【K12教育学习资料】2018届高考物理二轮复习板块一专题突破复习专题一力与运动第四讲万有引力定律及
- 格式:doc
- 大小:731.70 KB
- 文档页数:22
专题一力与物体的平衡——————[知识结构互联]——————[核心要点回扣] ——————1.共点力的平衡条件:F合=0或F x=0,F y=0.2.三个共点力的平衡(1)任意两个力的合力与第三个力大小相等,方向相反.(2)表示三个力的有向线段可以组成一个封闭的三角形.3.多个共点力的平衡(1)其中任意一个力都与其他力的合力大小相等,方向相反.(2)物体沿任何方向的合力均为零.4.动态平衡:物体在缓慢移动过程中,可认为其所受合力为零,物体处于平衡状态.5.带电粒子在复合场中除了受到重力、弹力和摩擦力外,还涉及电磁学中的电场力和洛伦兹力.电磁场中的平衡问题也遵循合力为零这一规律.考点1 力学中的平衡问题(对应学生用书第1页)■品真题·感悟高考………………………………………………………………[考题统计] 五年7考:2017年Ⅰ卷T21、Ⅱ卷T16、Ⅲ卷T172016年Ⅰ卷T19、Ⅱ卷T14、Ⅲ卷T172013年Ⅱ卷T15[考情分析]1.共点力的单物体动态平衡及连接体的静态、动态平衡问题是高考命题的热点.2.考查的内容有物体的受力分析、整体法与隔离法的应用、力的合成与分解及解析法、图解法的应用等.3.做好物体的受力分析,画出力的示意图,并灵活应用几何关系和平衡条件是解题的关键.4.要理解一些常见物理语言(如轻绳、轻环、轻滑轮等).5.合成法适用于物体受三个力而平衡,正交分解法多用于物体受三个以上力而平衡.1.(受力分析、力的分解)(2017·Ⅱ卷T 16)如图11所示,一物块在水平拉力F 的作用下沿水平桌面做匀速直线运动.若保持F 的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动.物块与桌面间的动摩擦因数为( )图11A .2- 3 B.36 C.33 D.32C [设物块的质量为m .据平衡条件及摩擦力公式有拉力F 水平时,F =μmg ①拉力F 与水平面成60°角时,F cos 60°=μ(mg -F sin 60°)② 联立①②式解得μ=33.故选C.] 2.(物体的静态平衡)(2016·Ⅲ卷T17)如图12所示,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )图12 A.m 2B.32m C .m D .2m[题眼点拨] ①“细线穿过两轻环”,“不计所有摩擦”说明细绳上张力处处相等且等于mg ;②“平衡时,a 、b 间的距离恰好等于圆弧的半径”说明平衡时,利用对称性分析各力的方向.C [如图所示,由于不计摩擦,线上张力处处相等,且轻环受细线的作用力的合力方向指向圆心.由于a 、b 间距等于圆弧半径,则∠aOb =60°,进一步分析知,细线与aO 、bO 间的夹角皆为30°.取悬挂的小物块研究,悬挂小物块的细线张角为120°,由平衡条件知,小物块的质量与小球的质量相等,即为m .故选项C 正确.]3.(物体的动态平衡)(多选)(2017·Ⅰ卷T21)如图13所示,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一端N .初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(α>π2).现将重物向右上方缓慢拉起,并保持夹角α不变.在OM 由竖直被拉到水平的过程中( )图13A .MN 上的张力逐渐增大B .MN 上的张力先增大后减小C .OM 上的张力逐渐增大D .OM 上的张力先增大后减小[题眼点拨] ①“缓慢拉起”说明重物处于动态平衡状态;②“保持夹角α不变”说明OM 与MN 上的张力大小和方向均变化,但其合力不变.AD [设重物的质量为m ,绳OM 中的张力为T OM ,绳MN 中的张力为T MN .开始时,T OM =mg ,T MN =0.由于缓慢拉起,则重物一直处于平衡状态,两绳张力的合力与重物的重力mg 等大、反向.如图所示,已知角α不变,在绳MN 缓慢拉起的过程中,角β逐渐增大,则角(α-β)逐渐减小,但角θ不变,在三角形中,利用正弦定理得:T OMα-β=mgsin θ,(α-β)由钝角变为锐角,则T OM 先增大后减小,选项D 正确;同理知T MN sin β=mg sin θ,在β由0变为π2的过程中,T MN 一直增大,选项A 正确.]在第3题中若柔软轻绳所能承受的拉力是有限的,那么最先发生断裂的轻绳和此时绳MN与竖直方向的夹角大小分别是( )A.OM90° B.MN90°C.OM60° D.MN60°A[由第3题中的关系式:T OMα-β=mgsin θ可知,当α-β=90°时,T OM最大,此时绳最容易发生断裂,绳MN与竖直方向的夹角为90°.](2016·Ⅱ卷T14)质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中( )A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小A[以O点为研究对象,受力如图所示,当用水平向左的力缓慢拉动O点时,则绳OA与竖直方向的夹角变大,由共点力的平衡条件知F逐渐变大,T逐渐变大,选项A 正确.]■熟技巧·类题通法…………………………………………………………………·1.受力分析的技巧(1)一般按照“一重、二弹、三摩擦,再其他外力”的程序;(2)分析物体的受力情况时结合整体法与隔离法;(3)平衡状态下结合平衡条件.2.处理平衡问题的基本思路3.解动态平衡问题的常用方法(1)图解法:①适用条件:物体受到三个力的作用,其中一个力的大小、方向均不变,另一个力的方向不变.②使用方法:画受力分析图,作出力的平行四边形或矢量三角形,依据某一参量的变化,分析各边变化,从而确定力的大小及方向的变化情况.(2)解析法:①适用条件:物体受到三个以上的力,且某一夹角发生变化.②使用方法:对力进行正交分解,两个方向上分别列平衡方程,用三角函数表示出各个作用力与变化角之间的关系,从而判断各作用力的变化.(3)相似三角形法:①适用条件:受三个力(或相当于三个力)作用,两个力的方向发生变化,一个力大小和方向不变.②使用方法:利用力三角形与几何三角形相似的比例关系求解.■对考向·高效速练·考向1 物体的受力分析1.(2017·鸡西市模拟)如图14所示,穿在一根光滑的固定杆上的两个小球A、B连接在一条跨过定滑轮的细绳两端,杆与水平面成θ角,不计所有摩擦,当两球静止时,OA绳与杆的夹角为θ,OB绳沿竖直方向,则正确的说法是( )【导学号:19624000】图14A.A可能受到2个力的作用B.B可能受到3个力的作用C.绳子对A的拉力大于对B的拉力D.A、B的质量之比为1∶ta n θD [对A 球受力分析可知,A 受到重力,绳子的拉力以及杆对A 球的弹力,三个力的合力为零,故A 错误;对B 球受力分析可知,B 受到重力,绳子的拉力,两个力合力为零,杆对B 球没有弹力,否则B 不能平衡,故B 错误;定滑轮不改变力的大小,则绳子对A 的拉力等于对B 的拉力,故C错误;分别对A 、B 两球分析,运用合成法,如图:根据共点力平衡条件,得T =m B gTsin θ=m A g+θ(根据正弦定理列式)故m A ∶m B =1∶tan θ,故D 正确.]考向2 物体的静态平衡2.(多选)(2017·揭阳市揭东一中检测)如图15所示,粗糙水平面上a 、b 、c 、d 四个相同小物块用四根完全相同的轻弹簧连接,正好组成一个等腰梯形,系统静止.ab 之间、ac 之间以及bd 之间的弹簧长度相同且等于cd 之间弹簧长度的一半,ab 之间弹簧弹力大小为cd 之间弹簧弹力大小的一半.若a 受到的摩擦力大小为F f ,则()图15A .ab 之间的弹簧一定是压缩的B .b 受到的摩擦力大小为F fC .c 受到的摩擦力大小为3F fD .d 受到的摩擦力大小为2F fABC [设每根弹簧的原长为L 0,ab 的形变量为Δx 1,cd 的形变量为Δx 2,则有k Δx 2=2k Δx 1,若ab 弹簧也是被拉长,则有:L 0+Δx 2=2(L 0+Δx 1),解得L 0=0,不符合题意,所以ab 被压缩,A 正确;由于a 受到的摩擦力大小为F f ,根据对称性可得,b 受到的摩擦力大小为F f ,B 正确; 以a 和c 为研究对象进行力的分析如图所示,图中的θ为ac 与cd 之间的夹角,则cos θ=14cd ac =12,所以θ=60°,则∠cab =120°,a 受到的摩擦力大小F f =T ;对c 根据力的合成可得F f c =3F f ,所以C 正确;由于c 受到的摩擦力大小为3F f ,根据对称性可知,d 受到的摩擦力大小为3F f ,D 错误.](2017·Ⅲ卷T 17)一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm的两点上,弹性绳的原长也为80 cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( )A .86 cmB .92 cmC .98 cmD .104 cmB [以钩码为研究对象,受力如图所示,由胡克定律F =k (l -l 0)=0.2k ,由共点力的平衡条件和几何知识得F =mg2sin α=5mg 6;再将弹性绳的两端缓慢移至天花板上的同一点,设弹性绳的总长度变为l ′,由胡克定律得F ′=k (l ′-l 0),由共点力的平衡条件F ′=mg 2,联立上面各式解得l ′=92 cm ,选项B 正确.]考向3 物体的动态平衡3.(多选)(2017·潍坊市期中)如图16所示为内壁光滑的半球形凹槽,O 为圆心,∠AOB =60°,OA 水平,小物块在与水平方向成45°的斜向上的推力F 作用下静止.现将推力F 沿逆时针缓慢转到水平方向的过程中装置始终静止,则( )【导学号:19624001】图16A .M 槽对小物块的支持力逐渐减小B .M 槽对小物块的支持力逐渐增大C .推力F 先减小后增大D .推力F 逐渐增大BC [以小物块为研究对象,分析受力情况,如图所示,物块受到重力G 、支持力F N 和推力F 三个力作用,根据平衡条件可知,F N 与F 的合力与G 大小相等,方向相反,将推力F 沿逆时针缓慢转到水平方向的过程中(F 由位置1→3),根据作图可知,凹槽对小物块的支持力F N 逐渐增大,推力F 先减小后增大,当F 与F N 垂直时,F 最小.故A 、D 错误,B 、C 正确.](2016·衡水市冀州中学检测)如图所示,有一质量不计的杆AO,长为R,可绕A自由转动.用绳在O点悬挂一个重为G的物体,另一根绳一端系在O点,另一端系在圆弧形墙壁上的C点.当点C由图示位置逐渐向上沿圆弧CB移动过程中(保持OA与地面夹角θ不变),OC绳所受拉力的大小变化情况是( )A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小C[对G分析,G受力平衡,则拉力等于重力,故竖直绳的拉力不变;再对O点分析,O受绳子的拉力、OA的支持力F1及OC的拉力F2而处于平衡;受力分析如图所示;将F1和F2合成,其合力与G大小相等,方向相反,则在OC上移的过程中,平行四边形的对角线保持不变,平行四边形发生图中所示变化,则由图可知OC的拉力先减小后增大,故图中D点时力最小;故选C.]考点2 电磁学中的平衡问题(对应学生用书第3页)■品真题·感悟高考……………………………………………………………·[考题统计] 五年4考:2017年Ⅰ卷T162016年Ⅰ卷T242015年Ⅰ卷T242013年Ⅱ卷T18[考情分析]1.电磁场中的平衡问题是指在电场力、安培力或洛伦兹力参与下的平衡问题.2.解决电磁场中平衡问题的方法与力学平衡问题相同,只是要正确分析电场力、磁场力的大小及方向.3.安培力方向的判断要先判断磁场方向、电流方向,再用左手定则,同时注意立体图转化为平面图.4.电场力或安培力或洛伦兹力的出现,可能会对压力或摩擦力产生影响.5.涉及电路问题时,要注意闭合电路欧姆定律的使用.4.(电场中的平衡问题)(2013·Ⅱ卷T18)如图17所示,在光滑绝缘水平面上,三个带电小球a、b和c分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k.若三个小球均处于静止状态,则匀强电场场强的大小为( )图17 A.3kq 3l 2 B.3kq l 2 C.3kql2 D.23kql 2 [题眼点拨] ①“光滑绝缘水平面”说明无摩擦力,重力与支持力平衡;②“a 、b 带正电电量为q ,c 带负电”说明a 、b 两带电小球对c 带电小球的合力为引力且沿角平分线方向;③“三个小球处于静止状态”说明三带电小球受到的合外力为零.B [以c 球为研究对象,除受另外a 、b 两个小球的库仑力外还受匀强电场的静电力,如图所示,c 球处于平衡状态,据共点力平衡条件可知F 静=2kqq c l 2cos 30°,F 静=Eq c ,解得E =3kql 2,选项B 正确.]在第4题中,若a 、b 固定,c 带正电荷,则保持c 处于静止状态时,所加匀强电场强的大小及方向怎样?【解析】 若c 带正电荷,a 、b 对c 的作用力大小不变,方向与原题中方向相反,故所加匀强电场电场强度大小为3kq l 2,方向平行于平面垂直ab 连线向上. 【答案】 3kq l 2 方向沿平面垂直ab 连线向上5.(电场、磁场中的平衡问题)(2017·Ⅰ卷T 16)如图18所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( )图18A.m a>m b>m c B.m b>m a>m cC.m c>m a>m b D.m c>m b>m a[题眼点拨] ①“a在纸面内做匀速圆周运动”说明a粒子所受电场力与重力等大反向;②“b向右做匀速直线运动”“c向左做匀速直线运动”说明b、c所受洛伦兹力方向相反,且所受合力均为零.B[设三个微粒的电荷量均为q,a在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即m a g=qE ①b在纸面内向右做匀速直线运动,三力平衡,则m b g=qE+qvB ②c在纸面内向左做匀速直线运动,三力平衡,则m c g+qvB=qE ③比较①②③式得:m b>m a>m c,选项B正确.](2015·Ⅰ卷T24)如图所示,一长为10 cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1 T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘.金属棒通过开关与一电动势为12 V的电池相连,电路总电阻为2 Ω.已知开关断开时两弹簧的伸长量为0.5 cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm.重力加速度大小取10 m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.【解析】依题意,开关闭合后,电流方向从b到a,由左手定则可知,金属棒所受的安培力方向竖直向下.开关断开时,两弹簧各自相对于其原长伸长了Δl1=0.5 cm.由胡克定律和力的平衡条件得2kΔl1=mg ①式中,m为金属棒的质量,k是弹簧的劲度系数,g是重力加速度的大小.开关闭合后,金属棒所受安培力的大小为F=IBL ②式中,I是回路电流,L是金属棒的长度.两弹簧各自再伸长Δl2=0.3 cm,由胡克定律和力的平衡条件得2k(Δl1+Δl2)=mg+F ③由欧姆定律有E=IR ④式中,E是电池的电动势,R是电路总电阻.联立①②③④式,并代入题给数据得m=0.01 kg. ⑤【答案】安培力的方向竖直向下,金属棒的质量为0.01 kg6.(电磁感应中的平衡问题)(2016·Ⅰ卷T24)如图19所示,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m 和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上.已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g.已知金属棒ab匀速下滑.求:图19(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小.【导学号:19624002】[题眼点拨] ①“两光滑绝缘小定滑轮跨放在斜面上”说明轻导线拉力处处相等且与斜面平行;②“右斜面上存在匀强磁场”说明只有金属棒ab受安培力的作用;③“金属棒ab匀速下滑”说明ab棒切割磁感线产生电动势,且处于平衡状态.【解析】(1)设导线的张力的大小为T,右斜面对ab棒的支持力的大小为N1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力大小为N2.对于ab棒,由力的平衡条件得2mg sin θ=μN1+T+F ①N1=2mg cos θ②对于cd棒,同理有mg sin θ+μN2=T ③N2=mg cos ④联立①②③④式得F=mg(sin θ-3μcos θ).⑤(2)由安培力公式得F =BIL ⑥这里I 是回路abdca 中的感应电流.ab 棒上的感应电动势为E =BLv ⑦式中,v 是ab 棒下滑速度的大小.由欧姆定律得I =E R⑧联立⑤⑥⑦⑧式得 v =(sin θ-3μcos θ)mgR B 2L 2. ⑨【答案】 (1)mg (sin θ-3μcos θ)(2)(sin θ-3μcos θ)mgR B 2L 2■熟技巧·类题通法…………………………………………………………………·处理电学中的平衡问题的方法技巧1.与纯力学问题的分析方法一样,学会把电学问题力学化,分析方法是:2.两点提醒(1)电荷在电场中一定受电场力作用,电流或电荷在磁场中不一定受磁场力作用;(2)分析电场力或洛伦兹力时,一定要注意带电体带正电荷还是负电荷.■对考向·高效速练·考向1 电场中的平衡问题4.(多选)(2016·嘉兴一中模拟)在水平板上有M 、N 两点,相距D =0.45 m ,用长L =0.45 m 的轻质绝缘细线分别悬挂有质量m =3×10-2 kg 、电荷量q =3.0×10-6 C 的小球(小球可视为点电荷,静电力常量k =9.0×109 N·m 2/C 2),当两小球处于如图110所示的平衡状态时( )图110A .细线与竖直方向的夹角θ=30°B .两小球间的距离为0.9 mC .细线上的拉力为0.2 ND .若两小球带等量异种电荷则细线与竖直方向的夹角θ=30°ABC [对任意小球进行受力分析可以得到:kq 2D +2L sin θ2=mg tan θ,代入数据整理可以得到:sin θ=12,即θ=30°,故选项A 正确;两个小球之间的距离为:r =D +2L sin θ=0.9 m ,故选项B 正确;对任意小球受力平衡,则竖直方向:F cos θ=mg ,代入数据整理可以得到:F =0.2 N ,故选项C 正确;当两小球带等量异种电荷时,则:kq 2D -2L sin α2=mg tan α,整理可知选项D 错误.]考向2 磁场中的平衡问题 5.(多选)(2016·潍坊市期末)如图111所示,两根通电直导线用四根长度相等的绝缘细线悬挂于O 、O ′两点,已知O 、O ′连线水平,导线静止时绝缘细线与竖直方向的夹角均为θ,保持导线中的电流大小和方向不变,在导线所在空间加上匀强磁场后,绝缘细线与竖直方向的夹角均变小,则所加磁场的方向可能沿( )【导学号:19624003】图111A .z 轴正向B .z 轴负向C .y 轴正向D .y 轴负向AB [由于导线静止时绝缘细线与竖直方向的夹角相等,则两根导线质量相等,通入的电流方向相反.若所加磁场方向沿z 轴正向,由左手定则可知,两根导线可能分别受到指向中间的安培力,夹角变小,A 对.若所加磁场方向沿z 轴负向,同理夹角可能变小,B 对.若所加磁场方向沿y 轴正向,两根导线分别受到沿z 轴正向和沿z 轴负向的安培力,受到沿z 轴正向安培力的导线的绝缘细线与竖直方向的夹角变大,受到沿z 轴负向安培力的导线的绝缘细线与竖直方向的夹角变小,C 错.同理可知D 错.](2016·枣庄模拟)如图所示,PQ 、MN 是放置在水平面内的光滑导轨,GH 是长度为L 、电阻为r 的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k .导体棒处在方向向下、磁感应强度为B 的匀强磁场中.图中直流电源的电动势为E ,内阻不计,电容器的电容为C .闭合开关,待电路稳定后,则有( )A .导体棒中电流为E R 2+r +R 1B .轻弹簧的长度增加BLE k r+R 1C .轻弹簧的长度减少BLE k r+R 1 D .电容器带电量为E r +R 1CR 2 C [导体棒中的电流为:I =ER 1+r ,故A 错误;由左手定则知导体棒受的安培力向左,则弹簧长度减少,由平衡条件:BIL =k Δx ,代入I 得:Δx =BLE k r +R 1,故B 错误,C 正确;电容器上的电压等于导体棒两端的电压,Q =CU =C ·ER 1+r ·r ,故D 错误.] 考向3 电磁感应中的平衡问题6.(多选)两根相距为L 的足够长的金属直角导轨如图112所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m 的金属细杆ab 、cd 与导轨垂直,接触良好,形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R ,整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中.当ab 杆在平行于水平导轨的拉力F 作用下以速度v 1沿导轨匀速运动时,cd 杆也正好以速率v 2向下匀速运动,重力加速度为g ,则下列说法正确的是( )【导学号:19624004】图112A .cd 杆所受摩擦力为零B .ab 杆所受拉力F 的大小为μmg +B 2L 2v 12RC .回路中的电流为BL v 1+v 22RD .μ与v 1大小的关系为μ=2RmgB 2L 2v 1BD [金属细杆切割磁感线时产生沿abdc 方向的感应电流,大小为:I =BLv 12R,金属细杆ab 受到水平向左的安培力,由受力平衡得:BIL +μmg =F ,金属细杆cd 运动时,受到的摩擦力和重力平衡,有:μBIL =mg ,联立以上各式解得:F =μmg +B 2L 2v 12R,μ=2RmgB 2L 2v 1,故A 、C 错误,B 、D 正确.]热点模型解读| 力学中的斜面体模型(对应学生用书第5页)受力分析与牛顿第二定律综有一个长方体木块A ,它恰好能静止在斜坡上.现把一正方体铁块B 放在木块上,已知铁块与木块间的动摩擦因数为0.5,设最大静摩擦力等于滑动摩擦力.则下列说法正确的是( )图113A .铁块能静止在木块上B .铁块会匀速下滑C .木块仍然能够静止D .木块会加速下滑[解题指导] 本题属于斜面上物体运动状态的判断问题,铁块能否静止,看m B g sin θ与μ2m B g cos θ的大小关系,木块能否静止,看m A g sin θ+μ2m B g cos θ与μ1(m A +m B )g cos θ的大小关系.C [由于木块恰好能静止在斜坡上,故依题意,木块与斜坡间的动摩擦因数为μ1=tan 37°=0.75,当铁块放在木块上后,由于μ2=0.5<tan 37°,故铁块会加速下滑,选项A 、B 错误;放上铁块后,木块受到铁块沿斜面向下的力为μ2m B g cos 37°,而木块与斜面间的最大静摩擦力增加了μ1m B g cos 37°,大于μ2m B g cos 37°,故木块仍然能够静止,选项C 正确,D 错误.][拓展应用] (多选)(2016·山东临沂模拟)一个闭合回路由两部分组成,如图114所示,虚线右侧是电阻为r 的圆形导线;置于竖直方向均匀变化的磁场B 1中,左侧是光滑的倾角为θ的平行导轨,宽度为d ,其电阻不计.磁感应强度为B 2的匀强磁场垂直于导轨平面向上,且只分布在虚线左侧,一个质量为m 、电阻为R 的导体棒MN 此时恰好能静止在导轨上,下述判断正确的是( )【导学号:19624005】图114A .圆形线圈中的磁场,可以方向向上均匀增强,也可以方向向下均匀减弱B .导体棒MN 受到的安培力大小为mgC .回路中的感应电流为mg sin θB 2dD .圆形导线中的电热功率为m 2g 2sin 2 θB 22d 2(R +r ) AC [根据左手定则判断可知,导体棒上的电流从N 到M ,根据楞次定律可知,选项A 正确.根据共点力平衡条件,导体棒MN 受到的安培力大小等于重力沿导轨向下的分力,即B 2Id =mg sin θ,解得I =mg sin θB 2d ,选项B 错误,C 正确.圆形导线的电热功率P =I 2r =⎝ ⎛⎭⎪⎫mg sin θB 2d 2r =m 2g 2sin 2 θB 22d 2r ,选项D 错误.]。
第一讲 力学实验[答案] (1)逐差法、平均值法、图象法. (2)(3)刻度尺、游标卡尺、螺旋测微器.(4)秒表、打点计时器、光电计时系统.(5)弹簧测力计、力传感器.考向一基本仪器的使用[归纳提炼]1.毫米刻度尺的读数精确到毫米,估读一位.2.游标卡尺和螺旋测微器的读数(1)游标卡尺的读数方法:d=主尺读数(mm)+精度×游标尺上对齐刻线数值(mm).(2)螺旋测微器的读数方法测量值=固定刻度+(可动刻度+估读值)×0.01 mm.注意要估算到0.001 mm.[熟练强化]1.(1)某同学用自己发明的新式游标卡尺测量小钢球的直径,新式卡尺将主尺上39 mm 在游标尺上均分成20等份.如图所示,则小钢球的直径为d=________cm.(2)该同学又用螺旋测微器测量某电阻丝的直径,示数如图,则该金属丝的直径为________mm.[解析] 游标卡尺20个格总长39 mm,每个格1.95 mm,比主尺上两格(2 mm)少0.05 mm,因此读数方法与普通20分度卡尺一样,读数为1.035 cm,螺旋测微器读数注意上边半格没露出,还要注意估读,根据测量值=固定刻度+(可动刻度+估读值)×0.01 mm可得1.195 mm.[答案](1)1.035 (2)1.1952.(2017·河北名校联盟)一种游标卡尺,它的游标尺上有50个小的等分刻度,总长度为49 mm,用它测量某工件宽度,示数如图甲所示,其读数为________ mm;图乙中的螺旋测微器读数为________ mm.[解析] 本题考查游标卡尺和螺旋测微器读数,意在考查学生仪器的使用和读数能力.50刻度游标卡尺的精确度为0.02 mm,读数23 mm+10×0.02 mm=23.20 mm;螺旋测微器读数1 mm+13.0×0.01 mm=1.130 mm.[答案]23.20 1.130(±0.002均对)3.(2017·福建厦门质检)某同学用如图甲所示的螺旋测微器测小球的直径时,他应先转动________到F靠近小球,再转动________到F夹住小球,直至听到棘轮发出声音为止,拨动________使F固定后读数(填仪器部件字母符号).正确操作后,螺旋测微器的示数如图乙所示,则小球的直径是________mm.[解析] 用螺旋测微器测小球直径时,先转动旋钮D使测微螺杆F靠近被测小球,再转动微调旋钮H使测微螺杆F夹住小球,直到棘轮发出声音为止,拨动旋钮G使F固定后读数,读数为6.5 mm+20.0×0.01 mm=6.700 mm.[答案]D H G 6.700螺旋测微器读数时应注意的问题①固定刻度上表示半毫米的刻度线是否已经露出.②可动刻度的旋钮要估读,估读到0.001 mm.游标卡尺读数技巧①读数时应以毫米为单位,读出后再进行单位换算. ②主尺上的读数,应以游标尺零刻度左端主尺上的刻度为准.③20分度的游标卡尺,其读数要精确到0.05 mm ,读数的最后一位数字为“0”或“5”.50分度的游标卡尺,其读数要精确到0.02 mm ,读数的最后一位数字为“0”、“2”、“4”、“6”、“8”.考向二 纸带类实验[归纳提炼]1.一套装置涉及常考五个实验:(1)研究匀变速直线运动;(2)验证牛顿第二定律;(3)探究动能定理;(4)验证机械能守恒;(5)测定动摩擦因数.2.纸带的三大应用 (1)由纸带确定时间要区别打点计时器(打点周期为0.02 s)打出的点与人为选取的计数点之间的区别与联系,若每五个点取一个计数点,则计数点间的时间间隔Δt =0.1 s.(2)求解瞬时速度利用做匀变速运动的物体在一段时间内的平均速度等于这一段时间中间时刻的瞬时速度求打某一点的瞬时速度.如图甲所示,第n 点时的速度v n =x n +x n +12T.(3)用“逐差法”求加速度如图乙所示,因为a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,所以a =a 1+a 2+a 33=x 4+x 5+x 6-x 1-x 2-x 39T2. [熟练强化]角度一 研究匀变速直线运动1.(2017·全国卷Ⅰ)某探究小组为了研究小车在桌面上的直线运动,用自制“滴水计时器”计量时间.实验前,将该计时器固定在小车旁,如图(a)所示.实验时,保持桌面水平,用手轻推一下小车.在小车运动过程中,滴水计时器等时间间隔地滴下小水滴,图(b)记录了桌面上连续的6个水滴的位置.(已知滴水计时器每30 s 内共滴下46个小水滴)(1)由图(b)可知,小车在桌面上是________(填“从右向左”或“从左向右”)运动的. (2)该小组同学根据图(b)的数据判断出小车做匀变速运动.小车运动到图(b)中A 点位置时的速度大小为________m/s ,加速度大小为________m/s 2.(结果均保留2位有效数字)[解析] 本题考查研究匀变速直线运动.(1)由于小车获得速度后在摩擦力作用下减速运动,故相邻水滴间的距离逐渐减小,结合图(b)可知小车向左运动.(2)由题意知,30 s 内滴下46滴水,共45个时间间隔,故相邻两滴水的时间间隔T =3045 s =23 s .由匀变速直线运动中平均速度等于中间时刻的瞬时速度可得v A =117+1332×23 mm/s =0.19 m/s.由逐差法得小车运动的加速度为a =+-+⎝ ⎛⎭⎪⎫2×232 mm/s 2=0.037 m/s 2.[答案] (1)从右向左 (2)0.19 0.037 角度二 研究加速度与合外力的关系2.利用力传感器研究“加速度与合外力的关系”的实验装置如图所示.(1)(多选)下列关于该实验的说法,错误的是________. A .做实验之前必须平衡摩擦力B .小车的质量必须比所挂钩码的质量大得多C .应调节定滑轮的高度使细线与木板平行D .为了实验安全,打点计时器接直流电源(2)从实验中挑选一条点迹清晰的纸带,每5个点取一个计数点,用刻度尺测量计数点间的距离如图所示.已知打点计时器每间隔0.02 s 打一个点.由图可知A 、B 两点间的距离s 1=________cm ;该小车的加速度a =________m/s 2(计算结果保留2位有效数字),实验中纸带的________(选填“左”或“右”)端与小车相连接.[解析] (1)为确保小车所受拉力等于小车所受合外力,必须平衡摩擦力,且使拉力与木板方向平行,A 、C 项正确;因为小车拉力由力传感器直接测量,故小车质量与钩码质量无关,B 项错误;打点计时器正常工作时必须使用交流电源,D 项错误.(2)由刻度尺读数规则可知,A 、B 两点间距离为7.0 mm =0.70 cm ;由逐差公式可知,小车的加速度a =ΔxT2,计数点间隔0.1 s ,所以小车的加速度为0.20 m/s 2;小车做加速运动,所以点迹较密集的一端为与小车相连的一端.[答案] (1)BD (2)0.70 0.20 左 角度三 验证机械能守恒3.(2017·天津卷)如图所示,打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置验证机械能守恒定律.(1)(多选)对于该实验,下列操作中对减小实验误差有利的是________. A .重物选用质量和密度较大的金属锤 B .两限位孔在同一竖直面内上下对正 C .精确测量出重物的质量D .用手托稳重物,接通电源后,撤手释放重物(2)(多选)某实验小组利用上述装置将打点计时器接到50 Hz 的交流电源上,按正确操作得到了一条完整的纸带,由于纸带较长,图中有部分未画出,如图所示.纸带上各点是打点计时器打出的计时点,其中O 点为纸带上打出的第一个点.重物下落高度应从纸带上计时点间的距离直接测出,利用下列测量值能完成验证机械能守恒定律的选项有________.A .OA 、AD 和EG 的长度B .OC 、BC 和CD 的长度 C .BD 、CF 和EG 的长度 D .AC 、BD 和EG 的长度[解析] 本题考查“验证机械能守恒定律”实验.(1)选用质量大的金属锤,可保证下落过程中纸带竖直不松弛;金属锤密度大,体积就小,下落过程中所受阻力小;上下限位孔对正,可减小摩擦;本实验中要验证12mv 2=mgh ,即验证v 2=2gh ,不用测量重物的质量;实验时用手抓紧纸带上端,接通电源,打点计时器工作稳定后,再松手释放纸带,不用用手托住重物.(2)本实验中,需要测某点的瞬时速度和从起始点到该点的距离,或者两点的速度及其间距,符合要求的选项有B 、C.[答案] (1)AB (2)BC纸带类问题是力学实验中出现率最高的内容,多以课本实验为蓝本进行升级变形,从整体角度看,力学中的四个打点描迹类实验都存在共性,因此在某种程度上可以做到“一个装置多种用途”的效果.考向三“橡皮条、弹簧”类实验[考点归纳]1.探究弹力和弹簧伸长量的关系(1)实验原理要测出每次悬挂重物的重力大小F和弹簧伸长的长度x,建立F-x坐标,描点作图探究.(2)操作关键①实验中不能挂过多的钩码,使弹簧超过弹性限度.②作图象时,不要连成“折线”,而应尽量让坐标点落在直线上或均匀分布在两侧.2.验证力的平行四边形定则(1)实验原理使一个力作用效果跟两个力共同作用效果相同.(2)操作关键①每次拉伸结点位置O必须保持不变;②记下每次各力的大小和方向;③画力的图示时应选择适当的标度.[熟练强化]角度一验证力的平行四边形定则1.(2017·全国卷Ⅲ)某探究小组做“验证力的平行四边形定则”实验,将画有坐标轴(横轴为x轴,纵轴为y轴,最小刻度表示1 mm)的纸贴在水平桌面上,如图(a)所示.将橡皮筋的一端Q固定在y轴上的B点(位于图示部分之外),另一端P位于y轴上的A点时,橡皮筋处于原长.(1)用一只测力计将橡皮筋的P端沿y轴从A点拉至坐标原点O,此时拉力F的大小可由测力计读出.测力计的示数如图(b)所示,F的大小为________N.(2)撤去(1)中的拉力,橡皮筋P端回到A点;现使用两个测力计同时拉橡皮筋,再次将P端拉至O点.此时观察到两个拉力分别沿图(a)中两条虚线所示的方向,由测力计的示数读出两个拉力的大小分别为F1=4.2 N和F2=5.6 N.①用5 mm长度的线段表示1 N的力,以O为作用点,在图(a)中画出力F1、F2的图示,然后按平行四边形定则画出它们的合力F合;②F合的大小为________N,F合与拉力F的夹角的正切值为________.若F合与拉力F的大小及方向的偏差均在实验所允许的误差范围之内,则该实验验证了力的平行四边形定则.[解析] (1)由测力计的读数规则可知,读数为4.0 N.(2)①利用平行四边形定则作图;②由图可知F合=4.0 N,从F合的顶点向x轴和y轴分别作垂线,顶点的横坐标对应长度为1 mm,顶点的纵坐标长度为20 mm,则可得出F合与拉力F的夹角的正切值为0.05.[答案](1)4.0(2)①F1、F2和F合如图所示②4.0 0.05角度二探究弹簧弹力与伸长量的关系2.某同学利用如图甲所示的装置探究弹簧的弹力与其伸长量的关系,在铁架台的顶端固定一刻度尺,另将一下端固定有指针的弹簧也固定在铁架台上.然后该同学进行了如下的操作:首先在弹簧的下端不挂任何重物,记录指针在刻度尺上所指位置的刻度值,然后在弹簧的下端挂上钩码,并将弹簧下端所挂钩码的个数逐个增加,依次记录指针在刻度尺上所指位置的刻度值,将所得的数据记录在下表中.已知每个钩码的质量均为m=100 g,重力加速度取g=9.8 m/s2.化规律图线.(2)已知胡克定律ΔF=kΔx,则由作出的图线可确定在0到________N的范围内弹簧的弹力与伸长量成正比,此弹簧的劲度系数k=________N/m.而图线末端发生弯曲的原因为_____________.[解析] (1)根据题目中所测量的数据进行描点,然后用平滑的曲线(或直线)连接各点,在连接时应让尽量多的点落在线上(偏差比较大的点舍去),不在线上的点尽量平均分配在线的两侧.(2)根据所作出的图象可以看出,当m ≤5×102g =0.5 kg 时,标尺刻度x 与钩码质量m 成一次函数关系,所以在F ≤4.9 N 范围内弹力大小与弹簧伸长量满足胡克定律.由胡克定律ΔF =k Δx 可知,k =ΔFΔx =25 N/m ,根据图象可知,当弹簧的弹力大于4.9 N 时图线末端发生弯曲,其原因是弹簧超出了弹性限度.[答案] (1)如图所示(2)4.9 25 弹簧超出了弹性限度 角度三 探究弹簧的弹性势能3.某同学利用下述装置对轻质弹簧的弹性势能进行探究:一轻质弹簧放置在光滑水平桌面上,弹簧左端固定,右端与一小球接触而不固连;弹簧处于原长时,小球恰好在桌面边缘,如图(a)所示.向左推小球,使弹簧压缩一段距离后由静止释放;小球离开桌面后落到水平地面.通过测量和计算,可求得弹簧被压缩后的弹性势能.回答下列问题:(1)(多选)本实验中可认为,弹簧被压缩后的弹性势能E p 与小球抛出时的动能E k 相等.已知重力加速度大小为g .为求得E k ,至少需要测量下列物理量中的________(填正确答案标号).A .小球的质量mB .小球抛出点到落地点的水平距离sC .桌面到地面的高度hD .弹簧的压缩量ΔxE .弹簧原长l 0(2)用所选取的测量量和已知量表示E k ,得E k =________.(3)图(b)中的直线是实验测量得到的s -Δx 图线.从理论上可推出,如果h 不变,m 增加,s -Δx 图线的斜率会________(选填“增大”“减小”或“不变”);如果m 不变,h 增加,s -Δx 图线的斜率会________(选填“增大”“减小”或“不变”).由图(b)中给出的直线关系和E k 的表达式可知,E p 与Δx 的________次方成正比. [解析] (1)(2)如图所示,小球抛出时动能E k =12mv 20.平抛运动有s =v 0t ,h =12gt 2.解三式得E k =mgs 24h ,则需测量小球质量m 、桌面高度h 及落地水平距离s .(3)由能量守恒定律得,弹簧的弹性势能E p =E k =mgs 24h.①由①式知E p ∝s 2,由题给直线关系知s ∝Δx ,则E p ∝(Δx )2. 由①式知s ∝E p ,则s ∝2 hmg Δx .s -Δx 图线的斜率正比于hmg,如果h 不变,m 增加,s -Δx 图线的斜率将会减小.如果m 不变,h 增加,则s -Δx 图线的斜率会增大.[答案] (1)ABC (2)mgs 24h(3)减小 增大 2弹簧类问题数据处理方法(1)列表法:直接从表格数据中得到弹力F与伸长量x的比值是一个常数.(2)图象法:以弹力F为纵坐标,弹簧的伸长量x为横坐标,根据所测数据,在坐标系中描点连线,可得到一条过原点的直线.作图象时要使尽可能多的点在一条直线上,不在直线上的点也要尽可能对称分布在直线两侧,如果遇到个别偏差较大的点属误差较大或错误的,应舍去.如果横坐标是弹簧的总长度,则画出的F-x关系图象不过原点,但是F-x 图象中倾斜直线的斜率都等于弹簧的劲度系数.(3)函数法:在误差允许范围内,可写出弹力与弹簧伸长量的函数关系式F=kx.实际解题中常与图象法配合使用,以得到函数式或对比实际关系式以计算物理量等.高考题型预测——力学创新实验[考点归纳]创新设计实验通常可分为两类:第一类为通过实验和实验数据的分析得出物理规律;第二类为给出实验规律,让你选择实验仪器,设计实验步骤,并进行数据处理.第一类必须在实验数据上下工夫,根据数据特点,掌握物理量间的关系,得出实验规律;第二类必须从已知规律入手,正确选择测量的物理量,根据问题联想相关的实验模型,确定实验原理,选择仪器设计实验步骤、记录实验数据并进行数据处理.[典题示例](2017·河北名校联盟)某实验小组利用弹簧秤和刻度尺,测量滑块在木板上运动的最大速度.实验步骤:①用弹簧秤测量橡皮泥和滑块的总重力,记作G;②将装有橡皮泥的滑块放在水平木板上,通过水平细绳和固定弹簧秤相连,如图甲所示.在A端向右拉动木板,待弹簧秤示数稳定后,将读数记作F;③改变滑块上橡皮泥的质量,重复步骤①②;实验数据如下表所示:分别与滑块和重物P连接,保持滑块静止,测量重物P离地面的高度h;⑤滑块由静止释放后开始运动并最终停在木板上的D点(未与滑轮碰撞),测量C、D间的距离s.完成下列作图和填空:(1)根据表中数据在给定坐标纸上作出F—G图线.(2)由图线求得滑块和木板间的动摩擦因数μ=________(保留2位有效数字).(3)滑块最大速度的大小v=________(用h、s、μ和重力加速度g表示).[审题指导]第一步读题干—提信息[解析] (1)如图所示(2)因弹簧秤示数稳定后滑块静止,由题意知此时滑动摩擦力f =F ,又因滑块与板间压力N =G ,故由f =μN 得F =μG ,即F -G 图线的斜率即为μ,由图线可得μ=k =0.40.(3)设最大速度为v ,从P 下降h 高度到滑块运动到D 点的过程中由动能定理得0-12mv2=-μmg ·(s -h ),故有v =2μg s -h .[答案] (1)见解析(2)0.40(0.38、0.39、0.41、0.42均正确) (3)2μg s -h灵活选取研究对象及解题过程是解题关键.本题P 重力未知,但着地后可单独研究滑块,除动能定理外也可用运动学公式解题.[预测题组](2017·怀化市一模)某研究小组设计了一种“用一把尺子测定动摩擦因数”的实验方案.如下图所示,A 是可固定于水平桌面上任意位置的滑槽(滑槽末端与桌面相切),B 是质量为m 的滑块(可视为质点).第一次实验,如图(a)所示,将滑槽末端与桌面右端M 对齐并固定,让滑块从滑槽最高点由静止滑下,最终落在水平地面上的P 点,测出滑槽最高点距离桌面的高度h 、M 距离地面的高度H 、M 与P 间的水平距离x 1;第二次实验,如图(b)所示,将滑槽沿桌面向左移动一段距离并固定,让滑块B 再次从滑槽最高点由静止滑下,最终落在水平地面上的P ′点,测出滑槽末端与桌面右端M 的距离L 、M 与P ′间的水平距离x 2.(1)在第二次实验中,滑块到M 点的速度大小为________.(用实验中所测物理量的符号表示,已知重力加速度为g ).(2)(多选)通过上述测量和进一步的计算,可求出滑块与桌面间的动摩擦因数μ,下列能引起实验误差的是________.(选填序号)A .h 的测量B .H 的测量C .L 的测量D .x 2的测量(3)若实验中测得h =15 cm 、H =25 cm 、x 1=30 cm 、L =10 cm 、x 2=20 cm ,则滑块与桌面间的动摩擦因数μ=________.(结果保留1位有效数字)[解析] (1)滑块在桌面右端M 点的速度大小为:v 1=x 1t ,v 2=x 2t① 由竖直方向有:H =12gt 2②由①②式求得:v 2=x 2g 2H③ (2)第一次测的速度为:v 1=x 1g 2H④ 滑块在水平桌面上运动,由动能定理: -μmgL =12mv 22-12mv 21⑤由③④⑤式可得:μ=x 21-x 224HL由表达式可知能引起实验误差的是B 、C 、D.(3)μ=x 21-x 224HL =0.32-0.224×0.25×0.1=0.5[答案] (1)x 2g2H(2)BCD (3)0.5。
专题一力与运动第一讲力与物体平衡1.[考查共点力的平衡条件、弹力的方向判断]如图所示,三个形状不规则的石块a、b、c在水平桌面上成功地叠放在一起。
下列说法正确的是( )A.石块b对a的支持力一定竖直向上B.石块b对a的支持力一定等于a受到的重力C.石块c受到水平桌面向左的摩擦力D.石块c对b的作用力一定竖直向上解析:选D 由题图可知,a与b的接触面不是水平面,可知石块b对a的支持力与其对a的静摩擦力的合力,跟a受到的重力是一对平衡力,故A、B错误;以三个石块作为整体研究,整体受到的重力与支持力是一对平衡力,则石块c不会受到水平桌面的摩擦力,故C错误;选取ab作为整体研究,根据平衡条件,石块c对b的作用力与其重力平衡,则石块c对b的作用力一定竖直向上,故D正确。
2.[考查摩擦力的有无及方向判断][多选]如图甲、乙所示,倾角为θ的斜面上放置一滑块M,在滑块M上放置一个质量为m的物块,M和m相对静止,一起沿斜面匀速下滑,下列说法正确的是( )A.图甲中物块m受到摩擦力B.图乙中物块m受到摩擦力C.图甲中物块m受到水平向左的摩擦力D.图乙中物块m受到与斜面平行向上的摩擦力解析:选BD 对题图甲:设m受到摩擦力,则物块m受到重力、支持力、摩擦力,而重力、支持力平衡,若受到摩擦力作用,其方向与接触面相切,方向水平,则物体m受力将不平衡,与题中条件矛盾,故假设不成立,A、C错误。
对题图乙:设物块m不受摩擦力,由于m 匀速下滑,m 必受力平衡,若m 只受重力、支持力作用,由于支持力与接触面垂直,故重力、支持力不可能平衡,则假设不成立,由受力分析知:m 受到与斜面平行向上的摩擦力,B 、D 正确。
3.[考查力的合成与分解、胡克定律][多选]如图,粗糙水平面上a 、b 、c 、d 四个相同小物块用四根完全相同的轻弹簧连接,正好组成一个等腰梯形,系统静止。
ab 之间、ac 之间以及bd 之间的弹簧长度相同且等于cd 之间弹簧长度的一半,ab 之间弹簧弹力大小为cd 之间弹簧弹力大小的一半。
第1讲 ⎪⎪ 明“因”熟“力”,破解平衡问题[考法·学法]一、明“因”熟“力”,正确进行受力分析基础保分类考点[全练题点]1.[多选]如图甲、乙所示,倾角为θ的斜面上放置一滑块M ,在滑块M 上放置一个质量为m 的物块,M 和m 相对静止,一起沿斜面匀速下滑,下列说法正确的是( )A .图甲中物块m 受到摩擦力B .图乙中物块m 受到摩擦力C .图甲中物块m 受到水平向左的摩擦力D .图乙中物块m 受到与斜面平行向上的摩擦力解析:选BD 对题图甲:设物块m 受到摩擦力,则物块m 受到重力、支持力、摩擦力,而重力、支持力平衡,若受到摩擦力作用,其方向与接触面相切,方向水平,则物块m 受力将不平衡,与题中条件矛盾,故假设不成立,A 、C 错误。
对题图乙:设物块m 不受摩擦力,由于物块m 匀速下滑,物块m 必受力平衡,若物块m 只受重力、支持力作用,由于支持力与接触面垂直,故重力、支持力不可能平衡,则假设不成立,由受力分析知:物块m 受到与斜面平行向上的摩擦力,B 、D 正确。
2.(2017·淄博实验中学一诊)如图所示,一质量均匀的实心圆球被直径AB 所在的平面一分为二,先后以AB 沿水平和竖直两种不同方向放置在光滑支架上,处于静止状态,两半球间的作用力分别为F 和F ′,已知支架间的距离为AB 长度的一半,则F F ′等于( )A. 3B.32C.233D.33解析:选A 设两半球的总质量为m ,当球以AB 沿水平方向放置,可知F =12mg ;当球以AB 沿竖直方向放置,以两半球为整体,隔离右半球受力分析如图所示,可得:F ′=mg 2tan θ,根据支架间的距离为AB 的一半,可得:θ=30°,则F F ′=1tan θ=3,则A 正确。
3.(2017·全国卷Ⅱ)如图,一物块在水平拉力F 的作用下沿水平桌面做匀速直线运动。
若保持F 的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。
专题限时集训(一) 力与物体的平衡(对应学生用书第117页)(限时:40分钟)选择题(共13小题,每小题6分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~13题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)图1151.(2017·达州市一模)如图115所示,一箱子放在水平地面上,现对箱子施加一斜向上的拉力F,保持拉力的方向不变,在拉力F的大小由零逐渐增大的过程中(箱子未离开地面).关于摩擦力F f的大小随拉力F的变化关系,下列四幅图可能正确的是( )【导学号:19624006】B[设F与水平方向的夹角为α,木箱处于静止状态时,根据平衡条件得:木箱所受的静摩擦力为F f=F cos α,F增大,F f增大;当拉力达到一定值,箱子运动瞬间,静摩擦力变为滑动摩擦力,由于最大静摩擦力略大于滑动摩擦力,故摩擦力有个突然减小的过程;木箱运动时,所受的支持力N=G-F sin α,F增大,N减小,此时木箱受到的是滑动摩擦力,大小为F f=μN,N减小,则F f减小;故A、C、D错误,B 正确.]2.(2017·温州中学模拟)如图116所示,木板C放在水平地面上,木板B放在C的上面,木板A放在B的上面,A的右端通过轻质弹簧秤固定在竖直的墙壁上,A、B、C质量相等,且各接触面动摩擦因数相同,用大小为F的力向左拉动C,使它以速度v匀速运动,三者稳定后弹簧秤的示数为T.则下列说法错误的是( )图116A.B对A的摩擦力大小为T,方向向左B.A和B保持静止,C匀速运动C.A保持静止,B和C一起匀速运动D.C受到地面的摩擦力大小为F-TB[由题意,A、B、C质量相等,且各接触面动摩擦因数相同,再依据滑动摩擦力公式F f=μN,可知,BC之间的滑动摩擦力大于AB之间的,因此在F作用下,BC作为一整体运动的,对A、B+C受力分析:A受水平向右的拉力和水平向左的摩擦力,那么根据平衡条件,可知,B对A的摩擦力大小为T,方向向左,故A、C正确,B错误;又因为物体间力的作用是相互的,则物体B+C受到A对它水平向右的摩擦力,大小为T,由于B+C做匀速直线运动,则B+C受到水平向左的拉力F和水平向右的两个摩擦力平衡(A对B的摩擦力和地面对C的摩擦力),根据平衡条件可知,C受到地面的摩擦力大小为F-T,故D正确.]3.如图117所示,三根长为L的通电直导线相互平行,其横截面构成等边三角形,导线中的电流均为I,方向垂直于纸面向里.其中导线A、B中的电流在导线C处产生的磁感应强度的大小均为B0,导线C位于水平面处并处于静止状态,则导线C受到的静摩擦力是( )图117【导学号:19624007】A.3B0IL,水平向左B.3B0IL,水平向右C.32B0IL,水平向左 D.32B0IL,水平向右B[根据安培定则,导线A中的电流在导线C处产生的磁场方向垂直于AC,导线B 中的电流在导线C处产生的磁场方向垂直于BC,如图所示.根据平行四边形定则及几何知识可知,合磁场的方向竖直向下,与AB平行,合磁感应强度B的大小为B=2B0cos 30°=3B0,由公式F=BIL得,导线C所受安培力大小为F=3B0IL,根据左手定则,导线C所受安培力方向水平向左,因导线C静止于水平面,由平衡条件知,导线C受到的静摩擦力方向水平向右,故B正确,A、C、D 错误.]4.(2017·河南省天一大联考)如图118所示,叠放在一起的A、B两物体放置在光滑水平地面上,A、B之间的水平接触面是粗糙的,斜面细线一端固定在A物体上,另一端固定于N点,水平恒力F始终不变,A、B两物体均处于静止状态,若将细线的固定点由N 点缓慢下移至M点(绳长可变),A、B两物体仍处于静止状态,则( )图118A.细线的拉力将增大B.A物体所受的支持力将增大C.A物体所受摩擦力将增大D.水平地面所受压力将减小B[以A、B两物体组成的系统作为研究对象,受力分析如图1所示.图1 图2水平方向F T cos α=F,竖直方向:F N+F T sin α=(m A+m B)g,因为细线与水平地面的夹角α减小,cos α增大,sin α减小,F T将减小,F N将增大,所以细线所受拉力减小,地面受到的压力增大,A、D错误;以物体A为研究对象,受力分析如图2所示,竖直方向:F N A+F T sin α=m A g,F T减小,sin α减小,所以F N A增大,B正确;以B为研究对象,在水平方向上由力的平衡可得F f=F,A物体所受摩擦力不变,C 错误.]5.(2017·温州中学模拟)如图119所示,倾角为θ=30°的斜面体A静止在水平地面上,一根轻绳跨过斜面体顶端的小滑轮,绳两端系有质量均为m的小物块a、b,整个装置处于静止状态.现给物块b施加一个水平向右的力F,使其缓慢离开直到与竖直方向成30°角(不计绳与滑轮间的摩擦),此过程说法正确的是( )图119【导学号:19624008】A .b 受到绳的拉力先增大再减小B .小物块a 受到的摩擦力先增大再减小C .水平拉力F 逐渐增大D .小物块a 一定沿斜面缓慢上移C [b 受力平衡,对b 受力分析,如图所示:设绳与竖直方向的夹角为α,b 缓慢离开直到与竖直方向成30°的过程中,α变大,根据平行四边形定则可知,T 逐渐增大,F 逐渐增大,故A 错误,C 正确:对a 受力分析,如图所示:刚开始T =mg ,a处于静止状态,则F f =T -mg sin 30°=12mg ,方向向下,T 增大时,F f 增大,摩擦力增大,由于不知道最大摩擦力的具体值,所以不能判断a 是否会滑动,故B 、D 错误.]6.如图120所示,绝缘细线下面悬挂一质量为m 、长为l 的导线,导线置于方向竖直向下、磁感应强度为B 的匀强磁场中,当在导线中通以垂直于纸面向里的恒定电流I 时,绝缘细线偏离竖直方向θ角而静止.现将磁场方向由图示方向沿逆时针方向缓慢转动,转动时保持磁感应强度的大小不变,则在磁场转过90°的过程中,下列说法正确的是( )图120A .导线受到的安培力F 安逐渐变大B .绝缘细线的拉力F T 逐渐变大C .绝缘细线与竖直方向的夹角θ先增大后减小D .导线受到的安培力F 安与绝缘细线的拉力F T 的合力大小不变,方向随磁场的方向而改变B[当磁场保持大小不变逆时针转过90°的过程中,导线受到的安培力F安=BIL,大小不变,选项A错误.由左手定则可知,导线受到的安培力方向逐渐由水平向左变为竖直向下,其安培力F安、绝缘细线的拉力F T、绝缘细线与竖直方向的夹角θ的变化情况如图所示,则可判断出绝缘细线的拉力F T逐渐增大,选项B正确.绝缘细线与竖直方向的夹角θ逐渐减小,选项C错误.由于导线受到的安培力F安、绝缘细线的拉力F T和导线的重力G的合力为零,所以,导线受到的安培力F安与绝缘细线的拉力F T的合力大小不变,方向始终与导线的重力G的方向相反,即竖直向上,选项D 错误.]7.(2017·儋州市四校联考)如图121所示,质量为M的四分之一圆柱体放在粗糙水平地面上,质量为m的正方体放在圆柱体和光滑墙壁之间,且不计圆柱体与正方体之间的摩擦,正方体与圆柱体的接触点的切线与右侧墙壁成θ角,圆柱体处于静止状态.则( )图121【导学号:19624009】A.地面对圆柱体的支持力为MgB.地面对圆柱体的摩擦力为mg tan θC.墙壁对正方体的弹力为mg tan θD.正方体对圆柱体的压力为mgcos θC[以正方体为研究对象,受力分析,并运用合成法如图:由几何知识得,墙壁对正方体的弹力N 1=mg tan θ 圆柱体对正方体的弹力N 2=mgsin θ,根据牛顿第三定律有正方体对圆柱体的压力为mgsin θ以圆柱体和正方体为研究对象,竖直方向受力平衡,地面对圆柱体的支持力:N =(M +m )g水平方向受力平衡,地面对圆柱体的摩擦力:f =N 1=mg tan θ,故选C.](2017·湖南师大附中模拟)表面光滑、半径为R 的半球固定在水平地面上,球心O 的正上方O ′处有一无摩擦定滑轮,轻质细绳两端各系一个可视为质点的小球挂在定滑轮上,如图所示.两小球平衡时,若滑轮两侧细绳的长度分别为L 1=2.4R 和L 2=2.5R ,则这两个小球的质量之比为m 1m 2,小球与半球之间的压力之比为N 1N 2,则以下说法正确的是( )A.m 1m 2=2425B.m 1m 2=2524C.N 1N 2=1D.N 1N 2=2425B [先以左侧小球为研究对象,分析受力情况:重力m 1g 、绳子的拉力T 和半球的支持力N 1,作出受力分析图.由平衡条件得知,拉力T 和支持力N 1的合力与重力m 1g 大小相等、方向相反.设OO ′=h ,根据三角形相似得:T L 1=m 1g h =N 1R ,同理,对右侧小球,有:T L 2=m 2g h =N 2R , 解得:m 1g =Th L 1, ①m 2g =Th L 2 ②N 1=m 1gR h ③N 2=m 2gR h④ 由①∶②得:m 1∶m 2=L 2∶L 1=25∶24,由③∶④得:N 1∶N 2=m 1∶m 2=L 2∶L 1=25∶24,故A 、C 、D 错误,B 正确.]8.(2016·云南玉溪一中模拟)如图122所示为密立根实验示意图,两水平放置的金属板,充电后与电源断开连接,其板间距为d ,电势差为U ,现用一喷雾器把许多油滴从上板中间的小孔喷入板间,若其中一质量为m 的油滴恰好能悬浮在板间,重力加速度为g ,则下列说法正确的是( )密立根实验示意图图122【导学号:19624010】A .该油滴所带电荷量大小为mgd UB .密立根通过该实验测出了电子的电荷量C .该油滴所带电荷量可能为-2.0×10-18 CD .若把上金属板向下平移一段距离,该油滴将向上运动AB [根据平衡条件,有:mg =q U d ,故q =mgd U,密立根通过该实验比较准确地测定了电子的电荷量,故选项A 、B 正确;不同油滴所带的电荷量虽不相同,但都是最小电荷量(元电荷)的整数倍,故C 错误;若把上金属板向下平移一段距离,根据C =εr S 4πkd,Q =CU ,E =U d 可得,E =4πkQ εr S,因两金属板带电荷量一定,故若把上金属板向下平移一段距离,板间场强不变,故油滴将不动,选项D 错误.]9.(多选)如图123所示,用两根长度相同的绝缘细线把一个质量为0.1 kg 的小球A 悬挂到水平板的M 、N 两点,A 上带有Q =3.0×10-6 C 的正电荷.两线夹角为120°,两线上的拉力大小分别为F 1和F 2.A 的正下方0.3 m 处放有一带等量异种电荷的小球B ,B 与绝缘支架的总质量为0.2 kg(重力加速度g 取10 m/s 2;静电力常量k =9.0×109 N·m 2/C 2,A 、B 球可视为点电荷),则( )图123【导学号:19624011】A .支架对地面的压力大小为2.0 NB .两线上的拉力大小F 1=F 2=1.9 NC .将B 水平右移,使M 、A 、B 在同一直线上,此时两线上的拉力大小F 1=1.225 N ,F 2=1.0 ND .将B 移到无穷远处,两线上的拉力大小F 1=F 2=0.866 NBC [A 对B 有竖直向上的库仑力,大小为F AB =kQ 2l 2=0.9 N ;对B 与支架整体分析,竖直方向上合力为零,则F N +F AB =mg ,可得F N =mg -F AB =1.1 N ,由牛顿第三定律知F ′N =F N ,选项A 错误.因两细线长度相等,B 在A 的正下方,则两绳拉力大小相等,小球A 受到竖直向下的重力、库仑力和F 1、F 2作用而处于平衡状态,因两线夹角为120°,根据力的合成特点可知:F 1=F 2=G A +F AB =1.9 N ;当B 移到无穷远处时,F 1=F 2=G A =1 N ,选项B 正确,选项D 错误.当B 水平向右移至M 、A 、B 在同一条直线上时,如图所示,对A 受力分析并沿水平和竖直方向正交分解,水平方向:F 1cos 30°=F 2cos 30°+F ′cos 30°竖直方向:F 1sin 30°+F 2sin 30°=G A +F ′sin 30°由库仑定律知,A 、B 间库仑力大小F ′=kQ 2⎝ ⎛⎭⎪⎫l sin 30°2=F AB 4=0.225 N ,联立以上各式可得F 1=1.225 N ,F 2=1.0 N ,选项C 正确.]10.(2016·福建上杭一中模拟)如图124所示,轻弹簧两端拴接两个小球a 、b .在水平恒力F 的作用下拴接小球的细线固定在竖直墙壁上,两球静止,两细线与竖直墙壁的夹角θ=60°,弹簧竖直,已知两小球的质量都为2 kg ,重力加速度g 取10 m/s 2,下列说法正确的是( )图124【导学号:19624012】A .水平恒力F 的大小为40 3 NB .弹簧的拉力大小为40 NC .剪断上端细线瞬间a 球加速度为10 m/s 2D .剪断上端细线瞬间b 球加速度仍为0AD [对b 球受力分析,受到竖直向下的重力、弹簧的弹力,若受细线的拉力,则在水平方向上合力不可能为零,故细线对b 球的拉力为零,所以F 弹=m b g =20 N ,剪断上端细线瞬间,弹簧的弹力来不及改变,合力仍旧为零,故b 球的加速度仍为零,B 错误,D 正确;对a 球受力分析,受弹簧的弹力、重力、水平恒力和细线的拉力作用,处于平衡状态,故有tan θ=F 40 N ,解得F =40 3 N ,A 正确;T =Fsin θ=80 N ,剪断上端细线瞬间a 球所受合力为80 N ,则加速度为a =802m/s 2=40 m/s 2,C 错误.] 11.[2017·高三第二次全国大联考(新课标卷Ⅱ)]长方形区域内存在有正交的匀强电场和匀强磁场,其方向如图125所示,一个质量m 带电荷量q 的小球以初速度v 0竖直向下进入该区域.若小球恰好沿直线下降,则下列选项正确的是( )图125A .小球带正电B .场强E =mg qC .小球做匀速直线运动D .磁感应强度B =mg qv 0CD [小球在复合场内受到竖直向下的重力、电场力和洛伦兹力,其中电场力和重力都是恒力,若速度变化则洛伦兹力变化,合力变化,小球必不能沿直线下降,所以合力等于0,小球做匀速直线运动,选项C 正确.若小球带正电,则电场力斜向下,洛伦兹力水平向左,和重力的合力不可能等于0,所以小球不可能带正电,选项A 错误.小球带负电,受到斜向上的电场力和水平向右的洛伦兹力,根据力的合成可得qE =2mg ,电场强度E =2mg q ,选项B 错误.洛伦兹力qv 0B =mg ,磁感应强度B =mg qv 0,选项D 正确.] 12.(2017·天津高考)如图126所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N上的a 、b 两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态.如果只人为改变一个条件,当衣架静止时,下列说法正确的是( ) 【导学号:19624013】图126A .绳的右端上移到b ′,绳子拉力不变B .将杆N 向右移一些,绳子拉力变大C .绳的两端高度差越小,绳子拉力越小D .若换挂质量更大的衣服,则衣架悬挂点右移AB [绳长为l ,两杆间距离为d ,选O 点为研究对象,因aOb 为同一根绳,故aO 、bO 对O 点的拉力大小相等,因此平衡时aO 、bO 与水平方向的夹角相等,设为θ.对于O 点受力情况如图所示,根据平衡条件,得2T sin θ=mg ,而sin θ=l 2-d 2l,所以T =mg 2·ll 2-d 2.由以上各式可知,当l 、d 不变时,θ不变,故换挂质量更大的衣服时,悬挂点不变,K12教育资料(小初高学习)K12教育资料(小初高学习) 11 选项D 错误.若衣服质量不变,改变b 的位置或绳两端的高度差,绳子拉力不变,选项A 正确,选项C 错误.当N 杆向右移一些时,d 变大,则T 变大,选项B 正确.]13.如图127所示,ACD 、EFG 为两根相距L 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面成θ角.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B .两根质量均为m 、长度均为L 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,两金属细杆的电阻均为R ,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆也正好以速度v 2向下匀速运动.重力加速度为g .以下说法正确的是 ()图127A .回路中的电流为BL v 1+v 22RB .ab 杆所受摩擦力为mg sin θC .cd 杆所受摩擦力为μ⎝⎛⎭⎪⎫mg sin θ+B 2L 2v 12R D .μ与v 1大小的关系为μ=mg sin θ-B 2L 2v 12R mg cos θCD [回路中只有ab 杆切割磁感线产生电动势,故I =BLv 12R,A 错误;两杆所受安培力大小为F 安ab =F 安cd =BIL =B 2L 2v 12R,ab 杆所受摩擦力F f2=mg sin θ-F 安ab =μmg cos θ,B 错误;cd 杆所受的摩擦力F f1=mg cos θ=μF N1=μ(mg sin θ+F 安cd )=μ(mg sinθ+B 2L 2v 12R ),由以上两式可得:μ与v 1大小的关系为μ=mg sin θ-B 2L 2v 12R mg cos θ,故C 、D 均正确.]。
第四讲万有引力定律及其应用(2)(3)三种宇宙速度(4)同步卫星的“七个一定”特点①轨道平面一定:轨道平面与赤道平面共面.②周期一定:与地球自转周期相同,即T=24 h.③角速度一定:与地球自转的角速度相同,即ω=7.3×10-5 rad/s.④高度一定:由GMmR +h2=m4π2T2(R+h)得地球同步卫星离地面的高度h=3GMT24π2-R=3.6×107 m.⑤速率一定:v=GMR+h=3.1×103 m/s.⑥向心加速度一定:由GMmR +h2=ma,得a=GMR+h2=g h≈0.23 m/s2,即同步卫星的向心加速度等于轨道处的重力加速度.⑦绕行方向一定:运行方向与地球自转方向一致.考向一天体质量与密度的计算[归纳提炼]天体质量及密度的估算方法[熟练强化]1.(2017·北京卷)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转) B .人造卫星在地面附近绕地球做圆周运动的速度及周期 C .月球绕地球做圆周运动的周期及月球与地球间的距离 D .地球绕太阳做圆周运动的周期及地球与太阳间的距离[解析] 由于不考虑地球自转,则在地球表面附近,有G Mm 0R 2=m 0g ,故可得M =gR 2G ,A项错误;由万有引力提供人造卫星的向心力,有G Mm 1R 2=m 1v 2R ,v =2πR T ,联立得M =v 3T2πG,B项错误;由万有引力提供月球绕地球运动的向心力,有G Mm 2r 2=m 2⎝ ⎛⎭⎪⎫2πT ′ 2r ,故可得M =4π2r 3GT ′2,C 项错误;同理,根据地球绕太阳做圆周运动的周期及地球与太阳间的距离,不可求出地球的质量,D 项正确.[答案] D2.(2017·河北六校联考)某行星的同步卫星下方的行星表面上有一观察者,行星的自转周期为T ,他用天文望远镜观察被太阳光照射的此卫星,发现日落的T 2时间内有T6的时间看不见此卫星,不考虑大气对光的折射,则该行星的密度为( )A.24πGT2B.3πGT 2C.8πGT 2D.16πGT2[解析] 设行星质量为M ,半径为R ,密度为ρ,卫星质量为m ,如图所示,发现日落的T 2时间内有T 6的时间看不见同步卫星,则θ=360°6=60°,故φ=60°,r =R cos φ=2R ,根据GMm2R2=m ⎝⎛⎭⎪⎫2πT 22R ,M =ρ43πR 3,解得ρ=24πGT 2.[答案] A1利用万有引力提供天体圆周运动的向心力估算天体质量,估算的是中心天体的质量而非环绕天体的质量.2区别两个半径轨道半径与天体半径,轨道半径与天体半径的关系为r =R +h ,只有在天体表面附近的卫星,才有R ≫h ,r ≈Rh 指卫星到天体表面高度考向二 人造卫星[归纳提炼]1.必须掌握的四个关系GMmr 2=⎩⎪⎪⎨⎪⎪⎧⎭⎪⎪⎬⎪⎪⎫ma ―→a =GM r 2―→a ∝1r2m v 2r ―→v =GM r ―→ v ∝1r m ω2r ―→ω=GM r 3―→ω∝1r 3m 4π2T 2r ―→T =4π2r 3GM―→T ∝r 3越高越慢 2.必须牢记同步卫星的两个特点(1)同步卫星绕地心做匀速圆周运动的周期等于地球的自转周期. (2)所有同步卫星都在赤道上空相同的高度上.(2017·全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( )A .周期变大B .速率变大C .动能变大D .向心加速度变大[解析] 组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2R,可得v =GMR,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πRv,则周期T 不变,A 项错误;质量变大、速率不变,动能变大,C 项正确;向心加速度a =GMR2,不变,D 项错误.[答案] C求解本题时,若对天体运动规律掌握不熟悉,加之考试紧张,题目情景分析不明,可能会误以为是较复杂的行星轨道变化问题,错把简单问题复杂化,耗时而费力.高考复习时,应仔细分析天体运动特点,正确画出情景图,切忌搞题海战术,分不清情景乱套公式,同时也要关注社会科技新动向.[熟练强化]1.(多选)(2017·河北保定一模)O 为地球球心,半径为R 的圆为地球赤道,地球自转方向如图所示,自转周期为T ,观察站A 有一观测员在持续观察某卫星B .某时刻观测员恰能观察到卫星B 从地平线的东边落下,经T2的时间,再次观察到卫星B 从地平线的西边升起.已知∠BOB ′=α,地球质量为M ,引力常量为G ,则( )A .卫星B 绕地球运动的周期为πT2π-αB .卫星B 绕地球运动的周期为πT2π+αC .卫星B 离地表的高度为 3GM4·⎝ ⎛⎭⎪⎫T 2π-α 2-RD .卫星B 离地表的高度为 3GM4·⎝ ⎛⎭⎪⎫T 2π+α 2-R[解析] 当地球上A 处的观测员随地球转动半个周期时,卫星转过的角度应为2π+α,所以T 2=2π+α2πT 卫,解得T 卫=πT 2π+α,A 错,B 对.卫星绕地球转动过程中万有引力充当向心力,G Mm 卫r 2卫=m 卫⎝ ⎛⎭⎪⎫2πT 卫 2r 卫,得r 卫= 3T 2卫GM 4π2=3GM 4·⎝ ⎛⎭⎪⎫T 2π+α 2,则卫星距地表的高度h =r 卫-R = 3GM4·⎝⎛⎭⎪⎫T2π+α2-R ,C 错,D 对.[答案] BD2.(多选)(2017·广东华南三校联考)石墨烯是目前世界上已知的强度最高的材料,它的发现使“太空电梯”的制造成为可能,人类将有望通过“太空电梯”进入太空.设想在地球赤道平面内有一垂直于地面延伸到太空的轻质电梯,电梯顶端可超过地球的同步卫星A 的高度延伸到太空深处,这种所谓的太空电梯可用于降低成本发射绕地人造卫星.如图所示,假设某物体B 乘坐太空电梯到达了图示的位置并停在此处,与同高度运行的卫星C 相比较( )A .B 的线速度大于C 的线速度 B .B 的线速度小于C 的线速度 C .若B 突然脱离电梯,B 将做离心运动D .若B 突然脱离电梯,B 将做近心运动[解析] A 和C 两卫星相比,ωC >ωA ,而ωB =ωA ,则ωC >ωB ,又据v =ωr ,r C =r B ,得v C >v B ,故B 项正确,A 项错误.对C 星有GMm C r 2C =m C ω2C r C ,又ωC >ωB ,对B 星有G Mm B r 2B>m B ω2B r B ,若B 突然脱离电梯,B 将做近心运动,D 项正确,C 项错误.[答案] BD 3.(多选)(2017·江西七校联考)卫星A 、B 的运行方向相同,其中B 为近地卫星,某时刻,两卫星相距最近(O 、B 、A 在同一直线上),已知地球半径为R ,卫星A 离地心O 的距离是卫星B 离地心的距离的4倍,地球表面重力加速度为g ,则( )A .卫星A 、B 的运行周期的比值为T A T B =41B .卫星A 、B 的运行线速度大小的比值为v A v B =12C .卫星A 、B 的运行加速度的比值为a A a B =14D .卫星A 、B 至少经过时间t =16π7Rg,两者再次相距最近 [解析] 本题以卫星的运行考查运行参量的比较,求解方法仍是抓住主、副两条线索.由地球对卫星的引力提供向心力G Mm r 2=m 4π2T 2r 知T =2πr 3GM∝r 3,而r A =4r B ,所以卫星A 、B 的运行周期的比值为T A T B =81,A 项错误;同理,由G Mm r 2=m v 2r得v =GM r ∝1r,所以卫星A 、B 的运行线速度大小的比值为v A v B =12,B 项正确;由G Mm r 2=ma 得a =GM r 2∝1r 2,所以卫星A 、B 的运行加速度的比值为a A a B =116,C 项错误;由T =2πr 3GM 及地球表面引力等于重力大小G Mm R2=mg 知T =2πr 3gR 2,由于B 为近地卫星,所以T B =2π Rg,当卫星A 、B 再次相距最近时,卫星B 比卫星A 多运行了一周,即⎝ ⎛⎭⎪⎫2πT B -2πT A t =2π,联立可得t =16π7R g,D 项正确.[答案] BD天体相遇问题的解法如图,当两运行天体A 、B 的轨道平面在同一平面内时,若运行方向相同,则内侧天体B 比A 每多运行一圈时相遇一次,在Δt 时间内相遇的次数n =Δt T B -Δt T A =ωB -ωA2πΔt .若运行方向相反时,则A 、B 每转过的圆心角之和等于2π时发生一次相遇,在Δt 时间内相遇的次数为:n =ωA Δt +ωB Δt 2π=Δt T B +ΔtT A.考向三 卫星的变轨问题[归纳提炼] 1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ. 2.部分物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k ,可知T 1<T 2<T 3.(多选)如图所示是我国发射的“嫦娥三号”卫星被月球俘获的示意图,“嫦娥三号”卫星先绕月球沿椭圆轨道Ⅲ运动,在P 点经两次制动后最终沿月球表面的圆轨道Ⅰ做匀速圆周运动,已知圆轨道半径为r ,椭圆Ⅲ的半长轴为4r ,卫星沿圆轨道Ⅰ运行的周期为T ,则下列说法中正确的是( )A .“嫦娥三号”卫星在轨道Ⅱ上运行的机械能大于在轨道Ⅲ上运行的机械能B .“嫦娥三号”卫星在轨道Ⅲ上运行时,在M 点的速度大小大于在P 点的速度大小C .“嫦娥三号”卫星在三个轨道上运行时,在P 点的加速度总是相同的D .“嫦娥三号”卫星在轨道Ⅲ上运行时,从M 点运动到P 点经历的时间为4T [思路路线]在P 点两次制动减速→从Ⅲ到Ⅱ机械能减少→A 错 同一轨道运行时机械能守恒→近地点速度大→B 错Ⅲ、Ⅱ为椭圆轨道→a =v 2r不成立→据a =GM r2判断→C 正确开普勒第三定律→从M 点到P 点时间为4T→D 正确[解析] 因“嫦娥三号”卫星从轨道Ⅲ变轨到轨道Ⅱ上运行时,必须在P 点进行减速,即在轨道Ⅱ上运行的机械能小于在轨道Ⅲ上运行的机械能,A 项错误;由开普勒行星运动第二定律知“嫦娥三号”卫星在近月点速度大,即“嫦娥三号”卫星在轨道Ⅲ上运行时,在M 点的速度大小小于在P 点的速度大小,B 项错误;由GMmr 2=ma 知卫星离中心天体高度相同时,运行的加速度相同,C 项正确;令“嫦娥三号”卫星从M 点运动到P 点经历的时间为t ,则由开普勒行星运动第三定律得r 3T 2=r32t2,即t =4T ,D 项正确.变轨过程中能量分析的常见误区(1)变轨前后,卫星机械能不守恒.卫星的发射和回收都是利用以上原理通过多次变轨实现的.由于变轨时卫星需要借助“点火”实现加速或减速,变轨前后的机械能不守恒,有其他形式的能量参与转化.(2)同一轨道上自主运行时仅受万有引力作用,机械能守恒.这一结论对圆形或椭圆形轨道均成立.[熟练强化]迁移一 卫星的交会对接问题1.“天宫一号”目标飞行器与“神舟十号”飞船自动交会对接前的示意图如图所示,圆形轨道Ⅰ为“天宫一号”运行轨道,圆形轨道Ⅱ为“神舟十号”运行轨道.此后“神舟十号”要进行多次变轨,才能实现与“天宫一号”的交会对接,则( )A .“天宫一号”的运行速率大于“神舟十号”在轨道Ⅱ上的运行速率B .“神舟十号”变轨后比变轨前高度增加,机械能减少C .“神舟十号”可以通过减速而使轨道半径变大D .“天宫一号”和“神舟十号”对接瞬间的向心加速度大小相等 [解析] 做圆周运动的天体,线速度大小v =GMr,因此轨道半径较大的“天宫一号”速率较小,A 项错误;“神舟十号”由低轨道到高轨道运动需要消耗火箭燃料加速,由功能关系可知在高轨道上飞船机械能更大,B 项错误;飞船在圆周轨道上减速时,万有引力大于所需要的向心力,飞船做近心运动,轨道半径减小,C 项错误;在对接瞬间,“神舟十号”与“天宫一号”所受万有引力提供向心力,向心加速度相等,D 项正确.迁移二 较高轨道向较低轨道变轨2.(2017·株洲模拟)如右图所示,“嫦娥”三号探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道Ⅰ为圆形,轨道Ⅱ为椭圆.下列说法正确的是( )A .探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期B .探测器在轨道Ⅰ经过P 点时的加速度小于在轨道Ⅱ经过P 点时的加速度C .探测器在轨道Ⅰ运行时的加速度大于月球表面的重力加速度D .探测器在P 点由轨道Ⅰ进入轨道Ⅱ必须点火加速[解析] 根据开普勒第三定律知,r 3T2=k ,因为轨道Ⅰ的半径大于轨道Ⅱ的半长轴,则探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期,故A 正确;根据牛顿第二定律知,a =GM r2,探测器在轨道Ⅰ经过P 点时的加速度等于在轨道Ⅱ经过P 点时的加速度,故B 错误;根据G Mm r 2=ma 知,探测器在轨道Ⅰ运行时的加速度a =GM r 2,月球表面的重力加速度g =GM R2,因为r >R ,则探测器在轨道Ⅰ运行时的加速度小于月球表面的重力加速度,故C 错误.探测器在P 点由轨道Ⅰ进入轨道Ⅱ需减速,使得万有引力大于向心力,做近心运动,故D 错误.[答案] A迁移三 较低轨道向较高轨道变轨3.(多选)“嫦娥五号”的主要任务是月球取样返回.“嫦娥五号”要面对取样、上升、对接和高速再入等四个主要技术难题,要进行多次变轨飞行.如图所示是“嫦娥五号”绕月球飞行的三条轨道,1轨道是贴近月球表面的圆形轨道,2和3轨道是变轨后的椭圆轨道.A 点是2轨道的近月点,B 点是2轨道的远月点,“嫦娥五号”在轨道1的运行速率为1.8 km/s ,则下列说法中正确的是( )A .“嫦娥五号”在2轨道经过A 点时的速率一定大于1.8 km/sB .“嫦娥五号”在2轨道经过B 点时的速率一定小于1.8 km/sC .“嫦娥五号”在3轨道所具有的机械能小于在2轨道所具有的机械能D .“嫦娥五号”在3轨道所具有的最大速率小于在2轨道所具有的最大速率 [解析] “嫦娥五号”在1轨道做匀速圆周运动,由万有引力定律和牛顿第二定律得G Mm r 2=m v 21r ,由1轨道A 点变轨到2轨道“嫦娥五号”做离心运动,则有G Mm r 2<m v 22Ar ,故v 1<v 2A ,选项A 正确;“嫦娥五号”在2轨道B 点做近心运动,则有G Mm r 2B >m v 22B r B ,若“嫦娥五号”在经过B 点的圆轨道上运动,则G Mm r 2B =m v 2Br B,由于r <r B ,所以v 1>v B ,故v 2B <v B <v 1=1.8 km/s ,选项B 正确;3轨道的高度大于2轨道的高度,故“嫦娥五号”在3轨道所具有的机械能大于在2轨道所具有的机械能,选项C 错误;“嫦娥五号”在各个轨道上运动时,只有万有引力做功,机械能守恒,在A 点时重力势能最小,动能最大,速率最大,故“嫦娥五号”在3轨道所具有的最大速率大于在2轨道所具有的最大速率,选项D 错误.[答案] AB高考高频考点强化——宇宙多星模型[考点归纳]1.双星模型(1)模型条件:两颗恒星彼此相距较近;两颗恒星靠相互之间的万有引力做匀速圆周运动;两颗恒星绕同一圆心做匀速圆周运动.(2)模型特点①向心力等大反向:两颗恒星做匀速圆周运动的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在两颗恒星上,是一对作用力和反作用力.②周期、角速度相同:两颗恒星做匀速圆周运动的周期、角速度相等.③半径、线速度与质量成反比:圆心在两颗恒星的连线上,且r1+r2=L,两颗恒星做匀速圆周运动的半径与恒星的质量成反比.两颗恒星做匀速圆周运动的线速度与恒星的质量成反比.2.三星模型(1)第一种情况:三颗星位于同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同.(2)第二种情况:三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星的运行周期相同(如图所示).3.四星模型(1)第一种情况:四颗星稳定地分布在边长为a的正方形的四个顶点上,均围绕正方形的两条对角线的交点做匀速圆周运动(如图所示).(2)第二种情况:有三颗星位于边长为a的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,而第四颗星刚好位于三角形的中心不动.[真题归类]1.(2013·山东卷)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2T B.n 3k T C.n 2kT D.n kT [解析] 设双星的质量分别为m 1、m 2,两星做圆周运动的半径分别为r 1、r 2,则总质量M =m 1+m 2,两者之间的距离l =r 1+r 2.根据万有引力定律及牛顿第二定律得G m 1m 2l 2=m 14π2T 2r 1、G m 1m 2l 2=m 24π2T2r 2,将两式相加整理可得T = 4π2l2r 1+r 2G m1+m 2=4π2l3GM.当总质量变为原来的k 倍,距离变为原来的n 倍时,周期将变为原来的n 3k倍,故选项B 正确. [答案] B2.(2010·全国卷Ⅰ)如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间的距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧.引力常量为G .(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为 5.98×1024kg 和7.35×1022kg.求T 2与T 1两者二次方之比.(结果保留3位小数)[解析] (1)设两个星球A 和B 做匀速圆周运动的轨道半径分别为r 和R ,相互作用的引力大小为F ,运行周期为T .根据万有引力定律有F =GMm R +r2①由匀速圆周运动的规律得F =m ⎝ ⎛⎭⎪⎫2πT 2r ②F =M ⎝⎛⎭⎪⎫2πT 2R ③由题意有L =R +r ④ 联立①②③④式得T =2πL 3G M +m.⑤(2)在地月系统中,由于地月系统旋转所围绕的中心O 不在地心,月球做圆周运动的周期可由⑤式得出T 1=2πL ′3G M ′+m⑥式中,M ′和m ′分别是地球与月球的质量,L ′是地心与月心之间的距离.若认为月球在地球的引力作用下绕地心做匀速圆周运动,则GM ′m ′L ′2=m ′⎝ ⎛⎭⎪⎫2πT 2 2L ′⑦式中,T 2为月球绕地心运动的周期.由⑦式得T 2=2πL ′3GM ′⑧ 由⑥⑧式得⎝ ⎛⎭⎪⎫T 2T 1 2=1+m ′M ′⑨ 代入题给数据得⎝ ⎛⎭⎪⎫T 2T 1 2=1.012.⑩ [答案] (1)2π L 3G M +m(2)1.0123.(2015·安徽卷)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T . [解析](1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA ,方向如图所示.合力大小F A =23G m 2a2(2)同上,B 星体所受A 、C 星体引力大小分别为F AB =G m A m B r 2=G 2m 2a2F CB =G m C m B r 2=G m 2a 2,方向如图所示.由F Bx =F AB cos60°+F CB =2G m 2a 2F By =F AB sin60°=3G m 2a2可得F B =F 2Bx +F 2By =7G m 2a2(3)通过分析可知,圆心O 在中垂线AD 的中点,R C =⎝ ⎛⎭⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2=74a (或:由对称性可知OB =OC =R C ,cos ∠OBD =F Bx F B =DBOB =12a R C)(4)三星体运动周期相同,对C 星体,由F C =F B=7G m 2a =m ⎝ ⎛⎭⎪⎫2πT 2R C可得T =πa 3GM[答案] (1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm解决双星、多星问题,要抓住四点:一抓双星或多星的特点、规律,确定系统的中心以及运动的轨道半径;二抓星体的向心力由其他天体的万有引力的合力提供;三抓星体的角速度相等;四抓星体的轨道半径不是天体间的距离.要利用几何知识,寻找它们之间的关系,正确计算万有引力和向心力.[迁移训练]1.(2017·黑龙江大庆模拟)某同学学习了天体运动的知识后,假想宇宙中存在着由四颗星组成的孤立星系.如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F ,母星与任意一颗小星间的万有引力为9F ,则( )A .每颗小星受到的万有引力为(3+9)FB .每颗小星受到的万有引力为⎝⎛⎭⎪⎫32+9F C .母星的质量是每颗小星质量的2倍 D .母星的质量是每颗小星质量的33倍[解析] 每颗小星受到的万有引力的合力为9F +2F cos30°=(3+9)F ,A 正确,B 错误.由F =G mmL2和9F =GMm ⎝ ⎛⎭⎪⎪⎫L2cos30° 2得,M m=3,C 、D 错误.[答案] A2.(2017·菏泽市二模)2016年2月11日,美国科学家宣布探测到引力波,证实了爱因斯坦100年前的预测,弥补了爱因斯坦广义相对论中最后一块缺失的“拼图”.双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得a 星的周期为T ,a 、b 两颗星的距离为l ,a 、b 两颗星的轨道半径之差为Δr (a 星的轨道半径大于b 星的轨道半径),则( )A .b 星的周期为l -Δrl +ΔrTB .a 星的线速度大小为πl +ΔrTC .a 、b 两颗星的半径之比为l l -ΔrD .a 、b 两颗星的质量之比为l +Δrl -Δr[解析] 双星系统靠相互间的万有引力提供向心力,角速度大小相等,则周期相等,所以b 星的周期为T ,故A 错误;根据题意可知,r a +r b =l ,r a -r b =Δr ,解得:r a =l +Δr2,r b =l -Δr 2,则a 星的线速度大小v a =2πr a T =πl +Δr T ,r a r b =l +Δrl -Δr,故B 正确,C 错误;双星系统靠相互间的万有引力提供向心力,角速度大小相等,向心力大小相等,则有:m a ω2r a =m b ω2r b ,解得:m a m b =r b r a =l -Δrl +Δr,故D 错误.[答案] B3.(多选)(2017·河北六校联考)宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做圆周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图乙所示.设这三个星体的质量均为m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G ,则下列说法中正确的是( )A .直线三星系统中星体做圆周运动的线速度大小为 GmL B .直线三星系统中星体做圆周运动的周期为4πL 35GmC .三角形三星系统中每颗星做圆周运动的角速度为2 L 33GmD .三角形三星系统中每颗星做圆周运动的加速度大小为3GmL 2[解析] 本题考查三星系统,求解的思路是运行天体的向心力由万有引力的合力提供.在直线三星系统中,星体做圆周运动的向心力由其他两星对它的万有引力的合力提供,根据万有引力定律和牛顿第二定律,有G m 2L 2+Gm 22L2=m v 2L ,解得v =125GmL,A 项错误;由周期T =2πrv知直线三星系统中星体做圆周运动的周期为T =4πL 35Gm,B 项正确;同理,对三角形三星系统中做圆周运动的星体,有2G m 2L 2cos30°=m ω2·L 2cos30°,解得ω=3GmL 3,C 项错误;由2G m 2L 2cos30°=ma 得a =3GmL 2,D 项正确. [答案] BD4.(2017·浙江五校联考)我们知道在一个恒星体系中,各个恒星绕着中心的恒星的运转半径r 及运转周期T 之间,一般存在以下关系,r 3T2=k ,k 的值由中心的恒星质量决定.现在,天文学家又发现了相互绕转的三颗恒星,可以将其称为三星系统.如图所示,假设三颗恒星质量相同,均为m ,间距也相同.它们仅在彼此的引力作用下围绕着三星系统的中心点O 做匀速圆周运动,运动轨迹完全相同.它们自身的大小与它们之间的距离相比,自身的大小可以忽略.请你通过计算定量说明:三星系统的运转半径的立方与运转周期的平方的比值应为多少.(已知引力常量为G )[解析] 设三星系统的运动半径为r ,周期为T ,两个天体之间的距离为2r cos30°. 对三星系统中的任意一颗恒星有Gm 22r 2×cos30°×2=m 4π2T 2r ,解得r 3T2=3Gm12π2. [答案]3Gm 12π2。