这些知识点时,希望同学们能够多加思考和练习,掌握基本概念的同时要能够将其应用到实际问题中去,培养良好的数学思维和解决问题的能力。
祝愿同学们在学习数学的过程中取得优异的成绩,为未来的学习打下坚实的基础。
在学习整数的认识时,我们需要理解整数的概念,掌握整数的比较、加减法、乘法和除法,以及整数在实际应用中的运用。
整数包括正整数、负整数和0,它们构成了数轴上的整数集合。
比较整数大小时,我们可以利用数轴或大小的规律进行推测,从而判断整数的大小关系。
在处理整数的加减法时,我们需要理解负数与正数相加减的规律,了解同号两数相加时数值变大,异号两数相加时数值相减的原理。
而乘法和除法涉及了整数的相乘和相除运算,需要掌握负数相乘的规律以及除法中负数的特殊处理方式。
苏教版六年级数学上册(全册)知识点(一)长方体和正方体长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体 6 个面的总面积,叫做它们的表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6注:不足 6 个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1 立方米=1000 立方分米 1 立方分米=1000 立方厘米1m³=1000dm³1dm³=1000cm³1 升=1000 毫升 1 立方分米=1 升 1 立方厘米=1 毫升1L=1000mL 1dm=1L 1cm³=1mL长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高正方体体积公式=棱长×棱长×棱长长方体和正方体的体积=底面积×高(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是 1 的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位 1 的量,想单位 1 的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比 1 小的数相乘,积小于原数;一个数与比 1 大的数相乘,积大于原数。
倒数的认识:1.乘积是 1 的两个数互为倒数。
六年级上册苏教版数学知识点归纳一、整数1. 整数的基本概念在数轴上的整数,正整数、零、负整数,绝对值。
2. 整数的加减法同号两数相加、异号两数相加、同号两数相减、异号两数相减,绝对值的概念。
3. 整数的乘除法正整数的乘除、负整数的乘除,零的乘除。
4. 整数的应用温度的表示、海拔的表示、负数的概念、整数的应用问题。
二、有理数1. 有理数的概念整数与分数的概念,有理数的大小比较。
2. 正数、负数、零正数的概念、负数的概念,有理数的分类。
3. 有理数的加减法有理数的加法、有理数的减法,被减数、减数、差的关系。
4. 有理数的乘法有理数的乘法法则,有理数的乘法性质。
5. 有理数的除法有理数的除法法则,有理数的除法性质。
6. 有理数的应用实际问题中的有理数运算,应用题。
三、代数式1. 代数式的概念代数式的组成、代数式的值、代数式的运算。
2. 代数式的加减法同类项、异类项,代数式的加法、代数式的减法。
3. 代数式的乘法单项式的乘法,多项式的乘法。
4. 代数式的负数有理数的乘法性质,有理数的除法性质。
5. 代数式的应用实际问题中的代数式运算,应用题。
四、方程1. 一元一次方程一元一次方程的基本概念,解方程的步骤。
2. 一元一次方程的解法等式的基本性质,一般方程的解法。
3. 一元一次方程的应用实际问题中的一元一次方程的应用,应用题。
五、图形的初步认识1. 点、线、面图形的基本元素,点、线、面的概念。
2. 多边形多边形的概念,边、角的关系。
3. 三角形三角形的分类,三角形的性质。
4. 四边形四边形的分类,四边形的性质。
5. 圆圆的概念,圆的性质。
六、数学课外拓展1. 数学游戏数学游戏的基本概念,数学游戏的分类。
2. 数学思维训练数学思维的培养,数学思维方法。
3. 数学趣味知识数学趣味知识的介绍,数学趣味知识的应用。
以上便是六年级上册苏教版数学知识点的归纳总结,通过深入理解和掌握这些知识点,有助于学生在数学学习中建立坚实的基础,提高数学成绩,培养解决问题的能力。
苏教版六年级上册数学知识点总结一、方程以及列方程解应用题1.形如ax+b=c 的方程,用“一个加数 = 和 - 另一个加数”。
如3.6X+1.8=5.4, 3.6X=5.4-1.82.形如ax-b=c 的方程,用“被减数 = 差 + 减数”, 如32X-65=31,32X=31+65。
3.形如ax ÷b=c 的方程,用“被除数 = 商 × 除数”,如2.5X ÷8=1.25,2.5X=1.25×84.形如ax ±bx=c 的方程,先将两个X 前面的数合并,如3.8X-1.3X=10,2.5X =10(就是3.8-1.3=2.5),还如X+32X=65,35X=65(就是1+32=35)。
以上4种方程的最后都成为aX=b 的样子,最后的计算都是X=b ÷a (就是右边的积÷左边的因数)5.列方程解决实际问题基本步骤:审清题意→找准等量关系→设未知数→列方程→解方程→检验→作答 基本类型:比较大小关系;总数和部分数关系;和倍与差倍关系;行程问题中的关系;涉及图形的周长、面积的关系等等。
例如:(1)题目中说“一个数比另一个数的几倍多几(或少几)”,列出的方程一般是ax+b=c ,或者ax-b=c ;如:课本1页例1、练一练,2页第3、4、10、11题等。
(2)题目中说“一个数是另一个数的几倍”,列出的方程一般是ax+x=c (题目中另外一个条件是两个数的和),或者ax-x=c (题目中另外一个条件是谁比谁多或者谁比谁少);如:课本4页例2、练一练,5页第3、4、5题等。
(3)题目说的是一个整体的东西,这个东西由一个大东西和几个小东西组成,一般列方程是ax+b=c ;如:课本3页第8、9、12题,7页第4题等。
(4)路程类问题:如果问题求时间,就有两个“X ”(是相背、相反、相向、相对这些词,方程是加;是相向、同向、一起从同一个地方向同样的另外一个地方,方程是减);如果问题只求其中一个速度,就只有一个“X ”。
苏教版六年级上册数学知识点1. 整数
- 整数的概念与表示方法
- 整数的加法与减法
- 整数的乘法与除法
- 整数在日常生活中的应用
2. 分数
- 分数的概念与表示方法
- 分数的加法与减法
- 分数的乘法与除法
- 分数在实际问题中的运用
3. 小数
- 小数的概念与表示方法
- 小数的加法与减法
- 小数的乘法与除法
- 小数在实际生活中的应用
4. 百分数
- 百分数的概念与表示方法
- 百分数与分数、整数的转化
- 百分数的加法与减法
- 百分数在统计与比较中的应用5. 图形与几何
- 点、线、线段、射线的基本概念- 角的概念与分类
- 三角形的特点与分类
- 四边形的特点与分类
- 圆的概念与基本性质
6. 数据统计与概率
- 数据的收集与整理
- 数据的图表表示
- 数据的分析与解读
- 概率的基本概念与计算方法
7. 空间与方位
- 立体图形的表面积与体积
- 方向与方位的表示
- 平面镜像与旋转
- 几何变换与应用
以上是苏教版六年级上册数学的主要知识点。
通过学习这些知识,学生可以掌握基本的整数、分数、小数和百分数的运算方法,以及图形、几何、数据统计和概率等方面的基本概念和应用能力。
苏教版六年级数学上册期末知识点复习要点长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1立方米=1000立方分米1立方分米=1000立方厘米1m³=1000dm³1dm³=1000cm³1升=1000毫升1立方分米=1升1立方厘米=1毫升1L=1000mL 1dm³=1L 1cm³=1mL长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高正方体体积公式=棱长×棱长×棱长长方体和正方体的体积=底面积×高第二单元:分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比1小的数相乘,积小于原数;一个数与比1大的数相乘,积大于原数。
倒数的认识:1.乘积是1的两个数互为倒数。
2.求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。
一 长方体和正方体一、长方体的认识1.认识长方体的面、棱、顶点。
(1)从不同的角度观察同一个长方体。
把长方体放在桌面上,无论从哪个角度观察,最多只...能同时观察到长方体的三个面。
.............. (2)长方体的棱和顶点。
长方体两个面相交的线叫作长方体的棱,三条棱相交的点叫作长方体的顶点。
2.长方体的特征。
长方体是由6个长方形(也可能有2个相对的面是正方形)围成的立体图形,它有6个面、12条棱和8个顶点。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
3.长方体长、宽、高的含义。
长方体相交于同一顶点的三条棱的长度.................,.分别叫作....它的长、宽、高。
........4.长方体的长、宽、高不是固定不变的,它与长方体的摆放方式有关。
长方体相交于同一顶点的三条棱中,通常把水平方向的两条棱分别叫作它的长和宽,把竖直方向的一条棱叫作它的高。
二、正方体的认识1.正方体也叫立方体。
它是由6个完全相同的正方形围成的立体图形。
它的6个面是完全相同的正方形,12条棱的长度都相等,有8个顶点。
2.正方体的长、宽、高相等,都叫正方体的棱长。
3.长方体和正方体的特征的异同。
①相同点:都有6个面、12条棱、8个顶点,相对的面完全相同,相对的棱长度相等。
②不同点:长方体的6个面都是长方形(也可能有2个相对的面是正方形);一般情况下,棱有3组,每组4条棱长度相等。
正方体的6个面是完全相同的正方形;每条棱的长度都相等。
三、正方体、长方体的展开图1.把一个正方体沿一条棱剪开,如下图所示。
正方体的展开图是由6个完全相同的正方形组成的,可以通过观察、折叠找到3组相对的面。
2.沿长方体的棱把长方体剪开,展开图中有3组相对的面,相对的面完全相同........,.相对的面完全隔开。
.........易错点:误认为一个长方体中最多有4条相等的棱。
这是错误的,一定要注意长方体的6个面不一定都是长方形,也可能有2个相对的面是正方形。
苏教版六年级数学上册知识点总结一、数的基本概念1、数的定义:数字的可以代表一定的量或数量的量化事物,有用来记录和表示事物的多少,并进行运算的字符。
2、分数:分数是一个有两个部分构成的数,一部分称为分子,一部分称为分母。
3、整数:整数是能够除以1,而余数是0的数。
它可以在自然界表示为次数,如年份、月份、日期、时间等。
4、序数:序数是表示数字、单位或次序的特殊名称,其末尾加上一个“-th”。
二、四则运算1、加法:加法是指用符号“+”表示的两个数的运算,它的结果是两个加数的和。
2、减法:减法是指用符号“-”表示的两个数的运算,它的结果是被减数减去减数的差。
3、乘法:乘法是指用符号“X”表示的两个数的运算,它的结果是乘数和被乘数的积。
4、除法:除法是指用符号“÷”表示的两个数的运算,它的结果是被除数除以除数的商。
三、小数1、小数的定义:小数是一种由右至左数的数字,由小数点“.”分割开,用以表示一个数的准确度。
2、形式化小数的定义:在数的右边用0补齐的数叫做形式化小数,形式化小数的小数点可以省略不写。
3、近似数的定义:近似数是由小数点后数字的变化来体现的数,它可以代表有效的近似值。
4、定点数的定义:定点数是指将一个小数截取若干位后,以整数的形式表示小数的数值。
四、因式分解1、因式分解:因式分解是指把一个多项式分解为多个项的过程。
它可以用来把一个复杂的表达式简化,从而更容易进行计算。
2、因式分解的方法:因式分解可以通过因式分解法、因数分解法和正则表示法来实现。
其中,因式分解法是将多项式分解为一个或多个因式的科学计算方法,以简单的步骤实现复杂的表达式简化。
五、数轴1、数轴的定义:数轴是由一个数轴中心(原点)和一系列等差数坐标组成的一种坐标系,用以表示和表示数值变化的可视图形。
2、数轴的组成:数轴又可以分为水平数轴和竖直数轴。
水平数轴可以用来表示数字的比较大小;竖直数轴则可以用来表示数字的大小变化情况。
苏教版六年级数学上册知识点归纳总结一、整数及运算1. 整数的概念及表示方法整数包括正整数、负整数和零,用整数的绝对值来表示其大小,正整数前面不标正号,负整数前用负号“-”表示。
2. 整数的加法和减法整数的加、减法运算遵循正数加正数、负数加负数的规则,结果的符号由被加数和加数的符号决定。
3. 整数的乘法和除法整数的乘、除法运算结果也遵循正数乘正数、负数乘负数为正,正数乘负数、负数乘正数为负的规则。
二、小数1. 小数的概念及表示方法小数是数的一种,用有限的数位和无限循环的数位来表示一个数,小数点分开整数位和小数位。
2. 小数的加法和减法运算小数的加法和减法运算类似于整数,先对齐小数点,然后按照正常的加减法规则进行运算。
3. 小数的乘法和除法运算小数的乘法和除法运算需要注意小数点位置的移动,乘法时小数位数相加,除法时小数位数相减。
三、约分与化简1. 分数的定义和表示方法分数由分子和分母组成,分子代表取的一部分,分母代表整体被分成的份数,分数的表示形式为分子/分母。
2. 约分与最简分数约分是将分数的分子和分母同时除以一个相同的数,得到一个相等但更简便的分数。
最简分数是指分子和分母没有公约数,不能再约分的分数。
3. 分数的加减法运算分数的加减法运算需要通分,即分母相同,然后对分子进行加减操作,最后将结果约简为最简分数。
四、面积和周长1. 长方形的面积长方形的面积等于长乘以宽,单位为平方单位。
2. 正方形的面积和周长正方形的面积等于边长的平方,周长等于边长的4倍。
3. 三角形的面积三角形的面积等于底乘以高的一半。
4. 圆的面积和周长圆的面积等于半径的平方乘以π(取近似值3.14),周长等于直径乘以π。
五、容量和体积1. 容积的概念及单位容积是指物体所能容纳的内容量,单位有升(L)和毫升(mL)。
2. 直接读数法和求积法通过直接读数法可以快速读出容器中液体的体积;通过求积法可以计算物体的体积,即将长度、宽度和高度相乘。
苏教版六年级上册知识点总结
方程以及列方程解应用题
1、形如ax±b=c方程的解法
【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】
2、形如ax±bx=c方程的解法
【解方程时,第一步要把x前面的序数相加或相减,再
在两边同时除以同一个数】
3、列方程解决实际问题
基本步骤:审清题意→找准等量关系→设未知数→列方程→解方程→检验→作答
基本类型:比较大小关系;总数和部分数关系;和倍与差倍关系;行程问题中的关系;涉及图形的周长、面积的关系等等。
长方体和正方体
1、长方体和正方体的特征
2、表面积概念及计算【长方体或正方体6个面的总面积,叫做它们的表面
积】
算法:长方体(长×宽+长×高+宽×高)×2
(ab+ah+bh)×2
正方体棱长×棱长×6
a×a×6=6
2 a
注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
3、
体积概念及计算
分数乘法 1、
分数乘法算式的意义:比如3×53表示3个5
3
相加的和是多少,也可以
表示3的5
3
是多少?
注:【求一个数的几分之几用乘法解答】 2、
分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】 3、
分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
4、
分数连乘:通过几个分数的分子与分母直接约分再进行计算。
倒数的认识 1、 乘积是1的两个数互为倒数。
2、
求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。
【整数是分母为1的分数】
3、 1的倒数是1 , 0没有倒数。
4、
假分数的倒数都小于或等于1(或者说不大于1); 真分数的倒数都大于1。
分数除法
1、 分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。
2、
分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇到除以一个数,把它改写成乘这个数的倒数来计算。
【转化成分数的连乘来计算】
3、
除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被除数。
4、
分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方法来解,也可以直接用除法。
注:在单位换算中,要弄清需要换算的单位之间的进率是多少。
认识比 1、 比的意义:比表示两个数相除的关系。
2、 比与分数、除法的关系:a :b =a÷b=
b
a
(b≠0)
3、
比值:比的前项除以比的后项,所得的商就叫比值。
注:比值是一个数,可以是整数、分数、小数,不带单位名称。
4、
比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。
5、
最简整数比:比的前项和后项是互质数。
也就是比的前项和后项除了1意外没有其它公因数。
6、
化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的最大公因数。
注:化简比和求比值是不同的两个概念
【意义不同,方法不同,结果不同】
7、
按比例分配问题:将一个数量按照一定比例,分成几个部分,求每个部分是多少,这类问题称为按比例分配问题。
解决方法:先求出总份数,再求各部分数占总数的几分之几,转化成分数乘
法来计算。
分数四则混合运算 1、
运算顺序:分数四则混合运算的顺序与整数相同。
先算乘除法,后算加减法;有括号的先算括号里面的,后算括号外面的。
2、
运算律:加法的交换律:a +b=b +a
加法的结合律:(a+b)+c=a+(b+c) 乘法的交换律:a ×b=b ×a
乘法的结合律:(a ×b)×c=a ×(b×c) 乘法的分配律:(a+b)×c=a×c +b ×c 3、
分数四则混合运算的应用题:
(1) 总数与部分数相比较的问题:【分数乘法、减法】
一般解题方法:先求出未知的部分数,再用总数减部分数等于另一部分数。
(2) 已知一个数量比另一个数量多(或少)几分之几,求这个数量是多
少的问题:【分数乘法、加减法】
一般解题方法:先求出多(或少)的部分,再用加法或减法求出结果。
注:对于题中出现的带单位与不带单位的分数,要注意它们的意义不一样。
解决问题的策略 1、 用“替换”策略解决实际问题 2、 用“假设”策略解决实际问题
可能性
用分数来表示可能性的大小:量
所有可能出现的情况数规定出现的情况数量
P
认识百分数 1、
百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分比或百分率。
2、
百分数的读写:百分数不写成分数形式,先写分子,再写百分号。
注:百分数后面不带单位名称。
(常出现在判断题中)
3、百分数与小数的互化:
去掉百分号,再将小数点向左移动两位
百分数小数
将小数点向右移动两位,再在后面添上℅
4、百分数与分数的互化:
先改写成分母是100的分数,再约分成最简分数
百分数分数
先将分数化成小数(遇到除不尽时,一般保留三位小数)。
再改写成百分数
5、百分数应用题:
一般解题方法:求一个数是另一个数的百分之几,用除法计算。
注:理解生活中常见的一些百分率。
例如:出勤率、发芽率、成活率、合格率、含盐率、普及率等等。