2017-2018学年山西农大附中八年级(下)期中数学试卷(J)
- 格式:docx
- 大小:86.05 KB
- 文档页数:3
2017-2018学年山西农大附中八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式有意义的条件是()A. B. C. D.2.下列二次根式中,最简二次根式是()A. B. C. D.3.在下列长度的各组线段中,能组成直角三角形的是()A. 5,6,7B. 1,4,8C. 5,12,13D. 5,11,124.平行四边形、矩形、菱形、正方形中是轴对称图形的有()个.A. 1B. 2C. 3D. 45.若一个菱形的边长为2,则这个菱形两条对角线的平方和为()A. 16B. 8C. 4D. 16.如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,则AE的长为()A. 2cmB. 4cmC. 6cmD. 8cm7.下列命题是假命题的是()A. 平行四边形的对角线互相平分B. 平行四边形的对角相等C. 平行四边形是轴对称图形D. 平行四边形是中心对称图形8.下列性质中,矩形具有但平行四边形不一定具有的是()A. 对边相等B. 对角相等C. 对角线相等D. 对边平行9.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()A. 12B. 18C. 24D. 3010.如图,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()A.B.C.D.二、填空题(本大题共5小题,共15.0分)11.▱ABCD中一条对角线分∠A为35°和45°,则∠B=______度.12.如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号)______.13.若实数a,b满足,则以a,b的值为边长的等腰三角形的周长为______.14.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.15.某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为______米.三、计算题(本大题共2小题,共16.0分)16.计算(1)2-++(2)-3+(-)(+)17.已知a=+,b=-,求a2b-ab2的值.四、解答题(本大题共6小题,共59.0分)18.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.19.如图,在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1)填空:∠ABC=______,BC=______;(2)若点A在网格所在的坐标平面里的坐标为(-2,0),请你在图中找出一点D,使以A、B、C、D四个点为顶点的四边形是平行四边形,满足条件的D点的坐标可以是______(写出一个即可).20.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).21.如图,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,求;(1)线段BF的长;(2)线段EC的长.22.如图,四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求EF的长.过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.答案和解析1.【答案】C【解析】解:∵要使有意义,必须x+3≥0,∴x≥-3,故选:C.根据二次根式有意义的条件求出x+3≥0,求出即可.本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.2.【答案】A【解析】解:A、是最简二次根式;B、=|a|b2,被开方数含能开得尽方的因数,不是最简二次根式;C、=3,不是最简二次根式;D、=,不是最简二次根式;故选:A.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.【答案】C【解析】解:A.因为52+62≠72,所以不能组成直角三角形;B.因为12+42≠82,所以不能组成直角三角形;C.因为52+122=132,所以能组成直角三角形;D.因为52+112≠122,所以不能组成直角三角形.故选C.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.【答案】C【解析】解:平行四边形是中心对称图形,不是轴对称图形;矩形,菱形,正方形都是轴对称图形.故是轴对称图形的有3个.故选:C.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】A【解析】解:设两对角线长分别是:a,b.则(a)2+(b)2=22.则a2+b2=16.故选:A.根据菱形的对角线互相垂直平分,即菱形被对角线平分成四个全等的直角三角形,根据勾股定理,即可求解.本题主要考查了菱形的性质:菱形被两个对角线平分成四个全等的直角三角形.6.【答案】A【解析】解:∵在▱ABCD中,AB∥CD,AB=CD=8cm,BC=AD=6cm,∴∠DCE=∠BEC,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠BEC=∠BCE,∴BE=BC=6cm,∴AE=AB-BE=2cm,故选:A.利用平行四边形的性质以及角平分线的性质得出∠BEC=∠BCE,进而得出BE=BC=6cm,再根据AE=AB-BE计算即可.此题主要考查了平行四边形的性质以及角平分线的性质,得出BE=BC是解题关键.7.【答案】C【解析】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.故选C.根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.8.【答案】C【解析】解:矩形的特性是:四角相等,对角线相等.故选:C.根据矩形的性质以及平行四边形的性质进行做题.主要考查了特殊平行四边形的特性,并利用性质解题.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴O是AC的中点,E为AB中点,∴BC=2EO=6,∴菱形ABCD的周长是6×4=24,故选:C.因为菱形的对角线互相平分且四边相等,O是AC的中点,E是AB的中点,所以EO是△ABC的中线,BC=2EO=6,即菱形的边长为6,从而可求周长.本题考查菱形的性质菱形的对角线互相平分且四边相等以及三角形中位线的知识点.10.【答案】C【解析】解:过B作BF∥MN交AD于F,则∠AFB=∠ANM,∵四边形ABCD是正方形,∴∠A=∠EBC=90°,AB=BC,AD∥BC,∴FN∥BM,BF∥MN,∴四边形BFNM是平行四边形,∴BF=MN,∵CE=MN,∴CE=BF,在Rt△ABF和Rt△BCE中∴Rt△ABF≌Rt△BCE(HL),∴∠ABF=∠MCE=35°,∴∠ANM=∠AFB=55°,故选:C.过B作BF∥MN交AD于F,则∠AFB=∠ANM,根据正方形的性质得出∠A=∠EBC=90°,AB=BC,AD∥BC,推出四边形BFNM是平行四边形,得出BF=MN=CE,证Rt△ABF≌Rt△BCE,推出∠AFB=∠ECB即可.本题考查了平行四边形的性质和判定,全等三角形的性质和判定,正方形的性质的应用,主要考查学生的推理能力.11.【答案】100【解析】解:∵▱ABCD中一条对角线分∠A为35°和45°,∴∠BAD=80°,∵四边形BACD是平行四边形,∴BC∥AD,∴∠B+∠BAD=180°,∴∠B=100°,故答案为:100.求出∠BAD度数,根据平行四边形性质得出AD∥BC,推出∠B+∠BAD=180°即可.本题考查了平行四边形性质和平行线性质的应用,关键是求出∠BAD度数和得出∠B+∠BAD=180°.12.【答案】①④【解析】解:能说明▱ABCD是矩形的有:①对角线相等的平行四边形是矩形;④有一个角是直角的平行四边形是矩形.矩形是特殊的平行四边形,矩形有而平行四边形没有的特征是:矩形的四个内角是直角;矩形的对角线相等且互相平分;可根据这些特点来选择条件.此题主要考查的是矩形的判定方法.13.【答案】10【解析】解:根据题意得,a-2=0,b-4=0,解得a=2,b=4.①若a=2是腰长,则底边为4,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②若a=4是腰长,则底边为2,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10.故答案为:10.先根据非负数的性质列式求出a、b,再分情况讨论求解即可.本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.14.【答案】【解析】解:在Rt△ACB中,∠ACB=90°,AC=5,BC=3,由勾股定理得:AB==,∵CD是直角三角形ACB的斜边AB上中线,∴CD=AB=,故答案为:.根据勾股定理求出AB,根据直角三角形斜边上中线性质求出即可.本题考查了勾股定理,直角三角形斜边上中线性质的应用,注意:直角三角形斜边上的中线等于斜边的一半.15.【答案】(2+2)【解析】解:根据题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.求地毯的长度实际是求AC与BC的长度和,利用勾股定理及相应的三角函数求得相应的线段长即可.本题中求地毯的长度其实就是根据已知条件解相关的直角三角形.16.【答案】解:(1)2-++===;(2)-3+(-)(+)=2-+2-3=-1.【解析】(1)根据二次根式的加减法可以解答本题;(2)根据二次根式的加减法和平方差公式可以解答本题.本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.17.【答案】解:当a=+,b=-时,a-b=+-+=2,ab=(+)(-)=5-3=2,则原式=ab(a-b)=2×2=4.【解析】由a、b的值计算出a-b、ab的值,再代入原式=ab(a-b)计算可得.本题主要考查分母有理化,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.18.【答案】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠OAE=∠OCF,∵在△OAE和△OCF中,,∴△OAE≌△OCF(ASA),∴OE=OF.【解析】由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,又由∠AOE=∠COF,易证得△OAE≌△OCF,则可得OE=OF.此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.19.【答案】(1)135°;2;(2)(0,-2)(答案不唯一)【解析】解:(1)∠ABC=90°+45°=135°,BC==2;故答案为:135°,2;(2)∵A的坐标为(-2,0),∴坐标系如图所示:当CD∥AB,CD=AB=2时,四边形ABCD是平行四边形,∴此时点D的坐标为(0,-2);故答案为:(0,-2)(答案不唯一).(1)根据正方形的性质容易得出∠ABC的度数,由勾股定理求出BC即可;(2)由点A的坐标得出坐标系,即可得出点D的坐标.本题考查了平行四边形的判定、坐标与图形性质、勾股定理;熟练掌握平行四边形的判定和勾股定理是解决问题的关键.20.【答案】解:如图所示:由题意可得,AE=13-8=5(m),EC=12m,故AC==13(m),答:它飞行的最短路程是13m.【解析】根据题意画出图形,进而利用勾股定理求出答案.此题主要考查了勾股定理的应用,正确画出图形是解题关键.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD=BC=10cm,∠B=90°,∵根据折叠得出AF=AD=10cm,在RtABF中,由勾股定理得:BF===6(cm);(2)∵四边形ABCD是矩形,∴AB=CD=8cm,∠D=90°,∵根据折叠得出DE=EF,设EC=xcm,则DE=(8-x)cm,在Rt△ECF中,CE2+CF2=EF2,x2+(10-6)2=(8-x)2,解得:x=3,即EC=3cm.【解析】(1)根据矩形的性质求出AD=BC,AB=CD,∠D=∠B=90°,根据折叠得出AF=AD,根据勾股定理求出即可;(2)根据折叠得出DE=EF,根据勾股定理求出即可.本题考查了折叠的性质,矩形的性质,勾股定理等知识点,能得出关于x的方程是解此题的关键.22.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ADE=∠ABC=90°=∠ABF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,DE=6,∴BF=DE=6,∵BC=DC=8,∴CE=8-6=2,CF=8+6=14,在Rt△FCE中,EF===10.【解析】(1)利用正方形的性质结合全等三角形的判定与性质得出答案;(2)首先利用已知得出CE,CF的长,再利用勾股定理得出答案.此题主要考查了正方形的性质以及全等三角形的判定与性质以及勾股定理,正确应用正方形的性质是解题关键.23.【答案】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.。
绝密★启用前山西农业大学附属中学2016-2017学年八年级下学期期中考试数学试题试卷副标题考试范围:xxx ;考试时间:79分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、若二次根式有意义,则x 的取值范围为A .x ≥2B .x ≠2C .x >2D .x =22、发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25。
其中能作为直角三角形的三边长的有 A .1组 B .2组 C .3组 D .4组3、如图,正方形ABCD 的对角线交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,而且这两个正方形的边长相等、无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的A .B .C .D .4、矩形ABCD 中,E ,F ,M 为AB ,BC ,CD 边上的点,且AB=6,BC =7,AE=3,DM =2,EF ⊥FM ,则EM 的长为A .5B .C .6D .二、选择题(题型注释)5、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°6、如下图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BC B .OA=OC ,OB=OD C .AD=BC ,AB ∥CD D .AB=CD ,AD=BC7、如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.如果他们踩伤了花草,仅仅少走的路(假设2步为1米)是( )A .6步B .5步C .4步D .2步8、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是( )A .只有①和②相等B .只有③和④相等C .只有①和④相等D .①和②,③和④分别相等9、平行四边形的一边长为10cm ,那么这个平行四边形的两条对角线长可以是( ) A .4cm 和 6cm B .6cm 和 8cm C .20cm 和 30cm D .8cm 和12cm10、下列变形中,正确的是( ).A .(2)2=2×3=6B .=-C .=D .=第II卷(非选择题)三、填空题(题型注释)11、如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.12、平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为.13、如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是_______.14、若最简二次根式与能合并为一个二次根式,则x=_______。
2017-2018学年山西省太原市八年级(下)期中数学试卷(J)副标题题号一二三四总分得分一、选择题(本大题共10小题,共10.0分)1.已知a,b均为实数,且a−1>b−1,下列不等式中一定成立的是()A. a<bB. 3a<3bC. −a>−bD. a−2>b−2【答案】D【解析】解:因为a,b均为实数,且a−1>b−1,可得a>b,所以3a>3b,−a<−b,a−2>b−2,故选:D.根据不等式的性质进行判断.考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.2.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()A. B. C. D.【答案】B【解析】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图是两个关于x的一元一次不等式的解集在同一数轴上的表示,由它们组成的不等式组的解集是()A. x>−1B. x>2C. x≥2D. −1<x≤2【答案】C【解析】解:根据数轴得:不等式组的解集为x≥2,故选:C.找出两个不等式解集的方法部分确定出不等式组的解集即可.此题考查了在数轴表示不等式的解集,弄清不等式组取解集的方法是解本题的关键.4.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,−2),B(2,−4),C(4,−1).将△ABC平移得到△A1B1C1,若点A的对应点A1的坐标为(−2,3),则△ABC平移的方式可以为()A. 向左3个单位,向上5个单位B. 向左5个单位,向上3个单位C. 向右3个单位,向下5个单位D. 向右5个单位,向下3个单位【答案】A【解析】【分析】此题主要考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.根据A点坐标的变化规律可得横坐标−3,纵坐标+5,利用平移变换中点的坐标的变化规律即可得.【解答】解:因为点A(1,−2)的对应点A1的坐标为(−2,3),即(1−3,−2+5),所以△ABC平移的方式为:向左3个单位,向上5个单位,故选A.5.解不等式x+23>1−x−32时,去分母后结果正确的为()A. 2(x+2)>1−3(x−3)B. 2x+4>6−3x−9C. 2x+4>6−3x+3D. 2(x+2)>6−3(x−3)【答案】D【解析】解:去分母得2(x+2)>6−3(x−3).故选:D.利用不等式的性质把不等式两边乘以6可去分母.本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.6.如图,在△ABC中,AB=AC,∠A=36∘,D、E两点分别在边AC、BC上,BD平分∠ABC,DE//AB.图中的等腰三角形共有()A. 3个B. 4个C. 5个D. 6个【答案】C【解析】解:∵AB=AC,∠A=36∘,∴∠ABC=∠C=72∘,∵BD平分∠ABC,∴∠ABD=∠DBC=36∘,∴∠BDC=180∘−36∘−72∘=72∘,∵DE//AB,∴∠EDB=∠ABD=36∘,∴∠EDC=72∘−36∘=36∘,∴∠DEC=180∘−72∘−36∘=72∘,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选:C.已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.此题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是本题的关键.7.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A. 26B. 20C. 15D. 13【答案】D【解析】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选:D.直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.此题主要考查了平移的性质,根据题意得出CF的长是解题关键.8.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A. 210x+90(15−x)≥1800B. 90x+210(15−x)≤1800C. 210x+90(15−x)≥1.8D. 90x+210(15−x)≤1.8【答案】A【解析】解:由题意可得210x+90(15−x)≥1800,故选:A.根据题意可以列出相应的不等式,从而可以解答本题.本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.9.如图,直线y=ax+b与x轴交于点A(7,0),与直线y=kx交于点B(2,4),则不等式kx≤ax+b的解集为()A. x≤2B. x≥2C. 0<x≤2D. 2≤x≤6【答案】A【解析】解:∵直线y=ax+b与直线y=kx交于点B(2,4),∴不等式kx≤ax+b的解集为x≤2.故选:A.写出直线y=kx在直线y=ax+b下方部分的x的取值范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.如图,将△ABC绕点A顺时针旋转60∘得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A. AD=BDB. AC//BDC. DF=EFD. ∠CBD=∠E 【答案】C【解析】解:由旋转知∠BAD=∠CAE=60∘、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60∘,∴∠D=∠CAD=60∘、AD=BD,∴AC//BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选:C.由旋转的性质知∠BAD=∠CAE=60∘、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC//BD得∠CBD=∠C,从而得出∠CBD=∠E.本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.二、填空题(本大题共5小题,共5.0分)11.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t的车辆通过桥梁.设一辆自重10t的卡车,其载重的质量为xt,若它要通过此座桥,则x应满足的关系为______(用含x的不等式表示).【答案】10+x≤55【解析】解:设一辆自重10t的卡车,其载重的质量为xt,根据题意可得:10+x≤55,故答案为:10+x≤55根据题意列出不等式解答即可.此题考查一元一次不等式问题,关键是根据题意列出不等式解答.12.如图,将△ABC绕点A顺时针旋转60∘得到△AED,若∠EAD=30∘,则∠CAE的度数为______.【答案】30∘【解析】解:∵△ABC 绕点A 顺时针旋转60∘得到△AED , ∴∠DAC =60∘,∴∠CAE =∠DAC −∠EAD =60∘−30∘=30∘. 故答案为30∘.根据旋转的性质得∠DAC =60∘,然后计算∠DAC −∠EAD 即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13. 不等式组{3x −3>55−12x ≥3的整数解为______.【答案】3,4 【解析】解:{3x −3>5①5−12x ≥3②,由不等式①,得 x >83,由不等式②,得 x ≤4,故原不等式组的解集是83<x ≤4, 故不等式组{3x −3>55−12x ≥3的整数解为3,4,故答案为:3,4.根据解一元一次不等式组的方法可以解答本题.本题考查解一元一次不等式组,解答本题的关键是明确解不等式的方法.14. 如图,在Rt △ABC 中,∠C =90∘,∠A =30∘,点D ,点E分别在边AC ,AB 上,且DE 垂直平分AB.若AD =2,则CD 的长为______.【答案】1【解析】解:∵Rt △ABC 中,∠C =90∘,∠A =30∘,AD =2,DE 垂直平分AB . ∴DE =1,∠DBE =∠A =30∘,∠CBA =60∘, ∴BD 平分∠CBE ,∵∠C =90∘,DE ⊥AB , ∴DE =CD =1, 故答案为:1根据垂直平分线的性质和含30∘的直角三角形的性质解答即可. 此题考查含30∘的直角三角形的性质,关键是根据垂直平分线的性质和含30∘的直角三角形的性质解答.15. 如图,△ABC 是边长为24的等边三角形,△CDE 是等腰三角形,其中DC =DE =10,∠CDE =120∘,点E 在BC 边上,点F 是BE 的中点,连接AD 、DF 、AF ,则AF 的长为______.【答案】13√3【解析】解:过D作DH⊥BC于H,∵DC=DE=10,∴EH=HC,∵∠CDE=120∘,∴∠DCH=30∘,∴CH=EH=5√3,∴CE=10√3,∴BE=BC−CE=24−10√3,∵F是BE的中点,=12−5√3,∴BF=24−10√32过A作AM⊥BC于M,∵△ABC是等边三角形,BC=12,AM=12√3,∴BM=12∴FM=BM−BF=12−(12−5√3)=5√3,由勾股定理得:AF=√AM2+FM2=√(12√3)2+(5√3)2=√507=13√3.故答案为:13√3.作辅助线,构建直角三角形,先求CE的长,从而得FM和AM的长,根据勾股定理可得AF的长.本题考查了等边三角形、等腰三角形的性质,勾股定理及含30度角的直角三角形的性质,熟练掌握性质是关键,本题注意作辅助线,构建直角三角形解决问题.三、计算题(本大题共1小题,共1.0分)16.近年来,随着我国国民经济的飞速发展,我国物流业的市场需求持续扩大,某物流公司承接A、B两种货物的运输业务,已知A种货物运费单价为80元/吨,B种货物运费单价为50元/吨.该物流公司预计4月份运输这两种货物共300吨,且当月运送这两种货物收入的运费总额不低于19800元,求该物流公司4月份至少要承接运输A种货物多少吨?【答案】解:设该物流公司4月份要承接运输A种货物x吨,则承接运输A种货物(300−x)吨,根据题意得:80x+50(300−x)≥19800,x≥160,答:该物流公司4月份至少要承接运输A种货物160吨.【解析】根据题意4月份的运费,得出不等式,解方程求解即可本题考查了一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式是解题关键.四、解答题(本大题共7小题,共7.0分)17.解不等式:2x+1≤3(3−x)【答案】解:2x+1≤3(3−x),去括号得:2x+1≤9−3x,移项合并得:5x ≤8, 系数化为1得:x ≤85.【解析】不等式去括号,移项合并,将x 系数化为1,即可求出解集. 本题考查了解一元一次不等式,能根据不等式的性质求出不等式的解集是解此题的关键.18. 解不等式组{3x +2<4(x +1)x 3≥x−32−1,并将其解集表示在如图所示的数轴上.【答案】解:{3x +2<4(x +1)①x 3≥x−32−1②解不等式①得:x >−2,解不等式②得:x ≤15,所以不等式组的解集为:−2<x ≤15, 其解集在数轴上表示为:.【解析】分别求出每一个不等式的解集,根据解集在数轴上的表示确定不等式组的解集. 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为:A(1,−4),B(5,−4),C(4,−1).(1)将△ABC 经过平移得到△A 1B 1C 1,若点C 的应点C 1的坐标为(2,5),则点A ,B 的对应点A 1,B 1的坐标分别为______;(2)在如图的坐标系中画出△A 1B 1C 1,并画出与△A 1B 1C 1关于原点O 成中心对称的△A 2B 2C 2.【答案】(−1,2),(3,2),【解析】解:(1)如图所示:△A1B1C1即为所求:A1,B1的坐标分别为(−1,2),(3,2),故答案为:(−1,2),(3,2),(2)如图所示:△A2B2C2即为所求.(1)根据平移的性质画出图形,进而得出坐标即可;(2)根据关于原点O成中心对称的性质画出图形即可.本题主要考查作图−轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.20.如图,在△ABC中,AB=AC,AD是BC边上的中线,延长CB至点E,延长BC至点F,使BE=CF,连接AE、AF.求证:AD平分∠EAF.【答案】证明:∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=DC,AD⊥BC,AD平分∠BAC,∠ABD=∠ACD,∴∠ABE=∠ACF,在△ABE与△ACF中{AB=AC∠ABE=∠ACF BE=CF,∴△ABE≌△ACF,∴∠BAE=∠CAF,∴∠BAE+∠BAD=∠CAF+∠CAD,即∠EAD=∠FAD,即AD平分∠EAF.【解析】根据等腰三角形的性质得出BD=DC,AD⊥BC,AD平分∠BAC,再利用全等三角形的判定和性质证明即可.此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出BD=DC,AD⊥BC,AD平分∠BAC.21.某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买种商品件(x >15),购买种商品的件数比种商品件数多件,求该单位选择哪种方案才能获得更多优惠?【答案】解:根据题意得:某单位购买A 种商品x 件,则购买B 种商品(x +10)件, 按方案一购买花费为:y 1=60×0.7x +40×0.8(x +10), 按方案二购买花费为:y 2=60×0.75x +40×0.75(x +10), y 1−y 2=−x +10, ∵x >15, ∴−x <−15, ∴−x +10<−5, ∴y 1<y 2,即方案一的花费少于方案二,答:该单位选择方案一才能获得更多优惠.【解析】某单位购买A 种商品x 件,则购买B 种商品(x +10)件,由于x >15,所以两种商品肯定超过35件,方案二也能采用,按方案一购买花费为y 1,按照方案二购买花费y 2,求y 1−y 2在自变量x 的取值范围的正负情况即可得到答案.本题考查一元一次不等式的应用,正确找出不等量关系,讨论不等式的正负是解题的关键.22. 如图1,已知射线AP 是∠MAN 的角平分线,点B 为射线AP 上的一点且AB =10,过点B 分别作BC ⊥AM 于点C ,作BD ⊥AN 于点D ,BC =6. (1)在图1中连接CD 交AB 于点O.求证:AB 垂直平分CD ; (2)从A ,B 两题中任选一题作答,我选择______题A .将图1中的△ABC 沿射线AP 的方向平移得到△ABC ,点A 、B 、C 的对应点分别为A′、B′、C′.若平移后点B 的对应点B′的位置如图2,连接DB′. ①请在图2中画出此时的△A′B′C′,并在图中标注相应的字母; ②若图2中的DB′//A′C′,则平移的距离为______.B .将图1中的△ABC 沿射线AP 的方向平移得到△A′B′C′,点A 、B 、C 的对应点分别为A′、B′、C′.①在△A′B′C′平移的过程中,若点C′与点D 的连线恰好经过点B ,请在图3中画出此时的△A′B′C′,并在图中标注相应的字母;②如图3,点C′与点D 的连线恰好经过点B ,此时平移的距离为______.【答案】A 或B ;145;365【解析】(1)证明:如图1中,∵BC⊥AM,BD⊥AN,∴∠ACB=∠ADB=90∘,∵∠BAC=∠BAD,AB=AB,∴△ABC≌△ABD,∴AC=AD,BC=BD,∴AB垂直平分线段CD.(2)A:①△A′B′C′如图所示;②作DH⊥AB于H.在Rt△ABD中,AB=10,BD=BC=6,∴AD=√102−62=8,∵cos∠DAH=AHAD =ADAB=45,∴AH=325,∵DB′//AC,∴∠AB′D=∠CAB,∵∠CAB=∠DAB,∴∠DAB=∠AB′D,∴DA=DB′,∵DH⊥AB′,∴AH=HB′,∴AB′=645,∴BB′=AB′−AB=645−10=145,∴平移的距离为145,B:①△A′B′C′如图所示:②作C′H ⊥AP 于H .∵∠ABD =∠C′BB′=∠C′B′A′,∴C′B =C′B′,∵C′H ⊥BB′,∴BH =HB′,,∴HB′6=610,∴HB′=185,∴BB′=2B′H =365,∴平移的距离为365.故答案为A 或B ,145,365.(1)只要证明△ABC≌△ABD ,即可推出AC =AD ,BC =BD ,可得AB 垂直平分线段CD ;(2)A :①作出△A′B′C′即可;②作DH ⊥AB 于H.首先证明DA =DB′,想办法求出AH 即可解决问题;B :①作出△A′B′C′即可;②作C′H ⊥AP 于H.首先证明C′B =C′B′,想办法求出B′H 即可解决问题;本题考查几何变换综合题、角平分线的定义、全等三角形的判定和性质、平行线的性质、解直角三角形、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.23. 综合与探究问题情境:如图1,在△ABC 中,AB =AC ,点D ,E 分别是边AB ,AC 上的点,且AD =AE ,连接DE ,易知BD =CE.将△ADE 绕点A 顺时针旋转角度α(0∘<α<360∘),连接BD ,CE ,得到图2.(1)变式探究:如图2,若0∘<α<90∘,则BD =CE 的结论还成立吗?若成立,请证明;若不成立,请说明理由;(2)拓展延伸:若图1中的∠BAC =120∘,其余条件不变,请解答下列问题: 从A ,B 两题中任选一题作答我选择______题A .①在图1中,若AB =10,求BC 的长;②如图3,在△ADE 绕点A 顺时针旋转的过程中,当DE 的延长线经过点C 时,请直接写出线段AD ,BD ,CD 之间的等量关系;B .①在图1中,试探究BC 与AB 的数量关系,并说明理由;②在△ADE 绕点A 顺时针旋转的过程中,当点D ,E ,C 三点在同一条直线上时,请借助备用图探究线段AD,BD,CD之间的等量关系,并直接写出结果.【答案】A或B【解析】解:(1)结论:BD=CE.理由:如图2中,∵∠ABC=∠DAE,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=EC.(2)A:①如图1中,作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=HC,∵∠BAC=120∘,∴∠B=∠C=30∘,∴BH=AB⋅cos30∘=5√3,∴BC=10√3.②结论:CD=√3AD+BD.理由:如图3中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,AD,在Rt△ADH中,DH=AD⋅cos30∘=√32∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=√3AD+BD.B:①如图1中,作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=HC,∵∠BAC=120∘,∴∠B=∠C=30∘,AB,∴BH=AB⋅cos30∘=√32∴BC=2BH=√3AB.②结论:CD=√3AD+BD.证明方法同A②.故答案为A或B.(1)结论:BD=CE.只要证明△DAB≌△EAC即可;(2)A:①如图1中,作AH⊥BC于H.解直角三角形即可解决问题;②结论:CD=√3AD+BD.如图3中,作AH⊥CD于H.由△DAB≌△EAC,推出BD=CE,AD,由AD=AE,AH⊥DE,推出DH=HE,在Rt△ADH中,DH=AD⋅cos30∘=√32可得CD=DE+EC=2DH+BD=√3AD+BD;B:①如图1中,作AH⊥BC于H.解直角三角形可得:BC=2BH=√3AB;②类似A②;本题考查几何变换综合题、等腰三角形的性质、旋转变换、锐角三角函数、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。
山西农大附中初二数学下学期期中试卷一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题2分,共24分)题号1 2 3 4 5 6 7 8 9 10 11 12选项1.下列不等式一定成立的是A、5a>4aB、x+2<x+3C、-a>-2aD、2.不等式≥的正整数解的个数为A、1个B、2个C、3个D、4个3.不等式组的解集在数轴上可表示为A BC D4.下列由左到右变形,属于因式分解的是A、B、C、D、5.下列各式中,能用平方差公式分解因式的是A、B、C、D、6.下列判定中,正确的是A、当B=0时,分式无意义B、分式的分子中一定含有字母C、分数一定是分式D、当A=0时,分式的值为0(A、B为整式)7.假如把分式中的a、b都扩大3倍,那么分式的值一定A、是原先的3倍B、是原先的5倍C、是原先的D、不变8.已知,那么下列等式一定成立的是A、B、C、D、9.已知,且,则等于A、14B、42C、7D、10.如图所示,已知线段,点P是线段AB的黄金分割点,那么线段PB的长约为A、6.18B、0.382C、0.618D、3.8211.下列几何图形中,形状一定相同的图形是A、两个直角三角形B、两个等腰三角形C 、两个平行四边形D、两个正方形12.两个相似多边形的一组对应边分别为3cm和2cm,那么它们的相似比是A、B、C、D、Ⅱ(主观卷)96分二、填空题(本题共6小题,每题3分,共18分,直截了当写出结果)13.不等式>5的解集是。
14.当x 时,分式有意义。
15.运算。
16.据有关实验测定:当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒服,则那个气温约是。
(精确到1℃)。
17.在某县地图(比例尺为1∶400000)上量得红旗乡与胜利乡之间的距离为3cm,则两乡之间的实际距离是km。
18.某厂接到加工720件衣服的订单,估量每天做48件,正好按时完成,后因客户要求提早5天交货,设每天应多做x件,则依照题意,可列方程为。
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.二次根式中,x的值可以是()A.﹣6B.﹣5C.﹣4D.﹣32.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,233.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>54.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时▱ABCD为矩形B.当AB=AD时▱ABCD为正方形C.当∠ABC=90°时▱ABCD为菱形D.当AC⊥BD时▱ABCD为正方形5.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x 之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)6.如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.7.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)8.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG.若AB=6,则FG的长度为()A.3B.4C.5D.69.某公司准备与汽车租凭公司签订租车合同,以每月用车路程xkm计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司10.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A .a +bB .a ﹣bC .D .二.填空题(共6小题,满分24分,每小题4分)11.如图,平行四边形ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,连接AP ,若S △APH =2,则S 四边形PGCD = .12.无论m 取什么实数,点A (m +1,2m ﹣2)都在直线l 上.若点B (a ,b )是直线l 上的动点,(2a ﹣b ﹣5)2017的值等于 .13.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE +PF = .14.如图,在△ABC 中,AB =AC ,D ,E ,F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ,②四边形ADEF 为菱形,③S △ADF :S △ABC =1:4.其中正确的结论是 .(填写所有正确结论的序号)15.在实数范围内,若有意义,则x 的取值范围是 .16.如图1,点E ,F ,G 分别是等边三角形ABC 三边AB ,BC ,CA 上的动点,且始终保持AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,y 关于x 的函数图象大致为图2所示,则等边三角形ABC 的边长为 .三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.解方程:(1)=(2)+1=.19.画出二次函数y=(x﹣1)2的图象.20.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.22.探寻“勾股数”:直角三角形三边长是整数时我们称之为“勾股数”,勾股数有多少?勾股数有规律吗?(1)请你写出两组勾股数.(2)试构造勾股数.构造勾股数就是要寻找3个正整数,使他们满足“两个数的平方和(或差)等于第三数的平方”,即满足以下形式:①2+2=2;或②2﹣2=2③要满足以上①、②的形式,不妨从乘法公式入手.我们已经知道③(x+y)2﹣(x﹣y)2=4xy.如果等式③右边也能写成2的形式,就能符合②的形式.因此不妨设x=m2,y=n2,(m、n为任意正整数,m>n),请你写出含m、n的这三个勾股数并证明它们是勾股数.23.如图,在▱ABCD中,E是AD的中点,延长CB到点F,使BF=,连接BE、AF.(1)完成画图并证明四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.24.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.(1)试判定四边形AEDF的形状,并证明你的结论.(2)若DE=13,EF=10,求AD的长.(3)△ABC满足什么条件时,四边形AEDF是正方形?25.小明在研究正方形的有关问题时发现有这样一道题:“如图①,在正方形ABCD中,点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD.你能够得出什么样的正确的结论?”(1)小明经过研究发现:EF⊥AE.请你对小明所发现的结论加以证明;(2)小明之后又继续对问题进行研究,将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件均不变,认为仍然有“EF⊥AE”.你同意小明的观点吗?若你同意小明的观点,请取图③为例加以证明;若你不同意小明的观点,请说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.二次根式中,x的值可以是()A.﹣6B.﹣5C.﹣4D.﹣3【分析】根据二次根式有意义的条件可得x的取值范围,据此可得.【解答】解:由二次根式的性质知x+3≥0,则x≥﹣3,在四个选项中只有﹣3符合题意,故选:D.【点评】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式中被开方数不小于0.2.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.3.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).4.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时▱ABCD为矩形B.当AB=AD时▱ABCD为正方形C.当∠ABC=90°时▱ABCD为菱形D.当AC⊥BD时▱ABCD为正方形【分析】直接利用矩形、菱形的判定方法分析得出答案.【解答】解:A、当OA=OB时,可得到▱ABCD为矩形,故此选项正确;B、当AB=AD时▱ABCD为菱形,故此选项错误;C、当∠ABC=90°时▱ABCD为矩形,故此选项错误;D、当AC⊥BD时▱ABCD为菱形,故此选项.故选:A.【点评】此题主要考查了矩形、菱形的判定,正确掌握相关判定方法是解题关键.5.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x 之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为16cm,其中一边长为xcm,∴另一边长为:(8﹣x)cm,故y=(8﹣x)x.故选:C.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.6.如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.【分析】根据题意,ab>0,bc<0,则>0,<0,进而在一次函数y=﹣x+中,有﹣<0,<0,结合一次函数图象的性质,分析可得答案.【解答】解:根据题意,ab>0,bc<0,则>0,<0,∴在一次函数y=﹣x+中,有﹣<0,<0,故其图象过二三四象限,分析可得D符合,故选:D.【点评】本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.7.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)【分析】首先连接AB交OC于点D,根据菱形的性质可得AB⊥OC,OD=CD=4,AD=BD=2,即可求得点B的坐标.【解答】解:如图,连接AB,交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(8,0),点A的纵坐标是2,∴OC=8,BD=AD=2,∴OD=4,∴点B的坐标为:(4,﹣2).故选:B.【点评】此题考查了菱形的性质与点与坐标的关系,此题难度不大,注意数形结合思想的应用.8.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG.若AB=6,则FG的长度为()A.3B.4C.5D.6【分析】根据三角形中位线定理可知FG=BC,由此即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=BC=6,∵F、G分别为BE,CE的中点,∴FG=BC=3,故选:A.【点评】本题考查正方形的性质、三角形的中位线定理等知识,几天倒计时灵活运用所学知识解决问题,属于中考常考题型.9.某公司准备与汽车租凭公司签订租车合同,以每月用车路程xkm计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.【点评】此题主要考查了函数图象,解决本题的关键是理解两个函数图象交点的意义.10.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A .a +bB .a ﹣bC .D .【分析】设CD =x ,则DE =a ﹣x ,求得AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,求得CD=,得到BC =DE =a ﹣=,根据勾股定理即可得到结论.【解答】解:设CD =x ,则DE =a ﹣x , ∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x , ∴x =,∴BC =DE =a ﹣=,∴BD 2=BC 2+CD 2=()2+()2=,∴BD =,故选:C .【点评】本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键. 二.填空题(共6小题,满分24分,每小题4分)11.如图,平行四边形ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,连接AP ,若S △APH =2,则S 四边形PGCD = 8 .【分析】根据平行四边形的判定定理得到四边形HPFD 、四边形PGCF 是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可. 【解答】解:∵EF ∥BC ,GH ∥AB ,∴四边形HPFD 、四边形PGCF 是平行四边形,∵S △APH =2,CG =2BG , ∴S △DPH =2S △APH =4,∴平行四边形HPFD 的面积=8,∴平行四边形PGCF 的面积=×平行四边形HPFD 的面积=4, ∴S 四边形PGCD =4+4=8, 故答案为:8.【点评】本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.12.无论m 取什么实数,点A (m +1,2m ﹣2)都在直线l 上.若点B (a ,b )是直线l 上的动点,(2a ﹣b ﹣5)2017的值等于 ﹣1 .【分析】由B 点坐标可找到a 和b 之间的关系,代入可求得2a ﹣b ﹣6的值,可求得答案. 【解答】解:∵令m =0,则B (1,﹣2);再令m =1,则B (2,0),由于m 不论为何值此点均在直线l 上,∴设此直线的解析式为y =kx +b (k ≠0),∴, 解得,∴此直线的解析式为:y =2x ﹣4, ∵B (a ,b )是直线l 上的点, ∴2a ﹣4=b ,即2a ﹣b =4,∴(2a ﹣b ﹣5)2017=(4﹣5)2017=﹣1. 故答案是:﹣1.【点评】本题主要考查函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数关系式是解题的关键.13.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE +PF = 4 .【分析】由矩形的性质可得AO =CO =5=BO =DO ,由S △DCO =S △DPO +S △PCO ,可得PE +PF 的值.【解答】解:如图,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形 ∴AO =CO =5=BO =DO ,∴S △DCO =S 矩形ABCD =10, ∵S △DCO =S △DPO +S △PCO ,∴10=+×OC ×PE∴20=5PF +5PE ∴PE +PF =4 故答案为:4【点评】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.14.如图,在△ABC 中,AB =AC ,D ,E ,F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ,②四边形ADEF 为菱形,③S △ADF :S △ABC =1:4.其中正确的结论是 ①②③ .(填写所有正确结论的序号)【分析】①根据三角形的中位线定理可得出AD =FE 、AF =FC 、DF =EC ,进而可证出△ADF ≌△FEC (SSS ),结论①正确;②根据三角形中位线定理可得出EF ∥AB 、EF =AD ,进而可证出四边形ADEF 为平行四边形,由AB =AC 结合D 、F 分别为AB 、AC 的中点可得出AD =AF ,进而可得出四边形ADEF 为菱形,结论②正确;③根据三角形中位线定理可得出DF ∥BC 、DF =BC ,进而可得出△ADF ∽△ABC ,再利用相似三角形的性质可得出=,结论③正确.此题得解.【解答】解:①∵D 、E 、F 分别为AB 、BC 、AC 的中点, ∴DE 、DF 、EF 为△ABC 的中位线,∴AD =AB =FE ,AF =AC =FC ,DF =BC =EC .在△ADF 和△FEC 中,,∴△ADF ≌△FEC (SSS ),结论①正确; ②∵E 、F 分别为BC 、AC 的中点, ∴EF 为△ABC 的中位线,∴EF ∥AB ,EF =AB =AD , ∴四边形ADEF 为平行四边形.∵AB =AC ,D 、F 分别为AB 、AC 的中点, ∴AD =AF ,∴四边形ADEF 为菱形,结论②正确; ③∵D 、F 分别为AB 、AC 的中点, ∴DF 为△ABC 的中位线,∴DF ∥BC ,DF =BC , ∴△ADF ∽△ABC ,∴=()2=,结论③正确.故答案为:①②③.【点评】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.15.在实数范围内,若有意义,则x 的取值范围是 x >﹣1 .【分析】根据负数没有平方根,求出x 的范围即可.【解答】解:在实数范围内,若有意义,则有x +1>0,解得:x >﹣1,故答案为:x>﹣1【点评】此题考查了二次根式有意义的条件,熟练掌握二次根式性质是解本题的关键.16.如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF =CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象大致为图2所示,则等边三角形ABC的边长为2.【分析】设出等边三角形ABC边长和BE的长,表示等边三角形ABC的面积,讨论最值即可.【解答】解:设等边三角形ABC边长为a,则可知等边三角形ABC的面积为设BE=x,则BF=a﹣xS=△BEF易证△BEF≌△AGE≌△CFGy=﹣3()=当x=时,△EFG的面积为最小.此时,△EFG的边长为1EF等边三角形ABC的中位线,则AC=2故答案为:2【点评】本题是动点函数图象问题,考查了等边三角形的性质及判断.解答时要注意通过设出未知量构造数学模型.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.解方程:(1)=(2)+1=.【分析】(1)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根;(2)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根.【解答】解:(1)由原方程,得2(x+1)=4,2x=4﹣2,x=1,经检验,x=1是原方程的增根,所以原方程无解.(2)由原方程,得x﹣3+x﹣2=﹣3,2x=﹣3+5,x=1,经检验,x=1是原方程的根.【点评】考查了解分式方程.解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19.画出二次函数y=(x﹣1)2的图象.【分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【解答】解:列表得:如图:.【点评】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.20.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.【分析】由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.【解答】证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).【点评】本题是先从结论出发得到需证明的条件,又从所给条件入手,得到需证明的条件.属于典型的从两头往中间证明.22.探寻“勾股数”:直角三角形三边长是整数时我们称之为“勾股数”,勾股数有多少?勾股数有规律吗?(1)请你写出两组勾股数.(2)试构造勾股数.构造勾股数就是要寻找3个正整数,使他们满足“两个数的平方和(或差)等于第三数的平方”,即满足以下形式:①32+42=52;或②62﹣82=1O2③要满足以上①、②的形式,不妨从乘法公式入手.我们已经知道③(x+y)2﹣(x﹣y)2=4xy.如果等式③右边也能写成2的形式,就能符合②的形式.因此不妨设x=m2,y=n2,(m、n为任意正整数,m>n),请你写出含m、n的这三个勾股数并证明它们是勾股数.【分析】根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:(1)勾股数:3,4,5或6,8,10等.(2)(m2+n2)2=m4+2m2n2+n4(m2﹣n2)2=m4﹣2m2n2+n4,(m2+n2)2﹣(m2﹣n2)2=4m2n2=(2mn)2.∴(m2+n2)2﹣(2mn)2=(m2﹣n2)2,∴m2+n2,m2﹣n2,2mn为勾股数.故答案为:.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.23.如图,在▱ABCD中,E是AD的中点,延长CB到点F,使BF=,连接BE、AF.(1)完成画图并证明四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.【分析】(1)根据平行四边形的性质和判定证明即可;(2)过点A作AG⊥BF于G,利用平行四边形的性质和勾股定理解答即可.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又E是AD的中点,,∴AE∥BF,AE=BF,∴四边形AFBE是平行四边形;(2)过点A作AG⊥BF于G,由▱ABCD可知∠ABF=∠C=60°,又AB=6,AD=8,∴BG=3,FG=1,AG=,∴BE=AF=.【点评】本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.24.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.(1)试判定四边形AEDF的形状,并证明你的结论.(2)若DE=13,EF=10,求AD的长.(3)△ABC满足什么条件时,四边形AEDF是正方形?【分析】(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO =FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故EO=EF=5,根据勾股定理得DO=12,从而得到AD=24;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.【解答】解:(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠1=∠2,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∵,∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形,又EF⊥AD,∴平行四边形AEDF为菱形;(2)∵四边形AEDF是菱形,EF=10,∴∠DOE=90°,OE=EF=5,AD=2OD,在Rt△DOE中,∵DE=13,∴OD===12,∴AD=2OD=24;(3)当△ABC中,∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).【点评】本题主要考查了菱形的判定和正方形的判定,关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.25.小明在研究正方形的有关问题时发现有这样一道题:“如图①,在正方形ABCD中,点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD.你能够得出什么样的正确的结论?”(1)小明经过研究发现:EF⊥AE.请你对小明所发现的结论加以证明;(2)小明之后又继续对问题进行研究,将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件均不变,认为仍然有“EF⊥AE”.你同意小明的观点吗?若你同意小明的观点,请取图③为例加以证明;若你不同意小明的观点,请说明理由.【分析】(1)延长AE交BC的延长线与点M,要证明EF⊥AE,只要证明△AFM是等腰三角形,再证明E是AM的中点就可以证得.(2)同(1),延长AE交BC的延长线与点M,要证明EF⊥AE,只要证明△AFM是等腰三角形,再证明E是AM的中点就可以证得.【解答】(1)证明:如图①,延长AE交BC的延长线与点M.∵在正方形ABCD中,AD∥BC,∠FAE=∠EAD,∴∠DAM=∠M,又∵DE=EC,∠AED=∠MEC,∴△AED≌△MEC,∴AE=EM,∠EAD=∠FAE=∠M,∴AF=FM,∴FE⊥AE.(2)解:EF⊥AE仍然成立.理由如下:如图③,延长AE交BC的延长线与点M,∵在菱形ABCD中,AD∥BC,∠FAE=∠EAD,∴∠DAM=∠M,又∵DE=EC,∠AED=∠MEC,∴△AED≌△MEC,∴AE=EM,∠EAD=∠FAE=∠M,∴AF=FM,∴FE⊥AE.【点评】本题主要考查了等腰三角形的性质:三线合一定理,把证明垂直的问题转化为证明等腰三角形底边上的中线的问题.。
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=23.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣45.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.106.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠07.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=15008.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥29.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=2410.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是.12.代数式中x的取值范围是.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)216.解方程:x2﹣4x+1=0.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),把方程化为一般形式,根据二次项系数不等于0,即可求得n的取值范围.【解答】解:∵方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,∴n≥0且n﹣1≠0,即n≥0且n≠1.故选:C.【点评】本题考查了一元二次方程的定义.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.10【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,=×3×4=6.∴S△故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.6.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=1500【分析】2018年年收入=2016年年收入×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为:300(1+x)2=1500.故选:A.【点评】此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.8.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.9.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=24【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:x2﹣10x﹣1=0,移项,得x2﹣10x=1,方程两边同时加上25,得x2﹣10x+25=26,∴(x﹣5)2=26.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.【分析】根据勾股定理求出BC,根据三角形的面积公式计算.【解答】解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是2.【分析】先根据有理数的平方求出(﹣1.7)2的值,再找出符合条件的最大整数即可.【解答】解:∵(﹣1.7)2=2.89,∴不超过2.89的最大整数为2.故答案为:2.【点评】本题考查的是有理数的乘方及有理数的大小比较,比较简单.12.代数式中x的取值范围是x>1.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2.【分析】根据一元二次方程解的定义,将x=0代入关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,然后解关于m的一元二次方程即可.【解答】解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.【点评】本题考查了一元二次方程的解的定义.解答该题时,注意一元二次方程的定义中的“一元二次方程的二次项系数不为0”这一条件.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=40°.【分析】由对顶角相等可得∠CGE=∠FGB1,由两角对应相等可得△ADF∽△B1GF,那么∠CGE 等于∠ADF的度数,进而利用三角形内角和得出答案.【解答】解:由翻折可得∠B1=∠B=60°,∴∠A=∠B1=60°,∵∠AFD=∠GFB1,∴△ADF∽△B1GF,∴∠ADF=∠B1GF,∵∠CGE=∠FGB1,∴∠CGE=∠ADF=80°.∴∠CEG=180°﹣80°﹣60°=40°,故答案为:40°【点评】本题考查了翻折变换问题;得到∠CGE等于∠ADF的度数的关系是解决本题的关键.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.16.解方程:x2﹣4x+1=0.【分析】根据配方法可以解答此方程.【解答】解:x2﹣4x+1=0x2﹣4x+4=3(x﹣2)2=3x﹣2=∴x1=2+,x2=2﹣;【点评】本题考查解一元二次方程﹣配方法,解答本题的关键是会用配方法解方程的方法.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.【分析】(1)将x=﹣1,n=1代入原方程,可求出m的值;(2)代入m=2,根据方程的系数结合根的判别式,可得出△=﹣4n2,分n=0及n≠0两种情况找出此方程根的情况.【解答】解:(1)将x=﹣1,n=1代入原方程,得:(﹣1)2﹣m+12+1=0,解得:m=3.(2)当m=2时,原方程为x2+2x+n2+1=0,∴△=22﹣4×1×(n2+1)=﹣4n2.当n=0时,△=﹣4n2=0,此时原方程有两个相等的实数根;当n≠0时,△=﹣4n2<0,此时原方程无解.【点评】本题考查了根的判别式以及一元二次方程的解,解题的关键是:(1)代入x,n的值求出m的值;(2)分n=0及n≠0两种情况找出方程解的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.【分析】先根据已知条件、算术平方根的性质和绝对值的性质求出a、b,再由勾股定理即可得出结果.【解答】解:∵+|b﹣4|=0,∴+|b﹣4|=0,∴|a﹣3|+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴直角三角形的斜边长===5.【点评】本题考查了勾股定理、绝对值的性质以及算术平方根的性质;熟练掌握勾股定理的运用,根据题意求出a、b是解决问题的关键.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)本题需先根据a=7,求出三边的长,根据三角形三边关系进行判断;(3)根据三角形的三边关系列出不等式组,即可求出a的取值范围;(3)本题需先求出a的值,然后即可得出三角形的三边长.【解答】解:(1)∵第二条边长为(2a+2)米,∴第三条边长为30﹣a﹣(2a+2)=28﹣3a(米);(2)不能.当a=7时,三边长分别为7,16,7,由于7+7<16,所以不能构成三角形,即第一条边长不能为7m;(3)根据题意得:,解得:<a<,即a的取值范围是<a<.(4)能围成.在(3)的条件下,a为整数时,a只能取5或6.当a=5时,三角形的三边长分别为5,12,13.由52+122=132知,恰好能构成直角三角形.当a=6时,三角形的三边长分别为6,14,10.由62+102≠142知,此时不能构成直角三角形.综上所述,能围成满足条件的小圈,它们的三边长分别为5m,12m,13m.【点评】本题主要考查了勾股定理、三角形三边关系以及一元一次不等式组的应用,在解题时根据三角形的三边关系,列出不等式组是本题的关键.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.【分析】题目明确给出了工作总量为10×10个饺子,工作时间10分钟,再设一个工作速度即能列得等量关系.(1)题干中明确给出妈妈和小侨包饺子的速度关系,设一个未知数即可表示两人的速度.问题出现“至少”说明应列不等式解题,即若小侨速度加快的话,包的饺子总量有可能大于100个.(2)明确了小侨的速度,妈妈速度提升的是一个百分数,所用是原来速度再乘以(1+a%),所用时间减少的也是一个百分数,应是10×(1﹣a%).小侨速度×时间+妈妈速度×时间=100个.计算时先把含a%的式子化简,能帮助准确计算.【解答】解:(1)设小侨每分钟包x个饺子,则妈妈每分钟包(2x﹣2)个饺子,得:10x+10(2x﹣2)≥10×10解得:x≥4(2)依题意得:小侨每分钟包4个饺子,妈妈每分钟包饺子数量为6×(1+a%)=6+a,包饺子总时间为10×(1﹣a%)=10﹣a,列得方程:(6+a)(10﹣a)+4(10﹣a﹣a)=100解得:a1=0(舍去),a2=40答:(1)小侨每分钟包至少包4个饺子;(2)a的值为40.【点评】本题考查了一元一次不等式的应用和一元二次方程的应用,解题关键是(1)找准是等量关系还是不等量关系;(2)提升或减少的是一个百分数,带a%式子的准确计算.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF =FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?【分析】(1)根据勾股定理可以求得这个梯子的顶端距地面的距离;(2)利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)由题意可得,AC===2.4(米),即此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得A′C2+B′C2=A′B′2,即1.52+B′C2=2.52所以B′C=2(m)BB′=CB′﹣BC=2﹣0.7=1.3(m),即梯子的底端在水平方向滑动了1.3m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。
绝密★启用前2017-2018学年第二学期期中考试八年级数学试题卷2018.4本试卷共2页,23小题,满分100分.考试用时90分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。
2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
不按要求填涂的,答案无效。
3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回。
一、选择题(每小题3分,共36分)1. 下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是A.1个B.2个C.3个D.4个 2.已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是 A.9㎝ B .12㎝ C .12㎝或者15㎝ D .15㎝ 3.要使代数式2-x 有意义,则x 的取值范围是( ).A .2-≤xB .2-≥xC .2≥xD .2≤x4. 不等式组⎩⎨⎧<>-421x x 的解集是 ( ).A. x <3B. 3<x <4C. x <4D. 无解 5.下列各多项式中,不能用平方差公式分解的是( ).A.a 2b 2-1 B .4-0.25a 2 C .-a 2-b 2 D .-x 2+16.分解因式x 2y ﹣y 3结果正确的是( ).A .y (x +y )2B .y (x -y )2C .y (x 2-y 2)D .y (x +y )(x -y ) 7.如果多项式x 2-mx +9是一个完全平方式,那么m 的值为( ). A .-3 B .-6 C .±3 D .±6 8.满足0106222=+-++n m n m 的是( ). A.3,1==n mB.3,1-==n mC.3,1=-=n mD.3,1-=-=n m9.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=620,则∠EFD 的度数为( )A 、150B 、160C 、170D 、18010.如图所示,在矩形ABCD 中,AD=8,DC=4,将△ADC 按逆时针方向绕点A 旋转到△AEF(点,A,B,E 在同一直线上),连接CF ,则CF=( )A . 10 B. 12C.D.11.矩形ABCD 中,AB=5,AD=12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )A.12πB.252π C. 13πD.12.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办FCCDE F法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买( )块肥皂.A.5B.4C.3D.2 二、填空题(每小题3分,共12分)13.不等式组⎩⎨⎧-><13x x 的解集是 _____.14.利用分解因式计算:32003+6×32002-32004=_____________.15.已知关于x 的不等式组⎩⎪⎨⎪⎧4(x -1)+2>3x ,x -1<6x +a7有且只有三个整数解,则a 的取值范围是16.如图,Rt ⊿ABC 中,∠C = 90º,以斜边AB 为边向外 作正方形ABDE ,且正方形对角线交于点O ,连接OC , 已知AC=6,OC=BC 的长为 三、解答题(共52分)17.分解因式(每小题3分.共6分)⑴ 4a 2-8ab+4b 2 ⑵ (2)x 2(m ﹣n )﹣y 2(m ﹣n )18. (每小题4分.共8分)解下列不等式组:⑴ ⑵523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩①② CA BEDO4(1)42123x x x x -≥+⎧⎪+⎨<⎪⎩ 19.计算(每小题5分,共10分)⑴.已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?20. (6分)求关于x、y的方程组24563x y mx y m+=+⎧⎨+=+⎩的解x、y都是正数,求m的取值范围。
山西省农业大学附属中学2012-2013学年八年级下学期期中考试数学试题Ⅰ(客观卷)30分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)题 号 1 2 3 4 5 6 7 8 9 10 选 项1.分式21-+a a 有意义,字母a 应满足 A 、a ≠2B 、a =2C 、a ≠1-D 、a =1-2.不等式组⎩⎨⎧--012<>x x 的解集是A 、x >1B 、2-<x <1C 、x >2-D 、x >1或x <2-3.下列各式从左到右的变形,属于因式分解的是A 、x xy x y x x 32)32(2-+=-+B 、)(b a m m mb ma -=+-C 、1)2)(2(143+-+=+-a a a a aD 、)2)(2(422n m n m n m ++-=+-4.若224y mxy x ++是一个完全平方式,则m = A 、4B 、2C 、±4D 、±25.已知0432≠==c b a ,则c ba +的值为 A 、54B 、45 C 、2 D 、21 6.下列运算正确的是A 、b a b a b a +=++22B 、1-=+--b a baC 、1-=---ba baD 、b a ba b a -=--227.在1∶38000的交通旅游图上,太运高速陈家山隧道长7cm ,则它的实际长度是 A 、26.6kmB 、2.66kmC 、0.266kmD 、266km8.在长度为1的线段AB 上找到两个黄金分割点P 、Q ,则PQ =A D EBFCA 、225- B 、53- C 、25- D 、253- 9.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误..的是 A 、FBEA CFCE =B 、BDAD BCDE =C 、ACAE ABAD =D 、CBCF AB BD =10.两个相似的五边形,一组对应边的长分别为4cm 和6cm ,若它们的面积之和为260cm 2,则较大五边形的面积是 A 、100cm 2B 、180cm 2C 、75cm 2D 、30cm 2Ⅱ(主观卷)90分二、填空题:(每小题3分,共24分)11.不等式821-≥x 的正整数解是 。
2017-2018学年山西农大附中八年级(下)期中数学试卷一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥32.(3分)下列二次根式中,最简二次根式是()A.B.C.D.3.(3分)在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.1,4,8C.5,12,13D.5,11,12 4.(3分)平行四边形、矩形、菱形、正方形中是轴对称图形的有()个.A.1B.2C.3D.45.(3分)若一个菱形的边长为2,则这个菱形两条对角线的平方和为()A.16B.8C.4D.16.(3分)如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,则AE的长为()A.2cm B.4cm C.6cm D.8cm7.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形8.(3分)下列性质中,矩形具有但平行四边形不一定具有的是()A.对边相等B.对角相等C.对角线相等D.对边平行9.(3分)如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()A.12B.18C.24D.3010.(3分)如图,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM 等于()A.45°B.50°C.55°D.60°二、填空题(共5个小题,共15分,请把答案填在题中的横线上)11.(3分)▱ABCD中一条对角线分∠A为35°和45°,则∠B=度.12.(3分)如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号).13.(3分)若实数a,b满足,则以a,b的值为边长的等腰三角形的周长为.14.(3分)在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD =.15.(3分)某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C =90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为米.三、解答题(共8个小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤)16.(10分)计算(1)2﹣++(2)﹣3+(﹣)(+)17.(7分)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.18.(6分)已知a=+,b=﹣,求a2b﹣ab2的值.19.(10分)如图,在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1)填空:∠ABC=,BC=;(2)若点A在网格所在的坐标平面里的坐标为(﹣2,0),请你在图中找出一点D,使以A、B、C、D四个点为顶点的平行四边形,满足条件的D点的坐标可以是(写出一个即可).20.(10分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).21.(10分)如图,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,求;(1)线段BF的长;(2)线段EC的长.22.(10分)如图,四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求EF的长.23.(12分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A 点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.2017-2018学年山西农大附中八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥3【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选:C.2.(3分)下列二次根式中,最简二次根式是()A.B.C.D.【解答】解:A、是最简二次根式;B、=|a|b2,被开方数含能开得尽方的因数,不是最简二次根式;C、=3,不是最简二次根式;D、=,不是最简二次根式;故选:A.3.(3分)在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.1,4,8C.5,12,13D.5,11,12【解答】解:A、因为52+62≠72,所以不能组成直角三角形;B、因为12+42≠82,所以不能组成直角三角形;C、因为52+122=132,所以能组成直角三角形;D、因为52+112≠122,所以不能组成直角三角形.故选:C.4.(3分)平行四边形、矩形、菱形、正方形中是轴对称图形的有()个.A.1B.2C.3D.4【解答】解:平行四边形是中心对称图形,不是轴对称图形;矩形,菱形,正方形都是轴对称图形.故是轴对称图形的有3个.5.(3分)若一个菱形的边长为2,则这个菱形两条对角线的平方和为()A.16B.8C.4D.1【解答】解:设两对角线长分别是:a,b.则(a)2+(b)2=22.则a2+b2=16.故选:A.6.(3分)如图,在▱ABCD中,已知AD=6cm,AB=8cm,CE平分∠BCD交BC边于点E,则AE的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:∵在▱ABCD中,AB∥CD,AB=CD=8cm,BC=AD=6cm,∴∠DCE=∠BEC,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠BEC=∠BCE,∴BE=BC=6cm,∴AE=AB﹣BE=2cm,故选:A.7.(3分)下列命题是假命题的是()A.平行四边形的对角线互相平分B.平行四边形的对角相等C.平行四边形是轴对称图形D.平行四边形是中心对称图形【解答】解:A、∵平行四边形的对角线互相平分,∴此命题是真命题;B、∵平行四边形的对角相等,∴此命题是真命题;C、∵平行四边形是中心对称图形,不是轴对称图形,∴此命题是假命题;D、∵平行四边形是中心对称图形,∴此命题是真命题.8.(3分)下列性质中,矩形具有但平行四边形不一定具有的是()A.对边相等B.对角相等C.对角线相等D.对边平行【解答】解:矩形的特性是:四角相等,对角线相等.故选:C.9.(3分)如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是()A.12B.18C.24D.30【解答】解:∵四边形ABCD是菱形,∴O是AC的中点,E为AB中点,∴BC=2EO=6,∴菱形ABCD的周长是6×4=24,故选:C.10.(3分)如图,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM 等于()A.45°B.50°C.55°D.60°【解答】解:过B作BF∥MN交AD于F,则∠AFB=∠ANM,∵四边形ABCD是正方形,∴∠A=∠EBC=90°,AB=BC,AD∥BC,∴FN∥BM,BF∥MN,∴四边形BFNM是平行四边形,∴BF=MN,∵CE=MN,∴CE=BF,在Rt△ABF和Rt△BCE中∴Rt△ABF≌Rt△BCE(HL),∴∠ABF=∠MCE=35°,∴∠ANM=∠AFB=55°,故选:C.二、填空题(共5个小题,共15分,请把答案填在题中的横线上)11.(3分)▱ABCD中一条对角线分∠A为35°和45°,则∠B=100度.【解答】解:∵▱ABCD中一条对角线分∠A为35°和45°,∴∠BAD=80°,∵四边形BACD是平行四边形,∴BC∥AD,∴∠B+∠BAD=180°,∴∠B=100°,故答案为:100.12.(3分)如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号)①④.【解答】解:能说明▱ABCD是矩形的有:①对角线相等的平行四边形是矩形;④有一个角是直角的平行四边形是矩形.13.(3分)若实数a,b满足,则以a,b的值为边长的等腰三角形的周长为10.【解答】解:根据题意得,a﹣2=0,b﹣4=0,解得a=2,b=4.①若a=2是腰长,则底边为4,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②若a=4是腰长,则底边为2,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10.故答案为:10.14.(3分)在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=.【解答】解:在Rt△ACB中,∠ACB=90°,AC=5,BC=3,由勾股定理得:AB==,∵CD是直角三角形ACB的斜边AB上中线,∴CD=AB=,故答案为:.15.(3分)某楼梯的侧面视图如图所示,其中AB=4米,∠BAC=30°,∠C=90°,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为(2+2)米.【解答】解:根据题意,Rt△ABC中,∠BAC=30°.∴BC=AB÷2=4÷2=2,AC==2,∴AC+BC=2+2,即地毯的长度应为(2+2)米.三、解答题(共8个小题,共75分,解答应写出必要的文字说明、证明过程或演算步骤)16.(10分)计算(1)2﹣++(2)﹣3+(﹣)(+)【解答】解:(1)2﹣++===;(2)﹣3+(﹣)(+)=2﹣+2﹣3=﹣1.17.(7分)如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠OAE=∠OCF,∵在△OAE和△OCF中,,∴△OAE≌△OCF(ASA),∴OE=OF.18.(6分)已知a=+,b=﹣,求a2b﹣ab2的值.【解答】解:当a=+,b=﹣时,a﹣b=+﹣+=2,ab=(+)(﹣)=5﹣3=2,则原式=ab(a﹣b)=2×2=4.19.(10分)如图,在8×8的正方形网格中,△ABC的顶点在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=2;(2)若点A在网格所在的坐标平面里的坐标为(﹣2,0),请你在图中找出一点D,使以A、B、C、D四个点为顶点的平行四边形,满足条件的D点的坐标可以是(0,﹣2)(答案不唯一)(写出一个即可).【解答】解:(1)∠ABC=90°+45°=135°,BC==2;故答案为:135°,2;(2)∵A的坐标为(﹣2,0),∴坐标系如图所示:当CD∥AB,CD=AB=2时,四边形ABCD是平行四边形,点D的坐标为(0,﹣2);故答案为:(0,﹣2)(答案不唯一).20.(10分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).【解答】解:如图所示:由题意可得,AE=13﹣8=5(m),EC=12m,故AC==13(m),答:它飞行的最短路程是13m.21.(10分)如图,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,求;(1)线段BF的长;(2)线段EC的长.【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC=10cm,∠B=90°,∵根据折叠得出AF=AD=10cm,在RtABF中,由勾股定理得:BF===6(cm);(2)∵四边形ABCD是矩形,∴AB=CD=8cm,∠D=90°,∵根据折叠得出DE=EF,设EC=xcm,则DE=(8﹣x)cm,在Rt△ECF中,CE2+CF2=EF2,x2+(10﹣6)2=(8﹣x)2,解得:x=3,即EC=3cm.22.(10分)如图,四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连结AE,AF,EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求EF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ADE=∠ABC=90°=∠ABF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:∵△ADE≌△ABF,DE=6,∴BF=DE=6,∵BC=DC=8,∴CE=8﹣6=2,CF=8+6=14,在Rt△FCE中,EF===10.23.(12分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A 点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.。
2017-2018学年山西农大附中八年级(下)期中数学试卷
(J)
副标题
一、选择题(本大题共2小题,共2.0分)
1.下列二次根式中,最简二次根式是
A. B. C. D.
【答案】A
【解析】解:A、是最简二次根式;
B、,被开方数含能开得尽方的因数,不是最简二次根式;
C、,不是最简二次根式;
D、,不是最简二次根式;
故选:A.
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:
被开方数不含分母;
被开方数不含能开得尽方的因数或因式.
2.下列命题是假命题的是
A. 平行四边形的对角线互相平分
B. 平行四边形的对角相等
C. 平行四边形是轴对称图形
D. 平行四边形是中心对称图形
【答案】C
【解析】解:A、平行四边形的对角线互相平分,此命题是真命题;
B、平行四边形的对角相等,此命题是真命题;
C、平行四边形是中心对称图形,不是轴对称图形,此命题是假命题;
D、平行四边形是中心对称图形,此命题是真命题.
故选:C.
根据平行四边形的对角相等,对角线互相平分可判断出A、B正确;再由平行四边形是中心对称图形可对C、D进行判断.
本题考查的是命题与定理,熟知平行四边形的性质是解答此题的关键.
二、计算题(本大题共2小题,共2.0分)
3.计算
【答案】解:
;
.
【解析】根据二次根式的加减法可以解答本题;
根据二次根式的加减法和平方差公式可以解答本题.
本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
4.已知,,求的值.
【答案】解:当,时,
,
,
则原式
.
【解析】由a、b的值计算出、ab的值,再代入原式计算可得.
本题主要考查分母有理化,分母有理化常常是乘二次根式本身分母只有一项或与原分母组成平方差公式.
三、解答题(本大题共2小题,共2.0分)
5.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?先
画出示意图,然后再求解.
【答案】解:如图所示:
由题意可得,,,
故AC,
答:它飞行的最短路程是13m.
【解析】根据题意画出图形,进而利用勾股定理求出答案.
此题主要考查了勾股定理的应用,正确画出图形是解题关键.
6.如图,四边形ABCD是正方形,E、F分别是DC和
CB的延长线上的点,且,连结AE,AF,
EF.
求证: ≌ ;
若,,求EF的长.
【答案】证明:四边形ABCD是正方形,
,
在和中,
,
≌ ;
解: ≌ ,,
,
,
,,
在中,.
【解析】利用正方形的性质结合全等三角形的判定与性质得出答案;
首先利用已知得出CE,CF的长,再利用勾股定理得出答案.
此题主要考查了正方形的性质以及全等三角形的判定与性质以及勾股定理,正确应用正方形的性质是解题关键.。