解析几何综合问题圆与椭圆双曲线抛物线等二轮复习专题练习(五)附答案人教版高中数学考点大全
- 格式:doc
- 大小:344.00 KB
- 文档页数:6
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2-bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)________. ①必在圆x 2+y 2=2上②必在圆x2+y2=2外③必在圆x2+y2=2内解析:由e=12=ca,得a=2c,b=3c.所以x1+x2=ba=32,x1x2=-ca=-12.于是,点P(x1,x2)到圆心(0,0)的距离为x21+x22=(x1+x2)2-2x1x2=34+1=74<2,所以点P在圆x2+y2=2内.3.已知121(0,0),m nm n+=>>当mn取得最小值时,直线22y x=-+与曲线x x m +1y yn=的交点个数为评卷人得分三、解答题4.平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A (3c,0)三点,其中c>0.(1)求⊙M的标准方程(用含c的式子表示);(2)已知椭圆22221(0)y xa ba b+=>>(其中222a b c-=)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.①求椭圆离心率的取值范围;②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.xNMOyA B l :x =t 5.已知椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆的左、右两个顶点分别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.6.设分别21,F F 是椭圆C :()012222>>=+b a by a x 的左右焦点;(1)若椭圆C 上的点)23,1(A 到两焦点的距离之和为4,求椭圆C 的方程; (2)在(1)的条件下求21F AF ∆内切圆的方程;(3)设MN 是过椭圆C 中心的弦,P 是椭圆上的动点,求证:直线PM ,PN 的斜率之积为定值. 3.7.已知圆O :222x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q . (Ⅰ)求椭圆C 的标准方程;(5分)(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(5分)xy O PF QA B(Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由. (5分)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.③ 3. 评卷人得分三、解答题4.(1)设⊙M 的方程为022=++++F Ey Dx y x ,则由题设,得2220,0,330.c Ec F c Ec F c Dc F ⎧-+=⎪++=⎨⎪++=⎩解得223,30,.D cEF c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩………………………3分 ⊙M 的方程为0332222=--+c cx y x , ⊙M 的标准方程为22234)33(c y c x =+-. …………………………………5分 (2)⊙M 与x 轴的两个交点(3,0)A c ,)0,33(c C -,又)0,(b B ,)0,(b D -, 由题设3,3,3c b c b ⎧>⎪⎨->-⎪⎩ 即3,3.3c b c b ⎧>⎪⎨<⎪⎩ 所以2222223,1.3c a c c a c ⎧>-⎪⎨<-⎪⎩………………………7分 解得2321<<a c ,即 2321<<e . 所以椭圆离心率的取值范围为)23,21(.………………………………………10分(3)由(1),得)0,33(c M .由题设,得c c b b c 33333=-=-. ∴233b c =,23(,0)3D c -. ∴直线MF 1的方程为133x ycc -=, ① 直线DF 2的方程为1233x ycc -+=. ②…………………………………13分 由①②,得直线MF 1与直线DF 2的交点)3,334(c c Q ,易知433=OQ k 为定值, ∴直线MF 1与直线DF 2的交点Q 在定直线x y 433=上.…………………15分 5.解:(1)由题意:42,23==a a c 可得:1,3,2222=-===c a b c a ,故所求椭圆方程为:=+224y x 1 ………………………3分 (2)易得A 的坐标(-2,0),B 的坐标(2,0),M 的坐标)24,(2t t -,N 的坐标)24,(2t t --,线段AM 的中点P )44,22(2t t --, 直线AM 的斜率t t t t k +-=+-=222122421 ………………………………………5分又AM PC ⊥1, ∴直线1PC 的斜率t tk -+-=2222∴直线1PC 的方程44)22(2222t t x t t y -+---+-=,∴1C 的坐标为)0,863(-t 同理2C 的坐标为)0,863(+t (8)分∴2321=C C ,即无论t 如何变化,为圆C1与圆C2的圆心距是定值.……………11分(2)圆1C 的半径为1AC 8103+=t ,圆2C 的半径为83102tBC -=, 则)1009(3222221+=+=t BC AC S πππ (2-<t <2)显然t 0=时,S 最小,825min π=S . ……………15分6.(1)椭圆方程为13432=+y x .(2)圆的半径为21225232=-+=r ,即内切圆的纵坐标为21,可得横坐标也为21, ∴圆的方程为41)21()21(22=-+-y x . (3)定值—22ab 证明略.7.(本小题满分15分)解:(Ⅰ)因为22,2a e ==,所以c=1……………………(3分)则b=1,即椭圆C 的标准方程为2212x y +=………………………………(5分) (Ⅱ)因为P (1,1),所以12PF k =,所以2OQ k =-,所以直线OQ 的方程为y=-2x(7分)又椭圆的左准线方程为x=-2,所以点Q(2-,4) ……………………………(8分) 所以1PQ k =-,又1OP k =,所以1k k PQ OP -=⊥,即OP PQ ⊥, 故直线PQ 与圆O 相切…………………………………(10分) (Ⅲ)当点P 在圆O 上运动时,直线PQ 与圆O 保持相切……………………(11分)证明:设00(,)P x y (00,1x ≠±),则22002y x =-,所以001PF y k x =+,001OQ x k y +=-, 所以直线OQ 的方程为001x y x y +=-……………(13分)所以点Q(-2,0022x y +)…………………… (13分)所以002200000000000022(22)22(2)(2)PQ x y y y x x x xk x x y x y y +--+--====-+++,又00OP y k x =,所以1k k PQ OP -=⊥,即OP PQ ⊥,故直线PQ 始终与圆O 相切 …(15分)。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 3.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为评卷人得分三、解答题4.在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值. 【汇编高考真题湖南理21】(本小题满分13分)5.设椭圆)22(18:222>=+a y ax M 焦点坐标为F 1(-c,0), F 2(c,0),点Q 是椭圆短轴上的顶点,且满足122c QF QF +=. (I )求椭圆M 的方程;(II )设A,B 是圆与()12:22=-+y x N 与y 轴的交点,P 是椭圆M 上的任一点,求PA PB ⋅的最大值.(III )设P 0是椭圆M 上的一个顶点,EF 为圆()12:22=-+y x N 的任一条直径,求证00P E P F ⋅为定值。
高三数学二轮精品专题卷:解析几何(直线与圆、椭圆、双曲线和抛物线)考试范围:解析几何(直线与圆、椭圆、双曲线和抛物线)一、选择题(本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.直线07ta n=+y x π的倾斜角是( )A .7π-B .7π C .75π D .76π2.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为( ) A .012=--y xB .072=-+y xC .042=--y xD .05=-+y x3.“2-=a ”是直线()021:1=-++y x a l 与直线()0122:2=+++y a ax l 互相垂直的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.直线=+++b a by ax 与圆222=+y x 的位置关系为( ) A .相交B .相切C .相离D .相交或相切5.已知点P 在圆074422=+--+y x y x 上,点Q 在直线上kx y =上,若PQ 的最小值为122-,则k = ( ) A .1B .1-C .0D .26.若椭圆122=+my x 的离心率⎪⎪⎭⎫⎝⎛∈22,33e ,则m 的取值范围是 ( ) A .⎪⎭⎫⎝⎛32,21B .()2,1C .()2,132,21 ⎪⎭⎫⎝⎛ D .⎪⎭⎫⎝⎛2,21 7.已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,则该双曲线的离心率为( ) A .332 B .3 C .2或332 D .332或3 8.M 是抛物线x y 42=上一点,且在x 轴上方,F 是抛物线的焦点,以x 轴的正半轴为始边,FM 为终边构成的最小的角为60°,则=FM( ) A .2B .3C .4D .69.设抛物线x y 82=的准线经过中心在原点,焦点在坐标轴上且离心率为21的椭圆的一个顶点,则此椭圆的方程为( )A .1161222=+y x 或1121622=+y xB .1644822=+y x 或1486422=+y xC .1121622=+y x 或1431622=+x y D .13422=+y x 或1431622=+x y10.已知定点()0,21-F 、()0,22F ,动点N 1(O 为坐标原点),F 21=,()R MF ∈=λλ2,1=⋅PN M F ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆二、填空题(本大题共5小题;每小题5分,共25分.将答案填在题中的横线上) 11.以点()2,1-为圆心且与直线1-=x y 相切的圆的标准方程是 . 12.圆064422=++-+y x y x 上到直线05=--y x 的距离等于22的点有 个. 13.若点P 在直线03:1=++my x l 上,过点P 的直线2l 与曲线()165:22=+-y x C 只有一个公共点M ,且PM 的最小值为4,则=m . 14.在平面直角坐标系xOy 中,椭圆12222=+b y a x (a >b >0)的离心率为22,以O 为圆心,a 为半径作圆M ,再过⎪⎪⎭⎫⎝⎛0,2c a P 作圆M 的两条切线P A 、PB ,则APB ∠= . 15.已知以双曲线的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角的范围是⎪⎭⎫⎝⎛2,3ππ则双曲线的离心率的范围是 .三、解答题(本大题共6小题;共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分12分)已知圆O 的方程为1622=+y x . (1)求过点()8,4-M 的圆O 的切线方程;(2)过点()0,3N 作直线与圆O 交于A 、B 两点,求OAB △的最大面积以及此时直线AB 的斜率.17.(本题满分12分)将抛物线y x 222-=向上平移2个单位长度后,抛物线过椭圆12222=+by ax (a>b >0)的上顶点和左右焦点.(1)求椭圆方程;[来源:金太阳新课标资源网 ](2)若点()0,m P 满足如下条件:过点P 且倾斜角为π65的直线l 与椭圆相交于C 、D 两点,使右焦点F 在以CD 线段为直径的圆外,试求m 的取值范围.18.(本题满分12分)已知双曲线,12222=-b y a x (a >0,b >0)左右两焦点为1F 、2F ,P 是右支上一点,212F F PF ⊥,1PF OH ⊥于H ,1OF OH λ=,⎥⎦⎤⎢⎣⎡∈21,91λ.(1)当31=λ时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过1F ,2F ,P 的y 轴的线段长为8,求该圆的方程.[来源: ]19.(本题满分13分)在平面直角坐标系xOy 中,过定点()0,p C 作直线m 与抛物线px y 22=(p >0)相交于A 、B 两点.(1)设()0,p N -,求⋅的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.20.(本题满分13分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于21,它的一个顶点恰好是抛物线y x 382=的焦点. (1)求椭圆C 的方程;(2)()3,2P 、()3,2-Q 是椭圆上两点,A 、B 是椭圆位于直线PQ 两侧的两动点,①若直线AB 的斜率为21,求四边形APBQ 面积的最大值;②当A 、B 运动时,满足BPQ APQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.21.(本题满分13分)在平面直角坐标系中,已知向量()2,-=y x a ,()()R k y kx b ∈+=2,,若=.(1)求动点()y x M ,的轨迹T 的方程,并说明该方程表示的曲线的形状;(2)当34=k 时,已知()1,01-F 、()1,02F ,点P 是轨迹T 在第一象限的一点,1=,若点Q 是轨迹T 上不同于点P 的另一点,问是否存在以PQ 为直径的圆G 过点2F ,若存在,求出圆G的方程,若不存在,请说明理由.[来源:金太阳新课标资源网]2012届专题卷数学专题十答案与解析1.【命题立意】本题考查直线的一般方程形式、斜率和倾斜角的关系以及正切函数的诱导公式.[来源: ] 【思路点拨】抓住直线方程y=kx+b 中斜率为k ,α为倾斜角,其中[)πα,0∈,当2πα≠时αtan =k .【答案】D 【解析】7tanπx y -=,斜率76tan7tan 7tanππππ=⎪⎭⎫ ⎝⎛-=-=k . 2.【命题立意】本题考查直线的对称和直线方程的求解以及直线上点的确定.【思路点拨】求出直线1l 与x 轴、与l 的交点坐标,再确定对称点的坐标,最后由两点式得到2l 的直线方程.【答案】D 【解析】画出图形,容易求得直线1l 与x 轴的交点()0,1-A ,它关于直线l 的对称点为()0,5B ,又1l 与l 的交点()3,2P ,从而对称直线2l 经过B 、P 两点,于是由两点式求得2l 的方程为05=-+y x . 3.【命题立意】本题考查两条直线的位置关系和充要条件:0212121=+⇔⊥B B A A l l .【思路点拨】判断直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的位置关系时,抓住两点,一是1l ∥2l 时,212121C C B B A A ≠=,为了避免讨论系数为零的情况,转化为积式1221B A B A =且1221C A C A ≠;二是21l l ⊥,即斜率的乘积为1-,如果一条直线的斜率为零,则另一条直线的斜率不存在,也就是02121=+B B A A .充分必要条件的判定,关键是看哪个推出哪个.【答案】A 【解析】1023221-=⇔=++⇔⊥a a a l l 或2-=a ,故选答案A . 4.【命题立意】本题考查直线与圆的位置关系和点到直线的距离公式以及基本不等式.【思路点拨】直线与圆的位置关系有三种,由圆心到直线的距离d 与半径r 的大小关系决定,当d >r 时,相离;当d =r 时相切;当d <r 时相交. 【答案】D 【解析】圆心()0,0到直线0=+++b a by ax 的距离22b a b a d ++=,半径2=r .由于()221222222≤++=++=b a ab ba b a d ,所以r d ≤,从而直线与圆相交或相切. 5.【命题立意】本题考查直线与圆的位置关系和点到直线的距离.【思路点拨】圆上的点到直线上的点,这两个动点之间的距离的最小值,可以转化为直线上的点到圆心的距离的最小值来解决,圆上的点到直线的距离的最大值等于圆心到直线的距离加上半径,最小值等于圆心到直线的距离减去半径;当直线与圆相交时,圆上的点到直线的距离的最大值等于圆心到直线的距离加上半径,最小值等于0.【答案】B 【解析】由题意可知,直线与圆相离,074422=+--+y x y x 即()()12222=-+-y x ,圆心()2,2到直线kx y =的距离1222+-=k k d ,∴12211222-=-+-=-k k r d ,解得1-=k .6.【命题立意】考查椭圆的标准方程和椭圆中的基本量及其关系以及分类讨论的思想. 【思路点拨】可建立m 关于e 的函数,从而可根据e 的范围求得m 的范围. 【答案】C 【解析】化椭圆的方程为标准方程1122=+my x ,当m 1<1,即m >1时,椭圆焦点在x 轴上,此时12=a ,m b 12=,m c 112-=,m e 112-=∴,211em -=∴,又⎪⎪⎭⎫ ⎝⎛∈22,33e ,∴23<m <2,又m >1,∴1<m <2.当m 1>1,即m <1时,椭圆焦点在y 轴上,此时m a 12=,12=b ,112-=m c ,∴m ac e -==1222,即21e m -=,又⎪⎪⎭⎫⎝⎛∈22,33e ,∴21<m <32.综上,m 的范围范围是()2,132,21 ⎪⎭⎫⎝⎛.选择C . 7.【命题立意】考查双曲线的标准方程,离心率的概念.【思路点拨】根据渐近线方程可以得到双曲线系方程,再分两种情况讨论焦点位置,从而求得离心率.【答案】C 【解析】由于一条渐近线方程为03=-y x ,所以可设双曲线方程为λ=-223y x .当焦点在x 轴上时,方程为1322=-λλy x (λ>0),此时32λ=a ,λ=2b ,于是34222λ=+=b a c ,所以离心率2==a c e ;当焦点在y 轴上时,方程为1322=---λx y (λ<0),此时λ-=2a ,32λ-=b ,于是34222λ-=+=b a c ,所以离心率332==a c e .故选择C . 8.【命题立意】考查抛物线的定义和标准方程以及直角三角形的性质.【思路点拨】画出图形,利用抛物线的定义找出点M 的横坐标与|FM |的关系即可求得.【答案】C 【解析】画出图形,知()0,1F ,设FM =a 2,由点M 向x 轴作垂线,垂足为N ,则FN =a ,于是点M 的横坐标a x +=10.利用抛物线的定义,则M 向准线作垂线,有FM =10+x ,即112++=a a ,所以2=a ,从而FM =4. 9.【命题立意】考查椭圆与抛物线的标准方程,基本量的关系以及分类讨论问题.【思路点拨】由抛物线的标准方程求得准线方程,从而求得椭圆一个顶点的坐标,这个值是a 还是b ,就必须分两种情况讨论. 【答案】D 【解析】由抛物线x y 82=,得到准线方程为2-=x ,又21=a c,即c a 2=.当椭圆的焦点在x 轴上时,2=a ,1=c ,3222=-=c a b ,此时椭圆的标准方程为13422=+y x ;当椭圆的焦点在y 轴上时,2=b ,332=c ,334=a ,此时椭圆的标准方程为1431622=+x y .故选择D . 10.【命题立意】考查对向量含义的理解,线段垂直平分线的性质、三角形中位线性质和双曲线定义. 【思路点拨】画出图形,将向量问题转化为实数中线段关系问题,利用线段垂直平分线的性质和三角形中位线的性质,得到线段的差是常数,符合双曲线的定义.【答案】B1=说明点N 在圆122=+y x 上,NM M F 21=说明N 是线段M F 1的中点,2MF MP λ=(x ∈R )说明P 在2MF 上,01=⋅PN M F 说明PN 是线段M F 1的垂直平分线,于是有PM PF =1,221MF ON =,从而有ON MF PF PM PF PF 22221==-=-=2<21F F =4,所以点P 的轨迹是以1F 、2F 为焦点的双曲线的右支.从而选择B . 11.【命题立意】考查圆的方程,直线与圆相切问题.【思路点拨】圆心已知,故只需求得其半径即可,而半径为圆心(-1,2)到直线的距离,根据点到直线的距离可求其半径,从而可求得圆的标准方程. 【答案】()()82122=-++y x 【解析】圆的半径()221112122=-+---=r ,所以圆的方程为()()()2222221=-++y x ,即()()82122=-++y x .12.【命题立意】考查圆的标准方程,点到直线的距离.【思路点拨】先化圆的方程为标准方程,求出圆心到直线的距离,再来与半径比较. 【答案】3【解析】圆的方程为()()22222=++-y x ,圆心()2,2-到直线05=--y x 的距离222522=-+=d ,圆的半径2=r ,所以圆上到直线的距离等于22的点有3个. 13.【命题立意】考查圆心到直线的距离、圆的切线长定理和直线与圆相切问题.【思路点拨】画出图形,PM 是切线,切线长最小,即|PC |最小,也就是C 到1l 的距离. 【答案】1±【解析】画出图形,由题意l 2与圆C 只一个交点,说明l 2是圆C 的切线,由于162222-=-=PC CM PC PM ,所以要|PM|最小,只需|PC |最小,即点C 到l 1的距离22181305mm+=+++,所以|PM|的最小值为4161822=-⎪⎪⎭⎫⎝⎛+m ,解得1±=m .14.【命题立意】考查椭圆的标准方程,椭圆离心率的概念和圆的切线问题. 【思路点拨】画出图形,由椭圆的离心率为22得到a c =22,再利用圆的切线的性质得到直角三角形,在直角三角形中求解角度.【答案】2π【解析】如图,连结OA ,则OA ⊥P A ,22sin 2===∠a cca a APO ,所以4π=∠APO ,从而2π=∠APB . 15.【命题立意】考查双曲线中由a 、b 、c 构成的直角三角形的几何意义及离心率与a 、b 、c 的关系.[来源: ]【思路点拨】可根据四边形的特征,以“有一个内角小于60°”为桥梁确定离心率的范围. 【答案】⎪⎪⎭⎫⎝⎛2,26【解析】设双曲线的方程为12222=-b y a x =1(a >0,b >0),如图所示,由于在双曲线c >b ,所以只能是211B F B ∠<90°,故由题意可知60°<211B F B ∠<90°, ∴在11B OF Rt ∆中,30°<11B OF ∠<45°,∴33<c b <22,∴31<22c a c -<21, 即31<1-21e<21,∴23<e 2<2,∴26<e <2. 16.【命题立意】考查圆的标准方程,直线与圆的位置关系,以及弦长问题. 【思路点拨】(1)过圆外一点的圆的切线方程,一般设斜率,利用圆心到直线的距离等于半径来求出斜率,但一定要注意斜率存在与否;(2)将弦长AB 看成底边,则三角形的高就是圆心到直线的距离. 【解析】(1)圆心为()0,0O ,半径4=r ,当切线的斜率存在时,设过点()8,4-M 的切线方程为()48+=-x k y ,即084=++-k y kx (1分).则41|84|2=++k k ,解得43-=k ,(3分),于是切线方程为02043=-+y x (5分).当斜率不存在时,4-=x 也符合题意.故过点()11,5-M 的圆O 的切线方程为02043=-+y x 或4-=x .(6分) (2)当直线AB 的斜率不存在时,73=∆ABC S ,(7分),当直线AB 的斜率存在时,设直线AB 的方程为()3-=x k y ,即03=--k y kx ,圆心()0,0O 到直线AB 的距离132+=k k d ,(9分)线段AB 的长度2162d AB -=,所以()()821616162122222=-+≤-=-==∆d d d d d d d AB S ABC ,(11分)当且仅当82=d 时取等号,此时81922=+k k ,解得22±=k ,所以OAB △的最大面积为8,此时直线AB 的斜率为22±.(12分)17.【命题立意】本题考查椭圆方程的求法,直线和圆锥曲线的位置关系以及存在性问题. 【思路点拨】(1)可根据抛物线平移后与坐标轴的交点求得b 、c 的值,从而可得a 的值,故可求椭圆方程;(2)可利用向量法解决.【解析】(1)抛物线y x 222-=的图象向上平移2个单位长度后其解析式为()2222--=y x ,其与x 、y 轴的交点坐标分别为()0,2±、()2,0,∴2=b ,2=c ,(2分)∴62=a ,故椭圆的方程为12622=+y x .(4分)(2)由题意可得直线l 的方程为()m x y --=33,代入椭圆方程消去y 得,062222=-+-m mx x ,(6分)又()68422--=m m △>0,∴32-<m <32.(7分)设C 、D 分别为()11,y x ,()22,y x ,则m x x =+21,26221-=m x x ,∴()()()33313333221212121m x x m x x m x m x y y ++-=⎥⎥⎦⎤⎢⎢⎣⎡--⋅⎥⎥⎦⎤⎢⎢⎣⎡--=,∵()11,2y x FC -=,()22,2y x FD -=,∴()()()()33243363422221212121-=++++-=+--=⋅m m m x x m x x y y x x FD FC ,(10分)∵点F 在圆的外部,∴FD FC ⋅>0,即()332-m m >0,解得m <0或m >3,又∵32-<m <32,∴32-<m <0或3<m<32.(12分)18.【命题立意】考查双曲线的定义和标准方程,渐近线和离心率计算公式.【思路点拨】(1)求渐近线方程的目标就是求ab ,可根据条件建立a 、b 的数量关系来求得;(2)可建立e关于λ的函数,从而可根据λ的范围求得e 的范围;(3)可根据离心率确定a 、b 的数量关系,再结合图形确定圆的圆心与半径.【解析】由于()0,2c F ,所以⎪⎪⎭⎫ ⎝⎛±a b c P 2,,于是a b PF 22=,a ab a PF PF 22221+=+=,(1分)由相似三角形知,112PF OF PF OH =,即121PF PF OF OH =,即ab a a b 222+=λ,(2分)∴2222b b a =+λλ,()λλ-=1222b a ,λλ-=1222a b . (1)当31=λ时,122=ab ,∴b a =.(3分)所以双曲线的渐近线方程为x y ±=.(4分)(2)()[]121112111211211222---=--=---+=-+=+==λλλλλλab ac e ,在⎥⎦⎤⎢⎣⎡21,91上为单调递增函数.(5分) ∴当21=λ时,2e 取得最大值3(6分);当91=λ时,2e 取得最小值45.(7分)∴3452≤≤e ,∴325≤≤e .(8分)(3)当3=e 时,3=ac,∴a c 3=,∴222a b =.(9分)∵212F F PF ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴81=PF .(10分)又a aa a ab a PF 4222221=+=+=,∴84=a ,2=a ,32=c ,22=b .(11分)∴4222===a ab PF ,圆心()2,0C ,半径为4,故圆的方程为()16222=-+y x .(12分)19.【命题立意】考查抛物线的标准方程,直线与抛物线的位置关系.【思路点拨】设直线方程,与抛物线方程联立,利用韦达定理来解决;存在性问题一般是假设存在,利用垂径定理推导求解来解决.【解析】(1)依题意,可设()11,y x A 、()22,y x B ,直线AB 的方程为p my x +=, 由0222222=--⇒⎪⎩⎪⎨⎧=+=p pmy y px y pmy x ,(2分)得⎪⎩⎪⎨⎧-=⋅=+2212122p y y pm y y ,(3分)∴NB NA ⋅=()()2211,,y p x y p x ++()()2121y y p x p x +++=()()212122y y p my p my +++=()()221212421p y y pm y y m ++++=22222p m p +=(6分)当0=m 时,NB NA ⋅取得最小值22p .(7分)(2)假设满足条件的直线l 存在,其方程为a x =,AC 的中点为O ',l 与以AC 为直径的圆相交于P 、Q ,PQ 的中点为H ,则PQ H O ⊥',O '的坐标为⎪⎭⎫⎝⎛+2,211y p x .()2212121212121p x y p x AC P O +=+-==' (9分),()()()a p a x p a p x a p x H O P O PH-+⎪⎭⎫ ⎝⎛-=---+='-'=∴1212212222124141,2PQ =()22PH =()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛-a p a x p a 1214(11分),令021=-p a 得p a 21=.此时p PQ =为定值.故满足条件的直线l 存在,其方程为p x 21=.(13分)20.【命题立意】考查椭圆与抛物线的标准方程,直线与椭圆的位置关系.【思路点拨】(1)利用抛物线的标准方程,求出焦点坐标,从而得到椭圆中的b ,再由离心率建立方程,可求得椭圆的标准方程;(2)抓住直线PQ ⊥x 轴,BPQ APQ ∠=∠即直线P A 、PB 的斜率互为相反数,联系方程利用韦达定理来解决. 【解析】(1)设C 方程为12222=+by ax (a >b >0),则32=b .由21=a c ,222b c a +=,得a =4∴椭圆C 的方程为1121622=+y x .(4分)(2)①设()11,y x A ,()22,y x B ,直线AB 的方程为t x y +=21,代入1121622=+y x ,得01222=-++t tx x ,由∆>0,解得4-<t <4.(6分)由韦达定理得t x x -=+21,12221-=t x x . 四边形APBQ 的面积2213483621t x x S -=-⨯⨯=,∴当0=t 时312max=S .(8分)②当BP Q AP Q ∠=∠,则P A 、PB 的斜率之和为0,设直线P A 的斜率为k ,则PB 的斜率为k -,P A 的直线方程为()23-=-x k y ,由()⎪⎩⎪⎨⎧=+-=-)2(11216)1(2322y x x k y .将(1)代入(2)整理得()()()04823423843222=--+-++k kx k x k ,有()21433282kk k x +-=+.(10分)同理PB 的直线方程为)2(3--=-x k y ,可得()()22243328433282k k k kk k x ++=+---=+,∴2221431216kk x x +-=+,2214348kk x x +-=-.(12分)从而AB k =2121x x y y --=()()21213232x x x k x k ---++-=()21214x x k x x k --+=21,所以AB 的斜率为定值21.(13分) 21.【命题立意】考查圆锥曲线的标准方程,椭圆与双曲线的定义,向量垂直问题. 【思路点拨】(1)利用向量的数量积的坐标运算来求出轨迹方程,但一定要注意对参数的讨论;(2)利用椭圆或双曲线的定义确定点P 的位置,以PQ 为直径的圆G 过点2F ,即022=⋅QF PF ,利用向量垂直的坐标运算来解决.【解析】(1)∵b a ⊥,∴()()02,2,=+⋅-=⋅y kx y x b a ,得0422=-+y kx ,即422=+y kx .(1分) 当0=k 时,方程表示两条与x 轴平行的直线;(2分)当1=k 时,方程表示以原点为圆心,以2为半径的圆;(3分)当0<k <1时,方程表示焦点在x 轴上的椭圆;(4分)当k >1时,方程表示焦点在y 轴上的椭圆;(5分)当k <0时,方程表示焦点在y 轴上的双曲线.(6分)(2)由(1)知,轨迹T 是椭圆13422=+x y ,则1F 、2F 为椭圆的两焦点.解法一:由椭圆定义得421=+PF PF ,联立121=-PF PF 解得251=PF ,232=PF ,又221=F F ,有2212221F F PF PF +=,∴212F F PF ⊥,∴P 的纵坐标为1,把1=y 代入13422=+x y 得23=x 或23-=x (舍去),∴⎪⎭⎫ ⎝⎛1,23P .(9分)设存在满足条件的圆,则22QF PF ⊥,设()t s Q ,,则⎪⎭⎫⎝⎛-=0,232PF ,()t s QF --=1,2,∴022=⋅QF PF ,即()01023=-⨯+t s ,∴0=s .又13422=+s t ,∴2±=t ,∴()2,0Q 或()2,0-Q .(12分)所以圆G 的方程:1613234322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 或1645214322=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x .(13分)。
专题15 椭圆、双曲线和抛物线【考向解读】1.以选择题、填空题形式考查圆锥曲线的方程、几何性质特别是离心率.2.以解答题形式考查直线与圆锥曲线的位置关系弦长、中点等.【命题热点突破一】 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|); (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|);(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M . 2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A 【变式探究】(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 (2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( )A.x 221-y 228=1B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 【答案】 (1)A (2)D【命题热点突破二】 圆锥曲线的几何性质 1.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca =1-b a2;(2)在双曲线中:c 2=a 2+b 2,离心率为e =ca =1+b a2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.例2、已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【变式探究】 (1)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.(2)已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x 【答案】 (1)3-1 (2)C【解析】(1)直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2c c +3c=3-1.(2)由题意作出示意图,易得直线BC 的斜率为ab ,cos ∠CF 1F 2=bc,又由双曲线的定义及|BC |=|CF 2|可得|CF 1|-|CF 2|=|BF 1|=2a , |BF 2|-|BF 1|=2a ⇒|BF 2|=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a 22×2a ×2c ⇒b 2-2ab -2a 2=0⇒(b a )2-2(b a )-2=0⇒ba =1+3,故双曲线的渐近线方程为y =±(3+1)x .【变式探究】(1)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆的离心率的取值范围是( )A.⎝⎛⎦⎤0,22 B.⎝⎛⎦⎤0,33 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫33,1(2)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D ,若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞) 【答案】 (1)D (2)A【命题热点突破三】 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 例3(1)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( )A.433B .2 3C .6D .4 3(2)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 【答案】 (1)D (2)D 【高考题型解读】1. 已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) (A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A2.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A(B )23(C(D )1 【答案】C【解析】设()()22,2,,P pt pt M x y (不妨设0t >),则212,2.,23p FP pt pt FM FP ⎛⎫=-= ⎪⎝⎭u u u r u u u u r u u u r Q()222max 22,,21123633,,122212,,233OM OM p p p p p x t x t t k t k pt pt t t t y y t ⎧⎧-=-=+⎪⎪⎪⎪∴∴∴====∴⎨⎨+⎪⎪+==⎪⎪⎩⎩当且仅当时取等号,,故选C.3.已知12,F F 是双曲线2222:1x y E a b -=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A(B )32(C(D )2【答案】A4.已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A【解析】由题意知2211m n -=+,即222m n =+,由于m >1,n >0,可得m >n ,又22212222222111111()(1)(1)(1)(1)2m n e e m n m n n n -+=⋅=-+=-++=42422112n n n n++>+ ,故121e e >.故选A .5.若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=6.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB|=,|DE|=则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8 【答案】B7.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||()FM k a c =-,||OE k a =.设OE 的中点为N ,则OBN FBM △∽△,则1||||2||||OE OB FM BF =,即2(c)k a a k a a c=-+,整理,得13c a =,所以椭圆C 的离心率13e =,故选A .8.已知双曲线2224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y -【答案】D9.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0 的右焦点,直线2by = 与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是 ▲ .【答案】63【解析】由题意得33(,),C(,),22b b B ,因此2222236()()0322b c c a e -+=⇒=⇒ 10.设抛物线222x pt y pt⎧=⎨=⎩,(t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32则p 的值为_________. 6【解析】抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=, 又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则||2A y ,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==,所以262CEF CEA S S ==V V 92ACF AEC CFE S S S =+=V V V 所以132922p ⨯=6p =11.已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.【答案】2【解析】假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a -,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 12.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________.【答案】2【解析】∵OABC 是正方形,∴45AOB ∠=︒,即直线OA 方程为y x =,此为双曲线的渐近线,因此a b =,又由题意OB =,∴222a a +=,2a =.故填:2.13.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.【答案】14.平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i )求证:点M 在定直线上;【答案】(Ⅰ)1422=+y x ;(Ⅱ)(i )见解析;【解析】(Ⅱ)(Ⅰ)设)0)(2,(2>m m m P ,由y x 22=可得y'x =, 所以直线l 的斜率为m ,因此直线l 的方程为)(22m x m m y -=-,即22m mx y -=. 设),(),,(),,(002211y x D y x B y x A ,联立方程222241m y mx x y ⎧=-⎪⎨⎪+=⎩得014)14(4322=-+-+m x m x m ,由0∆>,得520+<<m 且1442321+=+m m x x , 因此142223210+=+=m m x x x , 将其代入22m mx y -=得)14(2220+-=m m y ,因为m x y 4100-=,所以直线OD 方程为x my 41-=. 联立方程⎪⎩⎪⎨⎧=-=m x x m y 41,得点M 的纵坐标为M 14y =-,即点M 在定直线41-=y 上. 15.已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449; 【解析】(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN △的面积AMN S △11212144227749=⨯⨯⨯=.16.双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点。
地地道道的达到 第二讲 椭圆、双曲线、抛物线的定义、方程与性质一、选择题x 2 y 21.(2018 ·广西南宁模拟 ) 双曲线 25- 20= 1 的渐近线方程为 ()45A . y =± 5xB . y =± 4x12 5C . y =± 5xD . y =± 5 xx 2 y 2b分析:在双曲线 25- 20=1中, a =5, b = 2 5,而其渐近线方程为 y =± a x ,∴其渐2 5近线方程为 y =± 5 x ,应选 D.答案: D22x y 22M 在 x 2.已知椭圆 C 的方程为 16+ m = 1( m >0) ,假如直线 y = 2 x 与椭圆的一个交点 轴上的射影恰巧是椭圆的右焦点 F ,则 m 的值为 ( )A . 2B . 2 2C . 8D . 2 3分析:依据已知条件得c =222- 2x 2y 216- m ,则点16- ,16 m 在椭圆+ 2= 1( mm216m22>0) 上,∴ 16- m 16- m= 22.+2= 1,可得162mm答案: B3.(2018 ·张掖模拟 ) 双曲线 x 2 y 20) 的渐近线与圆 x 222- 2= 1( a > 0,b >+ ( y - 2)=1 相切,ab则双曲线的离心率为 ()A. 2B. 3C .2 D . 3x 2 y 2x 2y - 2)2相切,则圆心 (0,2) 到直线 -ay分析:双曲线 2-2=1 的渐近线与圆+(= 1abbx2a2ac=0 的距离为 1,因此a 2+b2=1,即c=1,因此双曲线的离心率e =a = 2,应选 C.答案: Cx 2 y 24.(2017 ·高考全国卷Ⅲ ) 已知椭圆 C : a 2+ b 2= 1( a >b >0) 的左、右极点分别为 A 1、 A 2 , 且以线段 A A 为直径的圆与直线 - ay + 2 = 0 相切,则 C 的离心率为 ()地地道道的达到6 3 2 1 A. 3B. 3C.3D. 3分析:以线段 A 1 A 2 为直径的圆的圆心为坐标原点O (0,0) ,半径为 a . 由题意,圆心到直线- + 2 2ab= ,即 2= 322b 2 2 6bx = 0 的距离为a . 又e = 1-2=,因此= .ay aba 2+ b2aba3e 3答案: Ax 2 y 25.已知双曲线 a 2- b 2= 1( a >0, b > 0) 的焦距为 4 5,渐近线方程为 2x ± y = 0,则双曲线的方程为 ( )x 2y 2= 1x 2 y 2A. -B.- =1416164x 2y 2x 2 y 2C. 16- 64= 1D. 64- 16= 122分析:易知双曲线x2- y2= 1( > 0, > 0) 的焦点在x 轴上,因此由渐近线方程为 2 ±yababxb222=0,得a = 2,因为双曲线的焦距为 4 5,因此 c =25,联合 c = a + b ,可得 a = 2,b = 4,x 2 y 2因此双曲线的方程为4- 16= 1,应选 A.答案: A6.(2018 ·长春模拟 ) 已知O 为坐标原点,设 1, 2 分别是双曲线 x 2- y 2= 1 的左、右焦F F点, P 为双曲线上随意一点,过点F 作∠ F PF 的均分线的垂线,垂足为H ,则 | OH | =()112A . 1B . 21 C . 4D. 2分析:不如设 P 在双曲线的左支,如图,延伸F 1H 交 PF 2于点 ,因为PH既是∠12的均分线又垂直于1,故△1M F PFF MPFM为等腰三角形, |PF | =| PM |且 H 为 F M 的中点,因此OH 为△111 2121212MFF 的中位线,因此 | OH |= 2| MF | = 2(| PF | - | PM |) = 2(| PF | - | PF 1|) = 1. 应选 A.答案: Ax 2 y 27.(2018 ·高考全国卷Ⅲ ) 已知双曲线 C :a 2- b 2= 1( a >0, b > 0) 的离心率为 2,则点 (4,0) 到 C 的渐近线的距离为 ()A. 2B .23 2C. 2c分析:由题意,得e = a =渐近线方程为 x ± y = 0,点 (4,0) 应选 D.答案: DD .2 22, c 2=a 2+b 2,得 a 2=b 2 . 又因为 a > 0, b >0,因此 a = b ,4到渐近线的距离为=2 2, 2x 2 y 28.(2018 ·石家庄一模 ) 已知直线 l :y =2x + 3 被椭圆 C :a 2+ b 2= 1( a > b > 0) 截得的弦 长为 7,有以下直线:① y = 2x - 3;② y = 2x + 1;③ y =- 2x - 3;④ y =- 2x + 3. 此中被椭 圆 C 截得的弦长必定为 7 的有 ()A .1 条B .2 条C .3 条D .4 条分析:易知直线 y =2x - 3 与直线 l 对于原点对称,直线 y =- 2x - 3 与直线 l 对于 x轴对称,直线y =- 2x + 3 与直线 l 对于 y 轴对称,故由椭圆的对称性可知,有3 条直线被椭圆 C 截得的弦长必定为 7.选C.答案: Cx 2y 29.(2018 ·洛阳模拟 ) 设双曲线 C :16- 9 = 1 的右焦点为 F ,过 F 作双曲线 C 的渐近线 的垂线,垂足分别为 M ,N ,若 d 是双曲线上随意一点d)P 到直线 MN 的距离,则 | | 的值为 (PF3 4 A. 4 B. 5C. 5D .没法确立4x 2y 2分析:双曲线 C : 16- 9 = 1 中, a = 4, b = 3, c = 5,右焦点 F (5,0) ,渐近线方程为 y=± 3 . 不如设 在直线 y = 3 上, N 在直线 y =- 3 上,则直线 的斜率为-4,其方程4xM4x4xMF3433416为 y =- 3( x - 5) ,设 M ( t , 4t ) ,代入直线 MF 的方程,得 4t =- 3( t - 5) ,解得 t = 5 ,即16 12 16 12 16M ( 5 , 5 ) .由对称性可得 N ( 5 ,- 5 ) ,因此直线 MN 的方程为 x = 5 . 设 P ( m , n ) ,则 d =16 2291dm n 2 222|=| m - 5 | , 16- 9 = 1,即 n = 16( m - 16) ,则 | PF | =m -+n = 4|5 m -16|. 故 |PF16| m - 5 |41= 5,应选 B.4|5 m - 16|答案: B2210.(2018 ·高考全国卷Ⅰ ) 设抛物线 C : y = 4 x 的焦点为 F ,过点 ( - 2,0) 且斜率为 3的 直线与C 交于 , 两点,则 →· →= ()M NFM FNA . 5B . 6C . 7D . 82分析:由题意知直线MN 的方程为 y = 3( x +2) ,2y =x + ,联立直线与抛物线的方程,得3y 2= 4x ,x = 1, x = 4, 解得或y = 4.y = 2不如设 M 为 (1,2) , N 为 (4,4) .又∵抛物线焦点为 → →F (1,0) ,∴ FM =(0,2) ,FN = (3,4) , → → ∴ FM ·FN =0×3+2×4= 8. 应选 D. 答案: Dx 2 y 211.(2018 ·广西五校联考 ) 已知点 F 1,F 2 分别是双曲线 a 2- b 2 =1( a > 0,b > 0) 的左、右焦点,过 F 且垂直于 x 轴的直线与双曲线交于→ → M , N 两点,若 MF · NF >0,则该双曲线的离21 1心率 e 的取值范围是 ()A .( 2, 2+1)B .(1, 2+1)C .(1, 3)D . ( 3,+∞)分析:设 F 1( - c, 0) , F 2( c, 0) ,c 2 y 2 b 2依题意可得 a 2- b 2= 1,获得 y = a ,b 2b 2不如设 M c , a ,N c ,- a ,则 → → = - 2c ,- b 2 · - 2c , b 2 = 4c2 b 41·1-2>,MFNFa aa2 2 2 2 2获得 4a c - ( c - a ) > 0,即 a 4+ c 4-6a 2c 2< 0,故 e 4- 6e 2+ 1< 0,解得 3- 2 2 <e 2< 3+ 2 2,又 e >1,因此 1< e 2< 3+2 2,解得 1< e < 1+ 2答案: B21 12 212.(2018 ·南昌模拟 ) 抛物线 y = 8x 的焦点为 F ,设 A ( x , y ) , B ( x , y ) 是抛物线上的两个动点,若 x 1+ 2 3 的最大值为 ( )2+4= | |,则∠x AB AFB 3π3πA.B.3 4 5π2πC. 6D. 3分析:由抛物线的定义可得2 3| AF | = x + 2, | BF | = x + 2,又 x + x + 4=3 | AB|,12122 3得|AF |+|BF |= 3 |AB |,3因此 | AB | = 2 (| AF | +| BF |) .| AF | 2+| BF | 2-| AB | 2因此 cos ∠ AFB =2| AF | ·|BF || AF 2+ BF 2- 3AF + BF2|||2 ( |||| )=2| AF | ·|BF |121 2 3 4| AF | +4| BF | - 2| AF | ·|BF |=2| |·| |AFBF1 ||| |3 1| AF | | BF | 3 1AF BF < π ,=+-≥×2·-=-,而0<∠8 | BF || AF |4 8| BF | | AF |42AFB2π因此∠ AFB 的最大值为 3 .答案: D二、填空题x 2 y 2213.(2018 ·成都模拟 ) 已知双曲线 a 2- 2 = 1( a > 0) 和抛物线 y = 8x 有同样的焦点,则双曲线的离心率为 ________.2x 2 y 2分析:易知抛物线 y = 8x 的焦点为 (2,0) ,因此双曲线 a 2 - 2 = 1 的一个焦点为 (2,0) ,2 2c 2 则 a + 2= 2 ,即 a = 2,因此双曲线的离心率e = a = 2 = 2.答案:2y 2 x 214.(2018 ·武汉调研 ) 双曲线 Γ : a 2- b 2=1( a > 0,b > 0) 的焦距为10,焦点到渐近线的距离为 3,则 Γ 的实轴长等于 ________.a|5 b | 5b分析:双曲线的焦点 (0,5) 到渐近线 y = b x ,即 ax -by = 0 的距离为a2+ b2= c =b = 3,因此 a = 4,2 a = 8.答案: 815.(2018 ·唐山模拟 ) 过抛物线 y 2=2px ( p > 0) 的焦点 F 作直线交抛物线于 A , B 两点,若| AF | = 2| BF | = 6,则 p = ________.分析:设 AB 的方程为 x = my +2, A ( x , y ) , B ( x , y ) ,且 x > x ,将直线 AB 的方程p1 12212代入抛物线方程得22y y2,4x x2l ,过 Ay - 2pmy -p = 0,因此=- p=p . 设抛物线的准线为1 212作 AC ⊥ l ,垂足为 C ,过 B 作 BD ⊥ l ,垂足为 D ,因为 | AF | =2| BF | =6,依据抛物线的定义知,| AF | = | AC | = x +pp+2= 6, | BF| =| BD| = x + 2= 3,因此 x - x = 3,x + x = 9-p ,因此 ( x12121212 2 12 21 2 2x ) -( x - x ) = 4x x =p ,即 18p -72= 0,解得 p = 4.答案: 42216.(2017 ·高考全国卷Ⅰ改编 ) 设 , B 是椭圆 : x+ y = 1 长轴的两个端点.若 C 上A Cm3存在点 M 知足∠ AMB =120°,则m 的取值范围是 ________.分析:当 0< m < 3 时,焦点在 x 轴上,要使 C 上存在点 M 知足∠ AMB =120°,a 3,即3则 ≥tan 60 °=≥ 3,bm解得 0< m ≤1.当 m >3 时,焦点在 y 轴上,要使 C 上存在点 M 知足∠ AMB =120°,a 3,即m则 ≥tan 60 °=≥ 3,解得 ≥9.bm3故 m 的取值范围为 (0,1] ∪ [9 ,+∞ ) .答案: (0,1] ∪ [9 ,+∞)地地道道的达到 三、解答题17.(2018 ·辽宁五校联考 ) 已知椭圆 C :x2 22+ y2=1( a > b >0) 的左、右焦点分别为F 1,a bF 2,上极点为 B ,若△ BF 1F 2 的周长为 6,且点 F 1 到直线 BF 2 的距离为 b .(1) 求椭圆 C 的方程;(2) 设1 , 2 是椭圆C 长轴的两个端点,P 是椭圆C 上不一样于1, 2 的随意一点,直线A A A AA 1P 交直线 x =m 于点 M ,若以 MP 为直径的圆过点 A 2,务实数 m 的值.分析: (1) 由题意得 F 1 ( - c, 0) , F 2( c, 0) , B (0 ,b ) ,则 2a + 2c = 6,①直线 BF 2 的方程为 bx + cy -bc = 0,| - bc - bc | 因此 22 = b ,即 2c = a ,② c + b 又 a 2= b 2+c 2,③因此由①②③可得 a = 2,b = 3,x 2 y 2因此椭圆 C 的方程为 4 + 3 =1.(2) 不如设 A 1( - 2,0) , A 2(2,0) , P ( x 0, y 0) ,y 0则直线 A 1P 的方程为 y = x 0+ 2( x + 2) ,y 0因此 M ( m , x 0+ 2( m + 2)) ,22x 0又点 P 在椭圆 C 上,因此 y 0= 3(1-4),→ →若以 MP 为直径的圆过点 A 2,则 A 2M ⊥ A 2P , A 2M · A 2P = 0,y 02因此 ( m - 2,( m +2)) ·(x 0- 2, y 0) = ( m - 2)( x 0- 2) +y 0( m + 2) = ( m - 2)( x 0-x + 2x + 22x 0-1 742) + x 0+ 2 ( m + 2) = ( x 0- 2)( 4m - 2) = 0.又点 P 不一样于点 A 1, A 2,因此 x 0≠± 2,因此 m = 14.18.(2018 ·福州模拟 ) 抛物线 C : y =2x 2- 4x + a 与两坐标轴有三个交点,此中与y 轴的交点为 P .(1) 若点 Q ( x , y )(1 < x <4) 在 C 上,求直线 PQ 斜率的取值范围;(2) 证明:经过这三个交点的圆 E 过定点.分析: (1) 由题意得(0 , )( ≠0), (2 2-4 + )(1 < <4),故 k PQ = 2x 2- 4x + a -a = 2x -4, x因为 1< x < 4,因此- 2<k PQ < 4,因此直线 PQ 的斜率的取值范围为 ( - 2,4) .(2) 证明:法一: P (0 , a )( a ≠0) .令 2x 2-4 + = 0,则 =16- 8 a >0, a < 2,且 a ≠0,x a解得 x =1±4- 2a,2故抛物线C 与 x 轴交于4- 2a4- 2a(1 -,0), (1+,0) 两点.A2B2故可设圆 E 的圆心为 M (1 , t ) ,由 | | 2=|| 2,得 12+ ( t- )2=(4- 2a ) 2+2,解得 t = a+ 1, MPMAa2t2 4则圆 E 的半径 r = | MP |=1 a 21+ 4-2.因此圆 E 的方程为 ( x - 1) 2a1 2 1 a 2,+ ( y -2 - )=1+( - )44 2221a因此圆 E 的一般方程为 x +y - 2x - ( a + 2) y + 2= 0,即 x 2+ y 2-2x - 1y +a ( - y ) =0.221x 2+ y 2-2 -1= 0, x = 0,x = 2,x 2y由得1或11y = 2y = 2,2- y = 0,1 1 故圆 E 过定点 (0, ) ,(2, ) .22法二: P (0 ,a )( a ≠0) ,设抛物线 C 与 x 轴的两个交点分别为A ( x 1, 0) ,B ( x 2, 0) ,圆 E 的一般方程为 x 2+ y 2+ Dx +Fy + G = 0,则x 12+1+ =0,Dx G2+G = 0,x 2+ Dx 2a 2++ =0.Fa G22a因为 x 1,x 2 是方程 2x - 4x + a = 0,即 x -2x +2= 0 的两根,2a2a因此 x 1-2x 1+ 2= 0,x 2- 2x 2 +2= 0,a因此 D =- 2, G = 2,2- G - a1因此圆 E 的一般方程为221 ax +y - 2x - ( a + ) y + = 0,222211即 x + y -2x - 2y +a ( 2- y ) =0.221x + y - 2x - y = 0,由得12- y = 0,11故圆 E 过定点 (0,2) ,(2,2) .x = 0,x = 2,y =1 或12 y = ,2y 2x 219.(2018 ·广州模拟 ) 如图,在直角坐标系xOy 中,椭圆 : 2+ 2 = 1( > >0)的上C aba b焦点为 F ,椭圆 C 的离心率为1 2 62,且过点 (1 ,3) .1(1) 求椭圆 C 的方程;(2) 设过椭圆 C 的上极点 A 的直线 l 与椭圆 C 交于点 B ( B 不在 y 轴上 ) ,垂直于 l 的直线→ →与 l 交于点 M ,与 x 轴交于点H ,若 F 1B ·F 1H = 0,且 | MO |= | MA | ,求直线 l 的方程.分析: (1) 因为椭圆C 的离心率为 1c 1a =2 .,因此 = ,即2 a 2 c2222223 2y 2 x 2又 a = b +c ,因此 b=3c ,即 b =4a ,因此椭圆 C 的方程为 a 2 +3 2=1.4a2 62= 4.把点 (1, ) 代入椭圆 C 的方程中,解得a3因此椭圆 C 的方程为y 2+ x 2= 1.43(2) 由 (1) 知, A (0,2) ,设直线 l 的斜率为 k ( k ≠0) ,则直线 l 的方程为 y =kx + 2,地地道道的达到y=kx+2,由 x2 y2 得 (3 k2+ 4) x2+ 12kx= 0.3+4=1,-12k设 B( x B,y B),得 x B=3k2+4,-6k2+ 8因此 y B=3k2+4,-12k-6k2+ 8因此 B(3k2+4,3k2+4).设 M( x M,y M),因为| MO|=| MA|,因此点 M在线段 OA的垂直均分线上,1 1因此 y M=1,因为 y M= kx M+2,因此 x M=-k,即M(-k,1).设 ( H,0),又直线垂直于直线l ,因此k1 1 1MH=-,即=- .H x HM k 1 k-k- xH1 1因此 x =k-k,即 H( k-k,0).H又 F (0,1) →- 12k 4- 9k2 → 1,因此 F B= 3k+ 4, 3k+ 4, F H= k-k,-1).1 12 2 1→ →- 12k 1 4- 9k2因为 F1 B· F1H=0,因此3k2+4·(k-k)-3 k2+4=0,2 6解得 k=±.32 6因此直线 l 的方程为 y=±3 x+2.。