无线终端新技术——4G无线通信
- 格式:docx
- 大小:320.56 KB
- 文档页数:19
关于4G无线通信移动终端天线的研究【摘要】本文主要探讨了4G无线通信移动终端天线的设计与优化。
在介绍了研究背景、目的和意义后,首先对4G无线通信技术进行了概述,然后详细阐述了移动终端天线的设计原理和方法研究。
在天线设计中,天线材料选择是至关重要的一环,本文也对此进行了深入探讨。
对天线性能进行了测试与优化,确保天线在实际应用中具有良好的性能表现。
在总结了研究成果并展望了未来研究方向,并指出这些研究对行业发展的积极影响。
通过本文的研究,有望为4G无线通信移动终端的天线设计提供重要参考,推动行业的不断发展与进步。
【关键词】4G无线通信、移动终端、天线设计、天线材料、性能测试、优化、研究成果、未来研究、行业发展1. 引言1.1 研究背景4G无线通信技术的飞速发展,推动了移动终端天线设计的研究和应用。
随着移动通信用户对高速数据传输的需求不断增加,移动终端天线的设计要求也变得越来越苛刻。
传统的天线设计方法已经不能满足4G通信技术对天线性能的要求,因此有必要对移动终端天线进行深入研究和优化。
当前,市场上的移动终端产品种类繁多,各种尺寸、形状和材料的天线设计应运而生。
随着天线技术的不断进步和创新,移动终端天线在性能、功耗和成本等方面的需求也越来越高。
通过对移动终端天线的设计原理和方法进行研究,可以有效提高移动终端通信性能,提升用户体验。
在这样的背景下,本研究旨在深入探讨4G无线通信移动终端天线的设计原理和方法,以及天线材料选择、性能测试与优化等方面的研究,为移动通信领域的发展做出贡献并提供新的思路和方法。
部分将在接下来的内容中进行详细阐述。
1.2 研究目的本文旨在探讨4G无线通信移动终端天线的设计原理和优化方法,旨在提高移动终端的信号接收和传输性能,提升用户体验。
通过对天线设计方法的研究和材料选择的探讨,旨在找到最适合的方案来设计高性能的天线。
通过对天线性能的测试与优化,进一步提高天线的稳定性和可靠性,确保通信质量。
4G LTE技术随着各种互联网应用的蓬勃发展,现有的3G网络已经不能满足人们日益增长的需求。
无线通信系统呈现出移动化、宽带化和IP化的发展趋势,在此形势下,国际电联(ITU)提出了更高的要求——IMT-Advanced,也就是我们说的4G 技术。
WiMAX、LTE和UMB是目前向4G演进的主要标准。
LTE(Long Term Evolution)同时定义了LTE FDD(Frequency Division Du plexing)和LTE TDD(Time Division Duplexing)两种方式,其中LTETDD作为T D-SCDMA向4G的演进方式,是中国移动的必然选择。
1、移动无线技术向4G演进的主要技术标准介绍WiMAX、LTE和UMB被认为是移动通信向4G演进的主要三种技术标准。
ITU对IMT-Advanced要求的峰值速率为:(1)低速移动、热点覆盖场景下1Gbit/ s以上。
(2)高速移动、广域覆盖场景下100Mbit/s。
目前这三种标准都未达到IT U为IMT-Advanced制定的目标,因此IEEE和3GPP等各大标准组织都在积极修订各自的标准,以符合ITU-R的建议。
WiMAX是由IEEE提出的宽带无线接入技术,受到英特尔、思科等IT厂商的支持。
由于没有原体制的束缚,最符合宽带接入市场的需求。
采用WiMAX的运营商主要是固网运营商和新运营商,然而,这些运营商可以利用VoIP等技术,通过WiMAX网络为用户提供与蜂窝网络相同的移动语音服务。
LTE(Long Term Evolution)是3GPP提出的演进标准,它定义了LTE FDD 和LTE TDD两种方式。
LTEFDD受到了传统移动运营商的支持,中国移动则是LTETDD的主要支持者。
随着LTETDD技术研究的深入,越来越多的运营商和厂商加入到LTE TDD队伍中来。
UMB(Ultra-Mobile Broadband)是3GPP2提出的超移动宽带技术,主要由美国高通公司支持,是CDMA2000系列标准的演进升级版本。
4g的工作原理
4G的工作原理源自于LTE(Long Term Evolution),它采用
了OFDMA(Orthogonal Frequency Division Multiple Access)
技术和MIMO(Multiple-Input Multiple-Output)技术。
OFDMA技术是一种多用户访问技术,它将无线频谱分成多个
小的子载波,并将多个用户的数据同时发送在不同的子载波上。
这样,不同用户之间就可以同时进行通信,提高了系统的容量和频谱效率。
MIMO技术则是利用多个天线进行数据传输和接收,从而提
高数据传输速率和系统的可靠性。
MIMO可以同时发送多个
数据流,通过空间复用的方式将数据流分配到不同的天线上,然后在接收端通过信道估计和去除干扰等技术,将多个数据流恢复为原始数据。
除了OFDMA和MIMO技术,4G还采用了其他技术来优化系
统性能。
其中,包括多天线接收技术、自适应调制和编码技术、IP分组传输等。
多天线接收技术可以最大限度地利用信号的
多样性,提高信号的抗干扰能力。
自适应调制和编码技术可以根据信道质量的变化自动调整调制方式和编码方式,以保证传输的可靠性和高效性。
IP分组传输则将数据切分成小的数据
包进行传输,提高了传输的灵活性和可靠性。
综上所述,4G的工作原理主要包括OFDMA技术、MIMO技
术以及多天线接收技术、自适应调制和编码技术、IP分组传
输等。
这些技术的结合使得4G网络能够提供更快的数据传输速率、更高的频谱效率和更好的用户体验。
4G系统的新技术和特点随着移动通信技术的不断发展,4G系统作为当今移动通信的主要技术标准之一,一直以来备受关注。
近年来,随着5G技术的逐渐商用,4G系统的技术和特点也在不断升级演变。
本文将介绍4G系统的新技术和特点,以及其在移动通信领域的应用和发展趋势。
让我们来了解一下4G系统的基本概念。
4G系统,全称为第四代移动通信技术,它是一种移动通信技术标准,其主要特点是高速数据传输和低时延等优势。
与3G系统相比,4G 系统在数据传输速率、网络容量和网络覆盖范围等方面都有了显著提升,为用户提供更加稳定和便捷的移动通信服务。
而随着技术的不断发展,4G系统也在不断更新和升级,引入了一些新的技术和特点,以满足日益增长的用户需求和提高网络性能。
我们来介绍一下4G系统的新技术。
近年来,随着移动通信技术的发展,4G系统引入了一些新的技术,以提高网络性能和用户体验。
最具代表性的新技术之一就是LTE(Long Term Evolution),它是一种高速无线通信技术,可实现更快的数据传输速率和更高的网络容量。
通过LTE技术,用户可以更加快速地进行高清视频观看、在线游戏和大容量文件传输等操作,从而提升了用户体验和网络性能。
4G系统还引入了MIMO(Multiple Input Multiple Output)技术,即多输入多输出技术。
通过MIMO技术,可以在同一时间和频段内传输多个数据流,从而提高了信道利用率和数据传输速率。
4G系统还引入了OFDMA(Orthogonal Frequency Division Multiple Access)技术,即正交频分复用技术。
通过OFDMA技术,可以将无线信道分割成多个子信道,以实现多用户之间的同时传输,从而提高了网络的容量和效率。
除了以上介绍的新技术外,4G系统还引入了一些具有代表性的新特点。
最具有代表性的新特点之一就是全IP网络架构。
通过全IP网络架构,可以将语音、数据和视频等各种业务统一传输,从而实现了多种业务的统一管理和传输,提高了网络的灵活性和可扩展性。
基于3G/4G技术的移动无线通信解决方案一、引言3G是第三代移动通信技术的简称,是指支持高速数据传输的蜂窝移动通讯技术,3G服务能够同时传送声音及数据信息,随着3G在全世界范围的大规模商用,传输速率在支持静止状态下为2Mbit/s,步行慢速移动环境中为384kbit/s,高速移动下为144kbit/s,定位于多媒体IP业务。
4G是第四代移动通信及其技术的简称,4G是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像等。
4G可称为宽带接入和分布网络,具有非对称的超过2Mb/s的数据传输能力,是支持高速数据率(2~20Mb/s)连接的理想模式,上网速度从2Mb/s提高到100Mb/s,具有不同速率间的自动切换能力。
第四代移动通信是多功能集成的宽带移动通信系统,可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网,能够提供定位定时、数据采集、远程控制等综合功能。
此外,第四代移动通信系统是集成多功能的宽带移动通信系统,也是宽带接入IP系统。
4G是多功能集成宽带移动通信系统,其技术特点主要有:1)数据传输速率高,其系统传输带宽可在1.5~20 MHz 范围内灵活配置,传输速率可达到20Mbps,峰值传输速率上行可达50 Mbps,下行达到100 Mbps。
2)真正的无缝漫游,能使各类媒体、通信终端及网络之间进行“无缝连接”。
3)采用智能技术,可以自适应的进行资源分配。
采用的智能信号处理技术对不同信道条件的各种复杂环境进行信号的正常收发,有很强的智能型、适应性和灵活性。
4)达到用户共存,4G能够根据网络的状况和信道条件进行自适应处理,使低、高速用户和各种设备并存与互通,从而满足多类型用户的需求。
5)具有业务上的多样性,4G能提供各种标准的通信业务,满足带宽和综合多种业务需求。
6)4G利用无线电技术,提供话音、高速信息业务、广播级娱乐等多媒体业务接入方式,用户可以随时随地地接入系统。
4G移动无线通信的关键技术介绍1、4G移动通信的特点(1)数据传输速率大大增加4G移动通信问世的主要目的在于提升移动终端的网络访问速率,因此4G的传输速率与2G,3G技术有了质的飞跃。
2G、3G移动通信的传输速度分别为9.6kbps、2 Mbps,而4G移动通信的传输速率则为100Mbps。
(2)通信方式多样化随着4G移动通信技术的发展,用户的通信方式也开始逐步丰富起来,不仅打破传统语音、文本通信的方式,同时还给人们带来了更佳的体验,例如:通过网络通道去体验广播、娱乐等多媒体通信方式,极大的满足了用户对通信的需求;此外,较高的覆盖率同样也是4G较为显著的特点,覆盖率的增加不仅保证了信息的稳定性。
(3)大大提高了网络的智能化对于智能化程度较高的4G移动技术而言,其能够通过利用智能技术,科学的分配和管理相关的资源,从而实现优化资源配置,进而更好的满足客户需求。
2、4G移动通信的关键技术(1)正交频分复用技术所谓的正交频分复用技术主要是通过将若干的正交子信道从频域的信道中划分出来,同时将数据信号利用高低转换的技术将其分别调制到不同的子信道中。
由于不同子信道中的子载波均不相同,因此将数据信号通过子载波进行传输。
从上文介绍来看,正交频分复用技术其实也就是多载波调制技术,同时人们也将其称之为OFDM技术。
该技术通过能够将不平坦的总信道通过划分的方式转化为若干个相对平坦的子信道,而子信道中的信号传递属于窄带传输,因此消除了符号间相互干扰的情况,从而保证信号的均衡。
(2)多输入多输出技术多输入多输出技术的顾名思义就是通过在信号发射端以及接收端中通过设置多个发射以及接收天线来完成信号的发射和接收,多个天线同时进行信号的发射和接收能够大大提高服务质量,从而满足用户的需求,人们一般也将该技术称之为MIMO技术。
而无线信道中的多径传播作为该技术的基础,其不仅能够大大增加无线信道的空间资源,同时对于提高无线通信系统的复用和分集效率也有着极好的效果。
什么是4G LTE?移动通信网络知识普及什么是4G LTE?所谓4G,就是第四代移动通信及其技术的简称。
在ITU (国际电联)的定义里,任何达到或超过100Mbps 的无线数据网络系统都可以称为4G。
LTE的全称是“Long term Evolution”,直译“长程演进”。
LTE分为两种双工模式,分别为FDD LTE 和TDD LTE,LTE显著增加了频谱效率和数据传输速率,峰值速率能够达到上行50Mbps,下行100Mbps。
相比3G时代,10Mbps的下行峰值,速度提升了10倍。
从两者的概念中我们可以了解到,4G和LTE并不是一回事,不过一般而言,LTE网络都能满足4G网络的标准(下行100Mbps),而4G时代又以LTE网络为主,所以通常把二者结合在一起,统称为4G LTE。
FDD LTE与TDD LTE的区别FDD LTE和TDD LTE分别是LTE的两种不同的系统模式。
两者大部分的基础技术都是一样的,主要区别在于FDD为频分双工,而TDD为时分双工。
两者并不互相兼容。
FDD“频分双工”指传输数据时需要两个独立的信道,一个信道用来向下传送信息,另一个信道用来向上传送信息。
两个信道之间存在一个保护频段,以防止邻近的发射机和接收机之间产生相互干扰。
就相当于一条双向公路,两边的车辆各走各的路,互不干扰。
而保护频段就相当于公路中间的隔离带。
TDD“时分双工”的发射和接收信号是在同一频率信道的不同时隙中进行的,彼此之间采用一定的保证时间予以分离。
可以比作一条独木桥,在同一时段,只能有一边的人通过,也就是说,数据的上传和下载是在同一信道交替进行的。
FDD LTE与TDD LTE谁更先进?那么有人就认为,FDD明显优于TDD啊,这种想法也不完全对。
FDD必须使用成对的收发频率。
相比TDD占用更多的频率资源。
在语音通信时代,信息上传和下载是对称并同时进行的,能够充分利用上下行的频率,效率更高。
而在移动互联网时代,用户上传数据量要远远低于下载数据量,这种非对称数据交换业务导致了频率利用率大幅下降。
4G通信技术的发展介绍4G是集3G与WLAN于一体,并能够传输高质量视频图像,它的图像传输质量与高清晰度电视不相上下。
4G系统能够以100Mbps的速度下载,上传的速度也能达到20Mbps,并能够满足几乎所有用户对于无线服务的要求。
4G通信技术并没有脱离以前的通信技术,而是以传统通信技术为基础,并利用了一些新的通信技术,来不断提高无线通信的网络效率和功能的。
如果说现在的3G能为我们提供一个高速传输的无线通信环境的话,那么4G通信将是一种超高速无线网络,一种不需要电缆的信息超级高速公路,这种新网络可使电话用户以无线及三维空间虚拟实境连线。
与传统的通信技术相比,4G通信技术最明显的优势在于通话质量及数据通信速度。
然而,在通话品质方面,目前的移动电话消费者还是能接受的。
随着技术的发展与应用,现有移动电话网中手机的通话质量还在进一步提高。
为了充分利用4G通信给我们带来的先进服务,我们还必须借助各种各样的4G终端才能实现,而不少通信营运商正是看到了未来通信的巨大市场潜力,他们现在已经开始把眼光瞄准到生产4G 通信终端产品上,例如生产具有高速分组通信功能的小型终端、生产对应配备摄像机的可视电话以及电影电视的影像发送服务的终端,或者是生产与计算机相匹配的卡式数据通信专用终端。
下面介绍4G通信主要优势1、通信速度更快由于人们研究4G通信的最初目的就是提高蜂窝电话和其他移动装置无线访问Internet的速率,因此4G通信给人印象最深刻的特征莫过于它具有更快的无线通信速度。
从移动通信系统数据传输速率作比较,第一代模拟式仅提供语音服务;第二代数位式移动通信系统传输速率也只有9.6Kbps,最高可达32Kbps,如PHS;而第三代移动通信系统数据传输速率可达到2Mbps;专家则预估,第四代移动通信系统可以达到10Mbps至20Mbps,甚至最高可以达到每秒高达100Mbps速度传输无线信息,这种速度将相当于目前手机的传输速度的1万倍左右。
网络拓扑知识:LTE无线网络拓扑结构LTE是一种先进的4G无线移动通信技术,它在高速移动和高密度用户环境中表现出色。
它采用的拓扑结构玄妙而复杂,对于理解其原理和运行机制有着重要的意义。
本文从LTE无线网络拓扑结构的组成、各个组成部分的职能、拓扑结构的优缺点以及未来的发展趋势等方面进行探讨。
一、LTE无线网络拓扑结构的组成LTE无线网络的拓扑结构主要由以下几个组成部分构成:1.核心网——处理移动终端与Internet之间的数据传输,包括用户鉴别、计费、QoS管理和上下文维护等功能。
2.无线接入网——通过基站向用户提供无线接入服务,包括高速数据传输、呼叫等功能。
3.控制面——主要由MME、SGSN等控制节点组成,用来管理无线接入网,分配资源,以及处理安全和移动性管理等任务。
4.用户面——主要由另外一些节点组成,主要是在不同的使用环境中处理流量的传输,如GGSN、PDN网关等。
以上四个部分构成了LTE无线网络的核心结构。
下面我们将详细介绍其中的各个部分。
二、各个组成部分的职能1.核心网:LTE无线网络的核心部分,主要负责处理用户数据的传输,例如用户鉴别、计费、QoS管理和上下文维护等任务。
2.无线接入网:通过基站向用户提供无线接入服务,包括高速数据传输、呼叫等功能。
在LTE网络中,无线接入网主要由eNB和EPC 两部分组成。
3.控制面:主要由MME和SGSN等控制节点组成,用来管理无线接入网,分配资源,以及处理安全和移动性管理等任务。
它的主要职能包括:(1)分配IP地址和MSISDN。
(2)维护移动终端位置信息,包括位置更新和位置追踪等功能。
(3)管理移动终端路由。
(4)负责安全管理与认证等任务。
4.用户面:主要由GGSN和PDN网关等节点组成,主要是在不同的使用环境中处理流量的传输。
例如,如果用户使用LTE网络浏览网站,则其请求将传输到GGSN和PDN网关,然后返回到用户终端。
三、拓扑结构的优劣势LTE网络的拓扑结构具有以下优点和缺点。
班级学号电磁场与电磁波大作业题目无线终端新技术——4G无线通信学院电子工程学院专业学生姓名老师姓名4G无线通信目录第一章4G通信发展 (3)1.1 4G通信的发展背景 (3)1.2 4G通信的概念 (4)1.3 4G通信的网络结构 (5)第二章4G通信的关键技术 (6)2.1 OFDM技术 (6)2.2智能天线技术 (7)2.3无线链路增强技术 (7)2.4软件无线电(S D R)技术 (8)2.5多用户检测技术 (9)第三章4G通信的优势与劣势 (10)3.1 4G的主要优势 (10)3.2 4G通信存在的缺陷 (12)第四章4G通信的现状和发展前景 (15)4.1 4G通信的发展现状 (15)4.2 4G通信的发展前景 (17)参考文献 (19)第一章4G通信发展1.1 4G通信的发展背景通信技术日新月异,给人们带来不少享受。
随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第四代移动通信开始兴起,因此有理由期待这种第四代移动通信技术给人们带来更加美好的未来。
所有技术的发展都不可能在一夜之间实现,从GSM、GPRS到第4代,需要不断演进,而且这些技术可以同时存在。
人们都知道最早的移动通信电话用的模拟蜂窝通信技术,这种技术只能提供区域性语音业务,而且通话效果差、保密性能也不好,用户的接听范围也是很有限。
随着移动电话迅猛发展,用户增长迅速,传统的通信模式已经不能满足人们通信的需求,在这种情况下就出现了GSM通信技术,该技术用的是窄带TDMA,允许在一个射频(即‘蜂窝’)同时进行8组通话。
它是根据欧洲标准而确定的频率范围在900~1800MHz之间的数字移动电话系统,频率为1800MHz的系统也被美国采纳。
GSM是1991年开始投入使用的。
到1997年底,已经在100多个国家运营,成为欧洲和亚洲实际上的标准。
GSM数字网也具有较强的保密性和抗干扰性,音质清晰,通话稳定,并具备容量大,频率资源利用率高,接口开放,功能强大等优点。
不过它能提供的数据传输率仅为9.6kbit/s,和五、六年前用固定电话拨号上网的速度相当,而当时的Internet几乎只提供纯文本的信息。
而时下正流行的数字移动通信手机是第二代(2G),一般采用GSM或CDMA技术。
针对GSM通信出现的缺陷,人们在2000年又推出了一种新的通信技术GPRS,该技术是在GSM的基础上的一种过渡技术。
GPRS的推出标志着人们在GSM的发展史上迈出了意义最重大的一步,GPRS在移动用户和数据网络之间提供一种连接,给移动用户提供高速无线IP和X.25分组数据接入服务。
在这之后,通信运营商们又要推出EDGE技术,这种通信技术是一种介于现有的第二代移动网络与第三代移动网络之间的过渡技术,因此也有人称它为“二代半”技术,它有效提高了GPRS信道编码效率的高速移动数据标准,它允许高达384KbPs的数据传输速率,可以充分满足未来无线多媒体应用的带宽需求。
EDGE提供了一个从GPRS到第三代移动通信的过渡性方案,从而使现有的网络运营商可以最大限度地利用现有的无线网络设备,在第三代移动网络商业化之前提前为用户提供个人多媒体通信业务。
在新兴通信技术的不断推动之下,象征着3G通信的标志技术WCDMA也可能成为未来通信技术的主流。
该技术能为用户带来了最高2Mbit/s的数据传输速率,在这样的条件下,计算机中应用的任何媒体都能通过无线网络轻松的传递。
WCDMA 通过有效的利用宽频带,不仅能顺畅的处理声音、图像数据、与互联网快速连接;此外WCDMA和MPEG-4技术结合起来还可以处理真实的动态图像。
人们之间沟通的瓶颈会由网络传输速率转变为各种新型应用的提供:如何让无线网络更好的为人们服务而不是给人们带来骚扰,如何让每个人都能从信息的海洋中快速的得到自己需要的信息,如何能够方便的携带、使用各种终端设备,各种终端设备之间如何更好的自动协同工作等等。
在上述通信技术的基础之上,无线通信技术最终可能迈向4G通信技术时代。
1.2 4G通信的概念4G的定义到目前为止依然有待明确,它的技术参数、国际标准、网络结构、乃至业务内容均未有明确说法。
在2002年底Wi-Fi热潮中,Wi-Fi被视作4G技术。
但4G技术的提倡者认为,4G与 Wi-Fi不同。
2004年6月,市场研究公司Forrester的分析师预测,4G移动服务将是3G与WiMax结合在一起的技术。
4G将提供以太网的接入速度(如10Mb/s),并且通过在一部手机中把3G和WiMax技术结合在一起,提供集成无线局域网和广域网的服务。
WiMax(或者说是802.16标准)能够提供无线宽带网服务,最远距离可达30英里,速率大约是10 Mb/s。
在2004年富士通发布的白皮书中,将WiMAX指为“4G”无线技术。
另外,也有很多专家对LAS-CDMA十分看好,认为LAS-CDMA代表着4G水平。
4G到底是什么样的技术呢?目前普遍描述如下:4G是集3G与WLAN于一体,并能够传输高质量视频图像,它的图像传输质量与高清晰度电视不相上下。
4G系统能够以100Mb/s的速率下载,比目前的拨号上网快2000倍,上传的速度也能达到20Mb/s,并能够满足几乎所有用户对于无线服务的要求。
而在用户最为关注的价格方面,4G与固定宽带网络在价格方面不相上下,而且计费方式更加灵活机动,用户完全可以根据自身的需求确定所需的服务。
此外,4G可以在DSL和有线电视调制解调器没有覆盖的地方部署,然后再扩展到整个地区。
很明显,4G有着不可比拟的优越性。
4G与3G之间的主要区别在于终端设备的类型、网络拓扑的结构以及构成网络的技术类型。
终端设备除了手机之外应当包括头戴式话机、PDA终端、膝上机、手表式话机、电视机、游戏机、DVD、零售机,甚至宠物机等等,凡是人所能构想的和能够识别IP地址的无线电收发信机。
其次,4G是由多种技术组成的,包括彼此似乎不相干的技术,如Wi-Fi、超宽带无线电、便携式电脑、软件无线电等技术构成的高速全球通网络。
与3G手机相比,4G手机的功能更强大,应用更广泛。
4G手机智能化程度更高,通话只是最最基本的功能之一,更多的功能体现在多媒体应用方面。
为了充分利用4G通信给人们带来的先进服务,人们还必须借助各种各样的4G 终端才能实现,而不少通信营运商正是看到了未来通信的巨大市场潜力,他们已经开始把眼光瞄准到生产4G通信终端产品上,例如生产具有高速分组通信功能的小型终端、生产对应配备摄像机的可视电话以及电影电视的影像发送服务的终端,或者是生产与计算机相匹配的卡式数据通信专用终端。
有了这些通信终端后,人们手机用户就可以随心所欲的漫游了,随时随地的享受高质量的通信了。
1.3 4G通信的网络结构4G移动系统网络结构可分为三层:物理网络层、中间环境层、应用网络层。
物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。
中间环境层的功能有QoS映射、地址变换和完全性管理等。
物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。
这一服务能自适应多个无线标准及多模终端能力,跨越多个运营者和服务,提供大范围服务。
第二章4G通信的关键技术4G的关键技术包括信道传输;抗干扰性强的高速接入技术、调制和信息传输技术;高性能、小型化和低成本的自适应阵列智能天线;大容量、低成本的无线接口和光接口;系统管理资源;软件无线电、网络结构协议等。
它主要是以正交频分复用为技术核心。
通过对最适合的可用网络提供用户所需求的最佳服务,能应付基于因特网通信所期望的增长,增添新的频段,使频谱资源大扩展,提供不同类型的通信接口,运用路由技术为主的网络架构,以傅利叶变换来发展硬件架构实现第四代网络架构。
2.1 OFDM技术随着数据速率的不断提高,高速数据通信系统的性能不仅仅受噪声限制,更主要的影响来自于无线信道时延扩展特性导致的码间干扰。
这种码间干扰主要是由于发射机和接收机之间存在多条时延不同无线传播路径造成的。
多径效应造成接收机受到的信号是多个时延、幅度和相位各不相同的发送信号的叠加,从而导致错误发生。
为了实现高速数据业务,必须采取措施对抗码间干扰,信道均衡是经典的抗码间干扰技术,但是如果数据速率非常高,采用单载波传输数据,往往要设计几十甚至上百个抽头的均衡器,这简直是硬件设计的噩梦。
既要对抗码间干扰,又要采用低复杂度且高效的手段传输高速数据业务,我们选择了一种关键技术正交频分复用(OFDM)技术。
OFDM系统框图如图2.1所示。
图2.1 OFDM系统框图OFDM系统属于多载波调制,是通过多路并行来传输信息的。
其主要思想是将需要传输的串行数据流分解为若干个低速率的并行子数据流,使得OFDM符号周期显著增加,在将它们各自调制到相互正交的子载波上,通过对参数的合理的设计,使系统的每一个子载波处于平坦衰落中,从而增强了抗频率选择性衰落,最后合成输出,并且输出的数据速率与串行数据流分解前的速率相同,从而降低了接收机均衡器的复杂度。
OFDM的正交调制和解调单元可以采用IDFT和DFT方法来实现。
当系统中的子载波数目很大时,可以采用FFT来实现。
2.2智能天线技术智能天线采用了空时多址(SDMA)的技术,利用信号在传输方向上的差别,将同频率或同时隙、同码道的信号进行区分,动态改变信号的覆盖区域,将主波束对准用户方向,旁瓣或零陷对准干扰信号方向,并能够自动跟踪用户和监测环境变化,为每个用户提供优质的上行链路和下行链路信号从而达到抑制干扰、准确提取有效信号的目的。
这种技术具有抑制信号干扰、自动跟踪及数字波束等功能,被认为是未来移动通信的关键技术。
目前,智能天线的工作方式主要有全自适应方式和基于预多波束的波束切换方式。
全自适应智能天线虽然从理论上讲可以达到最优,但相对而言各种算法均存在所需数据量、计算量大、信道模型简单、收敛速度较慢,在某些情况下甚至出现错误收敛等缺点,实际信道条件下,当干扰较多、多径严重,特别是信道快速时变时,很难对某一用户进行实际跟踪。
在基于预多波束的切换波束工作方式下,全空域被一些预先计算好的波束分割覆盖,各组权值对应的波束有不同的主瓣指向,相邻波束的主瓣间通常会有一些重叠,接收时的主要任务是挑选一个作为工作模式,与自适应方式相比它显然更容易实现,是未来智能天线技术发展的方向。
2.3无线链路增强技术可以提高容量和覆盖的无线链路增强技术有:分集技术,如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法来获得最好的分集性能;多天线技术,如采用2或4天线来实现发射分集,或采用多输入多输出(MIMO)技术来实现发射和接收分集。