2019初三中考数学冲刺
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
【决胜中考】2019年重庆市中考数学冲刺卷03学校:___________姓名:___________班级:___________考号:___________一、选择题(12小题,每小题4分,共48分)1.下列各组数中,两个数互为相反数的是( )A.-2B.-2C.-2D.|-2|与2【考点】立方根,算术平方根,绝对值,相反数【分析】根据立方根的定义、算术平方根的定义以及绝对值的性质结合相反数的定义逐一进行分析即可得答案.解:A,两数相等,不能互为相反数,故选项错误;B、-2C=2与-2互为相反数,故选项正确;D、|-2|=2,两数相等,不能互为相反数,故选项错误,故选C.【点睛】本题考查了立方根、算术平方根、绝对值的化简、相反数等知识,熟练掌握相反数的定义是解本题的关键.2.下列图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.【考点】中心对称图形与轴对称图形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.详解:A、不是中心对称图形但是轴对称图形,故本选项不符合题意;B、既是中心对称图形,也是轴对称图形,故本选项不符合题意;C、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.为调查某中学学生对社会主义核心价值观的了解程度,某课外小组进行了抽样调查,以下样本最具代表性的是()A.初三年级学生B.全校女生C D.在篮球场打篮球的学生【考点】抽样调查的可靠性【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.解:A、B、D中进行抽查,不具有代表性,对抽取的对象划定了范围,因而不具有代表性.C、每班学号尾号为5的学生进行调查具有代表性.故选:C.【点睛】此题主要考查了抽样调查的可靠性,正确理解抽样调查的意义是解题关键.423410(a,b都是正整数)符合前面式子的规律,则a+b的值是( )A.17 B.18 C.19 D.20【考点】代数式表示规律a,b.,×10=10所以,a=10,b=9所以,a+b=19故选:C【点睛】本题考核知识点:用代数式表示规律.解题关键点:观察分析出规律.5BE、CD相交于点OA.1:4 B.2:3 C.1:3 D.1:2【考点】相似三角形的性质和判定,三角形的中位线形的性质求出即可.CD,故选:A.【点睛】本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.6.已知线段 AB=10cm,直线 AB 上有一点 C,且 BC=4cm,M 是线段 AC 的中点,则 AM 的长()A.7cm B.3cm C.3cm 或 7cm D.7cm 或 9cm【考点】两点间的距离【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B的右侧两种情况进行分类讨论.解:①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.7.下列计算不正确的是()A..(2=8 D【考点】二次根式的混合运算【分析】根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的性质对C进行判断;根据分母有理化对D进行判断.解:A A选项的计算错误;B.原式=B选项的计算正确;C.原式=4×2=8,所以C选项的计算正确;D D选项的计算正确.故选A.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.已知函数当x=a时的函数值为1,则a的值为()A.3 B.-1 C.-3 D.1【考点】函数值【分析】当x=a时的函数值为1,把x=a代入函数式中,得a=3.解:∵函数x=a时的函数值为1,∴2a−1=a+2,∴a=3.故答案为A【点睛】此题考查函数值, 令y=1,解分式方程,即可求出9.如图,、、、、,、、下列关系:有()A B C D【考点】切线的性质,切线长定理【分析】根据切线长定理,可判断①②正确;利用四边形的内角和=360°,可判断③正确;将△PCD的周长转化为PA+PB,可判断④正确.解:∵PA、PB是O的切线,∴PA=PB,∠ACO=∠DCO,故①②正确;∵PA、PB、CD是O的切线,∴∴∠BOE和∠BDE互补,故③正确;∴△PCD的周长=PC+CE+DE+PD=PC+CA+PD+DB=PA+PB=2PA,故④正确.故选:D.【点睛】考查了切线的性质以及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等.10)A B C D【考点】正方形的性质,等边三角形的判定和性质,正多边形的中心角【分析】首先证明AB=BF,推出A,B,F是⊙O的12等分点,由此即可解决问题.解:如图,连接FB.由题意:∠MEB=∠FEN=90°,∠MEN=120°,∴∠BEF=360°-120°-90°-90°=60°,∵EB=EF,∴△BEF是等边三角形,∴AB=BF,∴弧AB=弧BF,∴∠∴cos∠AOB=故选:C.【点睛】本题考查正方形的性质,等边三角形的判定和性质,正多边形的中心角等知识,解题的关键是灵活运用所学知识解决问题.11.如图,平行于x,A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则A.8 B.4 D【考点】反比例函数图象上点的坐标特征,三角形的面积,,,即可求出轴,B两点纵坐标相同,,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.12.若关于x y题意的整数a有()个A.1个 B.2个 C.3个 D.4个【考点】解一元一次方程,解一次一次不等式组【分析】由不等式组无解确定a的取值范围,由方程的解是正数确定a的范围,结合这两个范围及方程的解是正分数确定a的值.因为不等式组无解,所以a+3>1,则a>-2,y所以4-a>0,则a<4.所以-2<a<4,因为y a取-2和4之间的奇数,所以a的可以取的值为-1,1,3.故选C.【点睛】本题主要考查了解一元一次方程和解一次一次不等式组,一元一次不等式组无解时一般都是其中的两个不等式的解集分别取大于和小于,且大于的那个数比小于的那个数要大,即这两个不等式的解集没有公共部分.二、填空题(6小题,每小题4分,共24分)13 ______.【考点】算术平方根,立方根【分析】先分别求算术平方根和立方根,再加减.5-3=2故答案为:2【点睛】本题考核知识点:实数的运算.解题关键点:掌握实数的开方方法.14________.【考点】圆周角定理,扇形面积【分析】连接OA、OC,根据圆周角定理可知圆心角∠AOC的度数,利用扇形面积和三角形面积求出阴影部分面积即可.解:连接OA、OC,∵∠ABC、∠AOC所对的圆周角和圆心角,∠ABC=45°,∴∠AOC=2∠ABC=90°,∴S阴影=S扇形AOC-S△AOC(cm2)(cm2)【点睛】本题考查圆周角定理及扇形面积,同弧所对的圆周角的度数是圆心角的一半,S扇n 为圆心角,r为半径),熟记公式是解题关键.1590恰好落在边___________.【考点】旋转的性质、特殊锐角三角函数值【分析】先依据特殊锐角三角函数值可求得BC、AB的长,然后由旋转的性质和等边三角形的判定定理可得到△BCB1是等边三角形,从而得到BB1的长度,最后依据BA1=A1B1-B1B求解即可.解:∵∠ACB=90°,∠A=30°,AC=6,∴∠B=60°,∵由旋转的性质可知:∠B1=∠B=60°,B1C=BC,A1B1∴△BCB1是等边三角形.∴BB1∴BA1=A1B1-B1【点睛】本题主要考查的是旋转的性质、特殊锐角三角函数值的应用,得到△BCB1是等边三角形是解题的关键.16.下图是一个可以绕O点自由转动的转盘,⊙O的半径为2的图象,的图象,则指针指向阴影部分的概率__________.【考点】二次函数的综合题【分析】根据抛物线和圆的性质可以知道,图中阴影部分的面积就等于圆心角为150°,半径为2的扇形的面积,概率=阴影部分的面积:圆的面积.解:抛物线2与抛物线y=2的图形关于x轴对称,直线与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以则指针指向阴影部分的概率【点睛】本题考查的是二次函数的综合题,题目中的两条抛物线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为150°,半径为2的扇形的面积,用概率=阴影部分的面积:圆的面积.17.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法共有____________个.【考点】函数图象【分析】结合图象的信息进行判定,乌龟比兔子早出发40分钟,所以②是错误的,其他的都是正确的.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30~40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确。
2019数学中考冲刺知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.2019-45.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
2019初三数学中考冲刺各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢初三数学中考冲刺-高分技巧1、如何真正学会数学:预习、复习、上课课前预习,你的课前预习不仅仅是看看书就好了,而应该试图自己理解这节讲什么,很简单就是你看了一遍三角函数,就合上书想想三角函数是什么?我能用它来干嘛?由于你课前预习了,上课时老师讲的很多东西是在加强你的印象,而且你之前的问题会一个个解开,你也会跟着老师的思路一直听下去,如果你的问题老师也没解决,你碰到了个好问题!所以下课一定要第一时间解决你的疑惑,因为你一放,这个问题你估计就忘了……课下,你应该再读一遍这节课学习的内容,然后每个公式和定义都要自己推导一遍!!这个十分关键。
没有量的积累,哪有质的飞越嘛!我们就是要熟练到,就算在考试中也是行云流水的算题,这都依托于平时的练题。
2、如何刷卷子,做作业以及限时训练首先刷卷子,一定要限时做题!因为考试是限时的,你可以在平时写一套卷子用10个小时,做的十分工整……但是考试时谁会给你那么多时间呢?只有你在紧迫下适应了写题的氛围,你才能在考试中达到较好的状态!当然,有人好不容易花了2个小时写完一套卷子,觉得万事大吉了,其实,这错过了最好的检验和纠正自己错误的时机!你做完卷子时,一定要坐下来静心的对答案,并且标明自己的错误,警示自己。
刚开始,你这样写一套卷子,估计会花费5,6个小时,但是你会发现,20套卷子以后,你的错误会越来越少,你的成就感也会越来越强,在考试中也会体现出来的。
3、如何对待错题:改错、错题本用法有些人有些问题今天错了,下回还错,考试也错,有些错题他总也记不住!这是因为,他没有重视错题的价值!他的错误思维在第一次建立,并且没有被改变,一直延续了下去,所以错题是要经常看的,并且反复不断的做,错题和错题本一定要常看常新!有人问不知道自己的薄弱环节在哪?这个很好办,找出你的前5次考试或者前5套卷纸,看看你错的都是什么地方,你的弱点就在那里,加油补强它吧!4、如何养成好习惯:细心、答题、练字很多人考完试都会懊悔自己没有足够细心而丢了很多分数,其实,粗心是不好的生活习惯的一种在学习上的延续,粗心的人他在生活中会有以下行为:被子基本不叠,床上桌上乱糟糟、刚才拿的遥控器下一秒就不知道放哪了……这些都是生活中的细节,都表现了这个人不好的习惯:粗心、马虎、神经大条,所以这个习惯自然而然就带到了平时的学习和考试中去。
2019数学中考冲刺中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2019年中考冲刺数学试卷两套汇编七附答案解析中考数学试卷一.选择题(共6题,每题4分,满分24分)1.在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,下列结论错误的是()A.B.C.D.2.在 Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,下列四个三角比正确的是()A.sinA= B.cosA= C.tanA= D.cotA=3.将二次函数y=2x2﹣1的图象向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣3)2﹣1 B.y=2(x+3)2﹣1 C.y=2x2+4 D.y=2x2﹣44.已知=﹣2,那么下列判断错误的是()A.||=2|| B.2 C.D.5.一位篮球运动员跳起投篮,篮球运行的高度y(米)关于篮球运动的水平距离x(米)的函数解析式是y=﹣(x﹣2.5)2+3.5.已知篮圈中心到地面的距离3.05米,如果篮球运行高度达到最高点之后能准确投入篮圈,那么篮球运行的水平距离为()A.1米B.2米C.4米D.5米6.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE二.填空题(共12题,每题4分,满分48分)7.已知:3a=2b,那么= .8.计算:(+)﹣(﹣2)= .9.如果地图上A,B两处的图距是4cm,表示这两地实际的距离是20km,那么实际距离500km的两地在地图上的图距是cm.10.二次函数y=﹣x2+5的图象的顶点坐标是.11.已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是.12.已知两个相似三角形的面积之比是1:4,那么这两个三角形的周长之比是.13.已知在Rt△ABC中,∠C=90°,BC=6,sinA=,那么AB= .14.已知一斜坡的坡度i=1:2,高度在20米,那么这一斜坡的坡长约为米(精确到0.1米)15.如图,在平行四边形ABCD中,点E在边AB上,联结DE,交对角线AC于点F,如果=,CD=6,那么AE= .16.如图,△OPQ在边长为1个单位的方格纸中,它们的顶点在小正方形顶点位置,点A,B,C,D,E也是小正方形的顶点,从点A,B,C,D,E中选取三个点所构成的三角形与△OPQ相似,那么这个三角形是.17.2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为米(精确到1米).(参考数据:sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)18.如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B 落在点B1处,如果B1D⊥AC,那么BD= .三.解答题(共7题,满分78分)19.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)(1)求抛物线的表达式;(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.20.如图,在△ABC中,点D,E分别是边AB,AC的中点,设=, =.(1)填空:向量= .(用向量,的式子表示).(2)在图中作出向量在向量,方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).21.如图,在△ABC中,点D是AB边上一点,过点D作DE∥BC,交AC于E,点F是DE延长线上一点,联结AF.(1)如果=,DE=6,求边BC的长;(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.22.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.23.如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AD2=DG•DE,求证: =.24.如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.25.如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=.点E为线段BD上任意一点(点E 与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=.(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.参考答案与试题解析一.选择题(共6题,每题4分,满分24分)1.在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,下列结论错误的是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】根据平行线分线段成比例定理和相似三角形对应边对应成比例作答.【解答】解:∵DE∥BC,∴△ADE∽△ABC,,∴=,选项A、B、D正确;选项C错误.故选C.【点评】本题主要考查了相似三角形的性质、平行线分线段成比例定理.找准相似三角形对应边是解题的关键.2.在 Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,下列四个三角比正确的是()A.sinA= B.cosA= C.tanA= D.cotA=【考点】锐角三角函数的定义.【分析】利用三角函数的定义解答即可.【解答】解:因为,,,,故选B【点评】此题考查三角函数的问题,关键是利用三角函数的定义解答.3.将二次函数y=2x2﹣1的图象向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣3)2﹣1 B.y=2(x+3)2﹣1 C.y=2x2+4 D.y=2x2﹣4【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据平移不改变二次函数的系数可得新二次函数解析式.【解答】解:∵原抛物线的顶点为(0,﹣1),二次函数y=2x2﹣1的图象向下平移3个单位,∴新抛物线的解析式为(0,﹣4),∴二次函数y=2x2﹣1的图象向下平移3个单位后所得函数的解析式是 y=2x2﹣4.故选:D.【点评】考查二次函数的平移问题;用到的知识点为:抛物线的平移,看顶点的平移即可;平移不改变二次函数的系数.4.已知=﹣2,那么下列判断错误的是()A.||=2|| B.2 C.D.【考点】*平面向量.【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、||=1,2||=2,则||=2||,故该选项判断正确;B、由=﹣2得到∥,且+2=﹣,故该选项判断错误;C、由=﹣2得到∥,故该选项判断正确;D、由=﹣2得到||=2||,则≠,故该选项判断正确;故选:B.【点评】本题考查了平面向量,注意,平面向量既有大小,又由方向.5.一位篮球运动员跳起投篮,篮球运行的高度y(米)关于篮球运动的水平距离x(米)的函数解析式是y=﹣(x﹣2.5)2+3.5.已知篮圈中心到地面的距离3.05米,如果篮球运行高度达到最高点之后能准确投入篮圈,那么篮球运行的水平距离为()A.1米B.2米C.4米D.5米【考点】二次函数的应用.【分析】令y=3.05得到关于x的二元一次方程,然后求得方程的解可得到问题的答案.【解答】解:令y=3.05得:﹣(x﹣2.5)2+3.5=3.05,解得:x=4或x=1.5(舍去).所以运行的水平距离为4米.故选C.【点评】本题主要考查的是二次函数的应用,将函数问题转化为方程问题是解题的关键.6.如图,已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列结论中错误的是()A.△BDF∽△BEC B.△BFA∽△BEC C.△BAC∽△BDA D.△BDF∽△BAE【考点】相似三角形的判定.【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故C正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故A错误.故选A.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.二.填空题(共12题,每题4分,满分48分)7.已知:3a=2b,那么= ﹣.【考点】比例的性质.【分析】由3a=2b,可得=,可设a=2k,那么b=3k,代入,计算即可求解.【解答】解:∵3a=2b,∴=,∴可设a=2k,那么b=3k,∴==﹣.故答案为﹣.【点评】本题考查了比例的基本性质,是基础题,利用设“k”法比较简单.8.计算:(+)﹣(﹣2)= .【考点】*平面向量.【分析】根据平面向量的加法运算律进行计算即可.【解答】解:(+)﹣(﹣2)=(﹣)+(1+2),=.故答案是:.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握平面向量的加法运算定律的应用.9.如果地图上A,B两处的图距是4cm,表示这两地实际的距离是20km,那么实际距离500km的两地在地图上的图距是100 cm.【考点】比例线段.【分析】先设实际距离500km的两地在地图上的图距是xcm,根据图上距离比上实际距离等于比例尺,可得关于x的方程,解即可.【解答】解:设实际距离500km的两地在地图上的图距是xcm,则4:2000000=x:50000000,解得x=100.故答案是100.【点评】本题考查了比例线段,解题的关键是根据比例尺不变得出等式.10.二次函数y=﹣x2+5的图象的顶点坐标是(0,5).【考点】二次函数的性质.【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣x2+5,∴抛物线顶点坐标为(0,5),故答案为:(0,5).【点评】本题主要考查二次函数的性质,掌握抛物线的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).11.已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是(4,5).【考点】二次函数图象与几何变换.【分析】首先确定抛物线的对称轴,然后根据对称点的性质解题即可.【解答】解:∵y=x2﹣4x+3的对称轴为x=2∴点P(0,5)关于该抛物线的对称轴对称点Q的坐标为(4,5),故答案为:(4,5)【点评】本题考查了二次函数图象与几何变换,解题的关键是了解对称点的性质.12.已知两个相似三角形的面积之比是1:4,那么这两个三角形的周长之比是1:2 .【考点】相似三角形的性质.【分析】由两个相似三角形的面积比是1:4,根据相似三角形的面积比等于相似比的平方,即可求得它们的相似比,又由相似三角形周长的比等于相似比,即可求得它们的周长比.【解答】解:∵两个相似三角形的面积比是1:4,∴这两个相似三角形的相似比是1:2,∴它们的周长比是1:2.故答案为:1:2.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形周长的比等于相似比性质的应用.13.已知在Rt△ABC中,∠C=90°,BC=6,sinA=,那么AB= 9 .【考点】解直角三角形.【分析】根据锐角三角函数的定义即可求出AB的值.【解答】解:∵sinA=,∴AB==9,故答案为:9【点评】本题考查锐角三角函数的定义,属于基础题型.14.已知一斜坡的坡度i=1:2,高度在20米,那么这一斜坡的坡长约为44.7 米(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意画出图形,由斜坡的坡度i=1:2可设BC=x,则AC=2x,由勾股定理得出AB的长,再由BC=20米即可得出结论.【解答】解:如图,∵斜坡的坡度i=1:2,∴设BC=x,则AC=2x,∴AB===x,∴=.∵BC=20米,∴=,解得x=20≈44.7(米).故答案为:44.7.【点评】本题考查的是解直角三角形的应用﹣坡度坡脚问题,熟记锐角三角函数的定义是解答此题的关键.15.如图,在平行四边形ABCD中,点E在边AB上,联结DE,交对角线AC于点F,如果=,CD=6,那么AE= 4 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由=推出AF:FC=2:3,由四边形ABCD是平行四边形,推出CD∥AB,推出= =,由此即可解决问题.【解答】解:∵ =,∴AF:FC=2:3,∵四边形ABCD是平行四边形,∴CD∥AB,∴△AEF∽△CDF,∴==,∵CD=6,∴AE=4,故答案为4.【点评】本题考查相似三角形的性质、平行四边形的性质等知识,解题的关键是灵活应用所学知识解决问题,求出AF:CF的值是关键,属于中考常考题型.16.如图,△OPQ在边长为1个单位的方格纸中,它们的顶点在小正方形顶点位置,点A,B,C,D,E也是小正方形的顶点,从点A,B,C,D,E中选取三个点所构成的三角形与△OPQ相似,那么这个三角形是△CDB .【考点】相似三角形的判定.【分析】连接BC、BD,由正方形的性质得出∠BCD=∠QOP,由勾股定理得:OP=BC=,证出,得出△OPQ∽△CDB即可.【解答】解:与△OPQ相似的是△BCD;理由如下:连接BC、BD,如图所示:则∠BCD=90°+45°=135°=∠QOP,由勾股定理得:OP=BC=,∵OQ=2,CD=1,∴,∴△OPQ∽△CDB;故答案为:△CDB.【点评】本题考查了相似三角形的判定定理、正方形的性质以及勾股定理;熟练掌握相似三角形的判定定理和勾股定理是解决问题的关键.17.2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为632 米(精确到1米).(参考数据:sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)【考点】解直角三角形的应用-仰角俯角问题.【分析】先根据Rt△ACE中,∠AEC=90°,∠CAE=22.3°,AE=900,求得CE=AE×tan22.3°=900×0.41≈369米,再根据AB=DE=263米,求得CD=CE+DE=369+263=632米.【解答】解:如图所示,在Rt△ACE中,∠AEC=90°,∠CAE=22.3°,AE=900,∴CE=AE×tan22.3°=900×0.41≈369米,∵AB=DE=263米,∴CD=CE+DE=369+263=632(米).故答案是:632.【点评】本题主要考查了解直角三角形的运用,解决问题的关键是作辅助线构造直角三角形,根据直角三角形中的边角关系矩形计算求解.18.如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B 落在点B1处,如果B1D⊥AC,那么BD= 2﹣2 .【考点】翻折变换(折叠问题);等边三角形的性质.【分析】作DE⊥AB于E,根据折叠的性质、三角形内角和定理求出∠B′AC=30°,求出∠BAD=45°,利用锐角三角函数的概念计算即可.【解答】解:作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE=BD,则BD+BD=2,解得,BD=2﹣2,故答案为:2﹣2.【点评】本题考查的是翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三.解答题(共7题,满分78分)19.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)(1)求抛物线的表达式;(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.【考点】待定系数法求二次函数解析式.【专题】计算题;二次函数图象及其性质.【分析】(1)把A,B,C三点坐标代入解析式求出a,b,c的值,即可求出函数解析式;(2)把x=﹣2代入抛物线解析式求出y的值,确定出D坐标,由OA为底,D纵坐标绝对值为高,求出三角形AOD面积即可.【解答】解:(1)把A(3,0),B(2,﹣3),C(0,﹣3)代入y=ax2+bx+c得:,解得:,则抛物线解析式为y=x2﹣2x﹣3;(2)把x=﹣2代入抛物线解析式得:y=5,即D(﹣2,5),∵A(3,0),即OA=3,∴S△AOD=×3×5=.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.20.如图,在△ABC中,点D,E分别是边AB,AC的中点,设=, =.(1)填空:向量= .(用向量,的式子表示).(2)在图中作出向量在向量,方向上的分向量(不要求写作法,但要指出所作图中表示结论的向量).【考点】*平面向量.【分析】(1)首先利用平面向量三角形法则求得,然后由“E是边AC的中点”来求向量;(2)利用平行四边形法则,即可求得向量,方向上的分向量.【解答】解:(1)∵在△ABC中, =, =.∴=﹣=﹣=.又∵E是边AC的中点,∴=.故答案是:;(2)如图,过点E作EM∥AB交BC于点M.、即为向量在向量,方向上的分向量.【点评】此题考查了平面向量的知识.此题比较简单,注意掌握三角形法则与平行四边形法则的应用.21.如图,在△ABC中,点D是AB边上一点,过点D作DE∥BC,交AC于E,点F是DE延长线上一点,联结AF.(1)如果=,DE=6,求边BC的长;(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.【考点】相似三角形的判定与性质.【分析】(1)由DE与BC平行,得到两对同位角相等,进而得到三角形ADE与三角形ABC相似,由相似得比例求出BC的长即可;(2)由两直线平行得到一对同位角相等,再由已知角相等等量代换得到∠FAE=∠ADF,根据公共角相等,得到三角形AEF与三角形ADF相似,由相似得比例求出DF的长即可.【解答】解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==,∵DE=6,∴BC=9;(2)∵DE∥BC,∴∠B=∠ADE,∵∠B=∠FAE,∴∠FAE=∠ADE,∵∠F=∠F,∴△AEF∽△DAF,∴=,∵FA=6,FE=4,∴DF=9.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.【考点】解直角三角形的应用-仰角俯角问题;矩形的性质.【分析】过点A作AM⊥CD于点M,可得四边形ABDM为矩形,根据A处测得电线杆上C处得仰角为23°,在△ACM中求出CM的长度,然后在Rt△CDE中求出CE的长度.【解答】解:过点A作AM⊥CD于点M,则四边形ABDM为矩形,AM=BD=6米,在Rt△ACM中,∵∠CAM=30°,AM=6米,∴CM=AM•tan∠CAM=6×=2(米),∴CD=2+1.5≈4.96(米),在Rt△CDE中,ED=6﹣2.3=3.7(米),∴CE=≈6.2(米).【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.23.如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AD2=DG•DE,求证: =.【考点】相似三角形的判定与性质.【分析】(1)由AD∥BC,得到△ADG∽△CEG,根据相似三角形的性质即可得到结论;(2)根据平行线的性质得到,根据等式的性质得到=,等量代换即可得到结论.【解答】证明:(1)∵AD∥BC,∴△ADG∽△CEG,∴,∵=,∴,∴AB∥CD;(2)∵AD∥BC,∴△ADG∽△CEG,∴,∴=,∴=,∵AD2=DG•DE,∴=,∵AD∥BC,∴=,∴=.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.【考点】二次函数综合题;勾股定理的逆定理;相似三角形的判定与性质.【专题】综合题.【分析】(1)根据二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),求得m和n的值即可;(2)根据A,C,D三点的坐标,求得CD=,AC=3,AD=2,得到CD2+AC2=AD2,根据勾股定理的逆定理得出△ACD是直角三角形,且∠ACD=90°,据此求得∠CAD的正弦值;(3)先求得直线CD为y=x+3,再设点P的坐标为(a,a+3),然后分两种情况进行讨论:当点P在x轴上方时,过点P作PE⊥x轴于E;当点P在x轴下方时,过点P作PF⊥x轴于F,分别判定△ACD∽△AEP,△ACD∽△AFP,列出比例式求得a的值即可.【解答】解:(1)∵二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),∴,解得,∴二次函数的解析式为:y=﹣x2+2x+3,顶点D的坐标为(1,4);(2)如图所示,在y=﹣x2+2x+3中,当x=0时,y=3,∴C(0,3)∵A(3,0),D(1,4),∴CD=,AC=3,AD=2,∴CD2+AC2=AD2,∴△ACD是直角三角形,且∠ACD=90°,∴sin∠ACD==;(3)∵直线CD经过C(0,3),D(1,4),∴设可设直线CD为y=kx+b,则,解得,∴直线CD为y=x+3,设点P的坐标为(a,a+3),①如图所示,当点P在x轴上方时,过点P作PE⊥x轴于E,则PE=a+3,AE=3﹣a,∵∠AEP=∠ACD=90°,∠PAO=∠CAD,∴△ACD∽△AEP,∴=,即=,解得a=﹣,∴a+3=,∴此时P的坐标为(﹣,);②如图所示,当点P在x轴下方时,过点P作PF⊥x轴于F,则PF=﹣(a+3),AF=3﹣a,∵∠AFP=∠ACD=90°,∠PAO=∠CAD,∴△ACD∽△AFP,∴=,即=,解得a=﹣6,∴a+3=﹣3,∴此时P的坐标为(﹣6,﹣3);综上所述,点P的坐标为.【点评】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、勾股定理的逆定理以及相似三角形的判定与性质的综合应用,解这类问题关键是作辅助线构造相似三角形,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.25.如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=.点E为线段BD上任意一点(点E 与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=.(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.【考点】四边形综合题.【分析】(1)过A作AH⊥BD于H,再根据AD∥BC,AB=AD=5,可得∠ABD=∠ADB=∠DBC,BH=HD,再根据tan∠ABD=tan,计算出BH=DH=4,进而得到BD=8;(2)分两种情况用锐角三角函数计算即可得出结论.(3)首先利用平行线的性质得出△FEB∽△CDB,即可得出y与x的函数关系式;【解答】解:(1)如图1,过A作AH⊥BD于H,∵AD∥BC,AB=AD=5,∴∠ABD=∠ADB=∠DBC,BH=HD,在Rt△ABH中,∵tan∠ABD=tan∠DBC=,∴cos∠ABD=,∴BH=DH=4,∴BD=8;(2)∵△DCE是等腰三角形,且BC=BD=8,∴①如图2,当CD=DE时,即:CD=DE=BD﹣BE=8﹣x,过点D作DG⊥BC于G,在Rt△BDG中,tan∠DBC=,BD=8,∴DG=BD=,BG=BD=,∴CG=8﹣BG=,在Rt△CDG中,根据勾股定理得,DG2+CG2=CD2,∴()2+()2=(8﹣x)2,∴x=8+(舍)或x=8﹣,②如图3,当CE=CD时,过点C作CG⊥BD,∴DG=EG=DE,在Rt△BCG中,BC=8,tan∠DBC=,∴BG=,∴DG=BD﹣BG=,∴x=BE=BD﹣DE=BD﹣2DG=.(3)∵BF=x,BC=10,∴FC=10﹣x,∴,∵EF∥DC,∴△FEB∽△CDB,∴∴==﹣x2+x(0<x<8)【点评】此题是四边形综合题,主要考查了锐角三角函数的定义,等腰三角形的性质,勾股定理,相似三角形的性质和判定,同高的三角形的面积的比等于底的比,分类讨论是解本题的关键,是一道比较典型的中考常考题.中考数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2 B.0 C.1 D.﹣32.下列图形是中心对称图形的是()A.B. C.D.3.下列计算中,结果正确的是()A.a2•a3=a6 B.(2a)•(3a)=6a C.(a2)3=a6D.a6÷a2=a34.函数y=的自变量取值范围是()A.x≠3 B.x≠0 C.x≠3且x≠0 D.x<35.我校2016级2198名考生在2016年中考体育考试中取得了优异成绩,为了考察他们的中考体育成绩,从中抽取了550名考生的中考体育成绩进行统计,下列说法正确的是()A.本次调查属于普查B.每名考生的中考体育成绩是个体C.550名考生是总体的一个样本D.2198名考生是总体6.如图,直线AB∥CD,直线EF与直线AB相交于点M,MN平分∠AME,若∠1=50°,则∠2的度数为()A.50°B.80°C.85°D.100°7.已知x﹣2y=3,则7﹣2x+4y的值为()A.﹣1 B.0 C.1 D.28.如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A.40°B.50°C.55°D.60°9.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.7810.数学活动课,老师和同学一起去测量校内某处的大树AB的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF为8m处的D点,测得大树顶端A的仰角为α,已知sinα=,BE=1.6m,此学生身高CD=1.6m,则大树高度AB为()m.A.7.4 B.7.2 C.7 D.6.811.在矩形ABCD中,AB=,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为()A.﹣ B.﹣C.π﹣D.π﹣12.能使分式方程+2=有非负实数解且使二次函数y=x2+2x﹣k﹣1的图象与x 轴无交点的所有整数k的积为()A.﹣20 B.20 C.﹣60 D.60二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.2016年重庆高考报名人数近250000人,数据250000用科学记数法表示为.14.计算:()﹣2+(π﹣3)0﹣=.15.如图,在△ABC中,=,DE∥AC,则DE:AC=.16.“2016重庆国际马拉松”的赛事共有三项:A、“全程马拉松”、B、“半程马拉松”、C、“迷你马拉松”.小明和小刚参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到以上三个项目组,则小明和小刚被分配到不同项目组的概率是.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发秒.18.在正方形ABCD中,点E为BC边上一点且CE=2BE,点F为对角线BD上一点且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,连结CH、CF,若HG=2cm,则△CHF 的面积是cm2.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知如图,点F、A、E、B在一条直线上,∠C=∠F,BC∥DE,AB=DE求证:AC=DF.20.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)x(x+2y)﹣(x﹣y)2+y2(2)(﹣x+3)÷.22.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.23.2016年5月29日,中超十一轮,重庆力帆将主场迎战河北华夏幸福,重庆“铁血巴渝”球迷协会将继续组织铁杆球迷到现场为重庆力帆加油助威.“铁血巴渝”球迷协会计划购买甲、乙两种球票共500张,并且甲票的数量不少于乙票的3倍.(1)求“铁血巴渝”球迷协会至少购买多少张甲票;(2)“铁血巴渝”球迷协会从售票处得知,售票处将给予球迷协会一定的优惠,本场比赛球票以统一价格(m+20)元出售给该协会,因此协会决定购买的票数将在原计划的基础上增加(m+10)%,购票后总共用去56000元,求m的值.24.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.。
2019数学中考冲刺中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义: 实数 无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
【决胜中考】2019年安徽省中考数学冲刺卷04姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<b D.a,b互为倒数2.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是( )A.B. C. D.4.下列运算正确的是( )A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6D.(xy2)2=x2y45.如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为( )A. 120°B. 150°C. 135°D. 110°6.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )A.B.C.D.7.如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是( )A.30°B.45°C.60°D.70°8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是()A.60%x+80%y=x+72%y B.60%x+80%y=60%x+yC.60%x+80%y=72%(x+y)D.60%x+80%y=x+y9.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是( )A. m<0B. m>0C. m<﹣1D. m>﹣110.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2018的坐标是( )A.(1,4)B.(4,3)C.(2,4)D.(4,1)二、填空题(本大题共4小题,每小题5分,共20分)11.若方程无解,则m= .12.方程ax2+bx+c=0(a≠0)的两根为x=﹣3和x=1,那么抛物线y=ax2+bx+c(a≠0)的对称轴是直线______.13.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.14.若m,n为有理数,且,则mn=_____.三、解答题(本大题共9小题,共90分)15.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.16.计算(1)(2)解方程:17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?18.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 7979 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是 (填“A“或“B“),理由是 ,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.19.某市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个.计划养殖类图书不超过2000本,种植类图书不超过1600本.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本.(1)符合题意的组建方案有几种?请写出具体的组建方案;(2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?20.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.21.如图,矩形OABC的顶点A.C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.22.已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.23.已知四边形ABCD中,∠ABC=90°,AB∥CD,BC=12,AB>6,点E为BC的中点,连接AE,ED,△ABE与△AFE关于直线AE对称,且点F在AD上(1)求证:CD=DF;(2)设AB=y,CD=x,写出y与x之间的关系式;(3)过点F作FM∥CD交ED于点M,连接CM①判断四边形DFMC的形状,并证明;②若AB=6,求△EMF的面积.参考答案1. 【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.解:A .a <0,故A 正确;B 、ab <0,故B 正确;C 、a <b ,故C 正确;D 、乘积为1的两个数互为倒数,故D 错误;故选:D .【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键. 2. 【考点】旋转对称图形.【分析】根据旋转的性质,结合图形的特征,观察发现选项A 以所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合.解:A .最小旋转角度==120°;3603B 、最小旋转角度==90°;3604C 、最小旋转角度==180°;3602D 、最小旋转角度==72°;3605综上可得:顺时针旋转120°后,能与原图形完全重合的是A .故选A .【点评】本题考查了旋转对称图形,熟记旋转对称图形的定义是解题的关键3. 【考点】简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图解答即可.解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图. 4. 【考点】完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方与幂的乘方【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.解:A.﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.5. 【考点】平行线的性质.【分析】先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.6. 【考点】概率公式【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率PA.=事件A可能出现的结果数÷所有可能出现的结果数7. 【考点】圆周角定理【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8. 【考点】由实际问题抽象出二元一次方程【分析】关键描述语是:甲数的60%加乙数的80%等于这两个数的和的72%.等量关系为:甲数×60%+乙数×80%=甲乙两数和的72%.解:根据甲数×60%+乙数×80%=甲乙两数和的72%,得方程60%x+80%y=72%(x+y).故选C.【点睛】本题考查由实际问题抽象出二元一次方程,解答本题的关键是明确题意,列出相应的方程.9. 【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是( )解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.10. 【考点】规律型:点的坐标【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.解:由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.11. 【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解:去分母得,5+m+x﹣2=1,解得,x=﹣2﹣m,当分母x﹣2=0即x=2时方程无解,∴﹣2﹣m=2,∴m=﹣4时方程无解.【点评】本题考查了分式方程无解的条件,是需要识记的内容.并且在解方程去分母的过程中,一定要注意分数线起到括号的作用,并且要注意没有分母的项不要漏乘.12. 【考点】抛物线与x轴的交点.【分析】由方程ax2+bx+c=0(a≠0)的两根得出抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标,再根据对称轴公式即可得出结果.解:∵方程ax2+bx+c=0(a≠0)的两根为x=﹣3和x=1,∴抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标为(﹣3,0)、(1,0),∴抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,即x=﹣1;故答案为:x=﹣1.【点评】本题考查抛物线与x轴的交点,解题的关键是根据一元二次方程的解求出抛物线与x轴的两个交点的横坐标,本题属于基础题型. 13. 【考点】坐标与图形性质,勾股定理【分析】根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为:(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.14. 【考点】二次根式的化简求值【分析】利用二次根式的运算法则将已知等式化简,求出m、n的值,代入mn即可求解.解:=m+n3= m+n4= m+n16+1=4m+4 n∴4m=1, 4n=16,∴m=, n=4,mn=4= 1.故答案为:1.【点睛】本题考查二次根式的化简求值.15. 【考点】扇形统计图,一元一次方程的应用【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量,再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店,根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系,并据此列出方程.16. 【考点】解一元二次方程,特殊角的三角函数值【分析】(1)根据特殊角的三角函数值分别代入,再求出即可;(2)移项,开方,即可得出两个方程,求出方程的解即可.解:(1)原式=;(2)原式=(2x+3)²==81,2x+3=±9,解得:.【点睛】本题考查了解一元二次方程和特殊角的三角函数值的应用,能熟记特殊角的三角函数值是解(1)小题的关键,能正确配方是解(2)小题的关键.17. 【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.【点评】本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.18. 【考点】频数分布直方图、中位数,样本估计总体【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.(3)估计A课程成绩跑过75.8分的人数为300×=180人.【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.19. 【考点】一元一次不等式组的应用.【分析】(1)设组建中型两类图书室x个、小型两类图书室(30﹣x)个,由于组建中、小型两类图书室共30个,已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本,因此可以列出不等式组,解不等式组然后去整数即可求解.(2)根据(1)求出的数,分别计算出每种方案的费用即可.解:(1)设组建中型两类图书室x个、小型两类图书室(30﹣x)个.由题意,得,化简得,解这个不等式组,得20≤x≤22.由于x只能取整数,∴x的取值是20,21,22.当x=20时,30﹣x=10;当x=21时,30﹣x=9;当x=22时,30﹣x=8.故有三种组建方案:方案一,中型图书室20个,小型图书室10个;方案二,中型图书室21个,小型图书室9个;方案三,中型图书室22个,小型图书室8个.(2)方案一的费用是:2000×20+1500×10=55000(元);方案二的费用是:2000×21+1500×9=55500(元);方案三的费用是:2000×22+1500×8=56000(元);故方案一费用最低,最低费用是55000元【点评】此题主要考查了一元一次不等式组在实际生活中的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系列出不等式组解决问题. 20. 【考点】直线与圆的位置关系;作图—复杂作图.【分析】(1)根据题意作出图形,如图所示;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA为圆P的半径,即可得证.解:(1)如图所示,⊙P为所求的圆;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,∴PD=PA,∵PA为⊙P的半径.∴BC与⊙P相切.【点评】此题考查了直线与圆的位置关系,以及作图-复杂作图,证明切线的方法有两种:一种是连接证明垂直;一种是作垂线,证明垂线段等于半径. 21. 【考点】反比例函数综合题.【分析】(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.【点评】本题综合考查了反比例函数的知识,包括待定系数法求函数解析式,点在函数图象上,锐角三角函数的定义,以及折叠的性质,求出点D的坐标,然后求出反比例函数解析式是解题的关键.22. 【考点】二次函数综合题.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键. 23. 【考点】相似形综合题【分析】(1)根据点E为BC的中点可知BE=EC.再由BE=EF得出FE=EC,由HL定理可得出△DCE≌△DFE,由全等三角形的性质即可得出结论;(2)过点D作DN⊥AB于点N,由题意得,NB=CD=x=DF,AB=AF=y,DN=BC=12,再由勾股定理即可得出结论;(3)①根据△DCE≌△DEF可得出∠EDF=∠EDC.再由FM∥CD可知∠EDF=∠DMF=∠MDC,故DF=MF,CD=MF,所以四边形CDFM是平行四边形.根据DF=DC即可得出结论;②根据题意得出∠AEB=60°,故可得出∠AEF=∠FEC=60°,∠FED=∠FEC=30°.过点F作FH⊥ED于点H,由勾股定理可得出FH,DF=DM,DE的长,根据三角形的面积公式即可得出结论.解:(1)∵点E为BC的中点,∴BE=EC.∵BE=EF,∴FE=EC.∵AB∥CD,∴∠ECD=90°.在Rt△DCE与Rt△△DFE中,,∴△DCE≌△DFE(HL),∴DC=DF.(2)方法一:过点D作DN⊥AB于点N,由题意得,NB=CD=x=DF,AB=AF=y,DN=BC=12,∴AN2+DN2=AD2,即(y﹣x)2+122=(y+x)2,化简得,xy=36,∴y=.方法二:由题意可得∠AED=∠EFD=90°,∠ADE=∠AEB,∴△ABE∽△EFD,∴=,即=,∴y=;(3)①四边形CDFM是菱形.理由:∵△DCE≌△DEF,∴∠EDF=∠EDC.∵FM∥CD,∴∠EDF=∠DMF=∠MDC,∴DF=MF,∴CD=MF,∴四边形CDFM是平行四边形.∵DF=DC,∴四边形CDFM是菱形.②∵AB=6,BE=CE=6,tan∠AEB===,∴∠AEB=60°.∴∠AEF=∠FEC=60°,∴∠FED=∠FEC=30°.过点F作FH⊥ED于点H,∵BE=FE=6,∴FH=3,DF=DM=2,DE=4,∴EM=2,∴S△EMF=×2×3=3.【点评】本题考查的是相似形综合题,涉及到全等三角形的判定与性质、直角三角形的性质、菱形的判定等知识,难度较大.。
数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前2019年中考考前最后一卷【浙江A 卷】数 学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列实数中,最小的数是 AB .π-C .0D .2-2.大量事实证明,治理垃圾污染刻不容缓,据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为 A .8.5×105 B .8.5×106 C .85×105D .85×1063.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式 A .100(0.6)y nm=+ B .100(0.6y n m=+ C .(1000.6)y n m =+D .(100)0.6y n m =+4.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为 A .13B .19C .12D .235.如图,水平的讲台上放置的圆柱笔筒和正方体形粉笔盒,它的俯视图是A .B .C .D .6.如图,在O 中,AD 是直径,40ABC ∠=︒,则CAD ∠等于A .40︒B .50︒C .60︒D .70︒7.如图,在矩形ABCD 中,AD =1,AB >1,AG 平分∠BAD ,分别过点B ,C 作BE ⊥AG 于点E ,CF ⊥AG 于点F ,则AE -GF 的值为A .1BC D .28.如图,在等边三角形ABC 中,点P 是BC 边上一动点(不与点B 、C 重合),连接AP ,作射线PD ,使∠APD =60°,PD 交AC 于点D ,已知AB =a ,设CD =y ,BP =x ,则y 与x 函数关系的大致图象是数学试题 第3页(共6页) 数学试题 第4页(共6页)A.B .C .D .9.如图,小明想测量斜坡CD 旁一棵垂直于地面AE 的树AB 的高度,他先在点C 处测得树顶B 的仰角为60︒,然后在坡顶D 测得树顶B 的仰角为30︒,已知斜坡CD 的长度为20m ,斜坡顶点D 到地面的垂直高度10m DE =,则树AB 的高度是A .mB .mC .30 mD .40 m10.下列关于函数y =x 2-6x +10的四个命题:①当x =0时,y 有最小值10;②n 为任意实数,x =3+n 时的函数值大于x =3-n 时的函数值;③若n >3,且n 是整数,当n ≤x ≤n +1时,y 的整数值有(2n -4)个;④若函数图象过点(x 0,m )和(x 0-1,n ),则m <n ,其中真命题的有 A .0个B .1个C.2个D .3个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 11. 12.分解因式:3m 2-27=__________.13.已知一扇形的半径长是4,圆心角为60°,则这个扇形的面积为__________.14.如图,AB 为⊙O 的直径,AC 与⊙O 相切于点A ,弦BD ∥OC .若∠C =36°,则∠DOC =__________°.15.m 是方程2x 2+3x -1=0的根,则式子4m 2+6m +2019的值为__________.16.对非负实数x “四舍五入”到个位的值记为<x >,即已知n 为正整数,如果n -12≤x <n +12,那么<x >=n .例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…则满足方程<x >=11.62x +的非负实数x 的值为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =.(1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围. 18.(本小题满分8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A 、B 、C 、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.七年级英语口语测试成绩统计表数学试题 第5页(共6页) 数学试题 第6页(共6页)请根据所给信息,解答下列问题:(1)本次被抽取参加英语口语测试的学生共有多少人? (2)求扇形统计图中C 级的圆心角度数;(3)若该校七年级共有学生640人,根据抽样结课,估计英语口语达到B 级以上(包括B 级)的学生人数.19.(本小题满分8分)如图,在△ABC 中,AD 是边BC 上的高,点E 是边AC 的中点,11BC =,12AD =,四边形DFGH 是边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求cos EDC ∠的值.20.(本小题满分10分)已知,如图,在△ABC 中,AB =9,BC =12,点D 是BC 的中点,连接AD ,AD =9,点E 在AD 边上,且54AE DE =,连接BE . (1)求证:△BED ∽△ABD ; (2)连接CE ,求∠CED 的正切值.21.(本小题满分10分)如图,在ABCD 中,BC =2AB ,E ,F 分别是BC ,AD 的中点,AE ,BF 交于点O ,连接EF ,OC .(1)求证:四边形ABEF 是菱形; (2)若BC =8,∠ABC =60°,求OC 的长.22.(本小题满分12分)已知二次函数y =-x 2+2mx -m 2+4.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)若该二次函数的图象与x 轴交于点A 、B (点A 在点B 的左侧),顶点为C . ①求△ABC 的面积;②若点P 为该二次函数图象上位于A 、C 之间的一点,则△PAC 面积的最大值为__________,此时点P 的坐标为__________.23.(本小题满分12分)如图,已知△ABC ,分别以AB ,AC 为直角边,向外作等腰直角三角形ABE 和等腰直角三角形ACD ,∠EAB =∠DAC =90°,连接BD ,CE 交于点F ,设AB =m ,BC =n . (1)求证:∠BDA =∠ECA ;(2)若m ,n =3,∠ABC =75°,求BD 的长;(3)当∠ABC =__________时,BD 的值最大,最大值为__________;(用含m ,n 的代数式表示) (4)试探究线段BF ,AE ,EF 三者之间的数量关系.。
【决胜中考】2019年安徽省中考数学冲刺卷04姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<b D.a,b互为倒数2.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是( )A.B. C. D.4.下列运算正确的是( )A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4C.a2•a3=a6D.(xy2)2=x2y45.如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为( )A. 120°B. 150°C. 135°D. 110°6.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )A.B.C.D.7.如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是( )A.30°B.45°C.60°D.70°8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是()A.60%x+80%y=x+72%y B.60%x+80%y=60%x+yC.60%x+80%y=72%(x+y)D.60%x+80%y=x+y9.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是( )A. m<0B. m>0C. m<﹣1D. m>﹣110.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2018的坐标是( )A.(1,4)B.(4,3)C.(2,4)D.(4,1)二、填空题(本大题共4小题,每小题5分,共20分)11.若方程无解,则m= .12.方程ax2+bx+c=0(a≠0)的两根为x=﹣3和x=1,那么抛物线y=ax2+bx+c(a≠0)的对称轴是直线______.13.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.14.若m,n为有理数,且,则mn=_____.三、解答题(本大题共9小题,共90分)15.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.16.计算(1)(2)解方程:17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?18.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 7979 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是 (填“A“或“B“),理由是 ,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.19.某市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个.计划养殖类图书不超过2000本,种植类图书不超过1600本.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本.(1)符合题意的组建方案有几种?请写出具体的组建方案;(2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?20.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.21.如图,矩形OABC的顶点A.C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.22.已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1.①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.23.已知四边形ABCD中,∠ABC=90°,AB∥CD,BC=12,AB>6,点E为BC的中点,连接AE,ED,△ABE与△AFE关于直线AE对称,且点F在AD上(1)求证:CD=DF;(2)设AB=y,CD=x,写出y与x之间的关系式;(3)过点F作FM∥CD交ED于点M,连接CM①判断四边形DFMC的形状,并证明;②若AB=6,求△EMF的面积.参考答案1. 【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.解:A .a <0,故A 正确;B 、ab <0,故B 正确;C 、a <b ,故C 正确;D 、乘积为1的两个数互为倒数,故D 错误;故选:D .【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键. 2. 【考点】旋转对称图形.【分析】根据旋转的性质,结合图形的特征,观察发现选项A 以所在圆的圆心为旋转中心,顺时针旋转120°后能与原图形完全重合.解:A .最小旋转角度==120°;3603B 、最小旋转角度==90°;3604C 、最小旋转角度==180°;3602D 、最小旋转角度==72°;3605综上可得:顺时针旋转120°后,能与原图形完全重合的是A .故选A .【点评】本题考查了旋转对称图形,熟记旋转对称图形的定义是解题的关键3. 【考点】简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图解答即可.解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图. 4. 【考点】完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方与幂的乘方【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.解:A.﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.5. 【考点】平行线的性质.【分析】先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.6. 【考点】概率公式【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率PA.=事件A可能出现的结果数÷所有可能出现的结果数7. 【考点】圆周角定理【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8. 【考点】由实际问题抽象出二元一次方程【分析】关键描述语是:甲数的60%加乙数的80%等于这两个数的和的72%.等量关系为:甲数×60%+乙数×80%=甲乙两数和的72%.解:根据甲数×60%+乙数×80%=甲乙两数和的72%,得方程60%x+80%y=72%(x+y).故选C.【点睛】本题考查由实际问题抽象出二元一次方程,解答本题的关键是明确题意,列出相应的方程.9. 【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是( )解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.10. 【考点】规律型:点的坐标【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.解:由分析可得p(0,1)、、、、、、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.11. 【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解:去分母得,5+m+x﹣2=1,解得,x=﹣2﹣m,当分母x﹣2=0即x=2时方程无解,∴﹣2﹣m=2,∴m=﹣4时方程无解.【点评】本题考查了分式方程无解的条件,是需要识记的内容.并且在解方程去分母的过程中,一定要注意分数线起到括号的作用,并且要注意没有分母的项不要漏乘.12. 【考点】抛物线与x轴的交点.【分析】由方程ax2+bx+c=0(a≠0)的两根得出抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标,再根据对称轴公式即可得出结果.解:∵方程ax2+bx+c=0(a≠0)的两根为x=﹣3和x=1,∴抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标为(﹣3,0)、(1,0),∴抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,即x=﹣1;故答案为:x=﹣1.【点评】本题考查抛物线与x轴的交点,解题的关键是根据一元二次方程的解求出抛物线与x轴的两个交点的横坐标,本题属于基础题型. 13. 【考点】坐标与图形性质,勾股定理【分析】根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为:(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.14. 【考点】二次根式的化简求值【分析】利用二次根式的运算法则将已知等式化简,求出m、n的值,代入mn即可求解.解:=m+n3= m+n4= m+n16+1=4m+4 n∴4m=1, 4n=16,∴m=, n=4,mn=4= 1.故答案为:1.【点睛】本题考查二次根式的化简求值.15. 【考点】扇形统计图,一元一次方程的应用【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量,再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店,根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系,并据此列出方程.16. 【考点】解一元二次方程,特殊角的三角函数值【分析】(1)根据特殊角的三角函数值分别代入,再求出即可;(2)移项,开方,即可得出两个方程,求出方程的解即可.解:(1)原式=;(2)原式=(2x+3)²==81,2x+3=±9,解得:.【点睛】本题考查了解一元二次方程和特殊角的三角函数值的应用,能熟记特殊角的三角函数值是解(1)小题的关键,能正确配方是解(2)小题的关键.17. 【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.【点评】本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.18. 【考点】频数分布直方图、中位数,样本估计总体【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.(3)估计A课程成绩跑过75.8分的人数为300×=180人.【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.19. 【考点】一元一次不等式组的应用.【分析】(1)设组建中型两类图书室x个、小型两类图书室(30﹣x)个,由于组建中、小型两类图书室共30个,已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本,因此可以列出不等式组,解不等式组然后去整数即可求解.(2)根据(1)求出的数,分别计算出每种方案的费用即可.解:(1)设组建中型两类图书室x个、小型两类图书室(30﹣x)个.由题意,得,化简得,解这个不等式组,得20≤x≤22.由于x只能取整数,∴x的取值是20,21,22.当x=20时,30﹣x=10;当x=21时,30﹣x=9;当x=22时,30﹣x=8.故有三种组建方案:方案一,中型图书室20个,小型图书室10个;方案二,中型图书室21个,小型图书室9个;方案三,中型图书室22个,小型图书室8个.(2)方案一的费用是:2000×20+1500×10=55000(元);方案二的费用是:2000×21+1500×9=55500(元);方案三的费用是:2000×22+1500×8=56000(元);故方案一费用最低,最低费用是55000元【点评】此题主要考查了一元一次不等式组在实际生活中的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系列出不等式组解决问题. 20. 【考点】直线与圆的位置关系;作图—复杂作图.【分析】(1)根据题意作出图形,如图所示;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA为圆P的半径,即可得证.解:(1)如图所示,⊙P为所求的圆;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,∴PD=PA,∵PA为⊙P的半径.∴BC与⊙P相切.【点评】此题考查了直线与圆的位置关系,以及作图-复杂作图,证明切线的方法有两种:一种是连接证明垂直;一种是作垂线,证明垂线段等于半径. 21. 【考点】反比例函数综合题.【分析】(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.【点评】本题综合考查了反比例函数的知识,包括待定系数法求函数解析式,点在函数图象上,锐角三角函数的定义,以及折叠的性质,求出点D的坐标,然后求出反比例函数解析式是解题的关键.22. 【考点】二次函数综合题.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键. 23. 【考点】相似形综合题【分析】(1)根据点E为BC的中点可知BE=EC.再由BE=EF得出FE=EC,由HL定理可得出△DCE≌△DFE,由全等三角形的性质即可得出结论;(2)过点D作DN⊥AB于点N,由题意得,NB=CD=x=DF,AB=AF=y,DN=BC=12,再由勾股定理即可得出结论;(3)①根据△DCE≌△DEF可得出∠EDF=∠EDC.再由FM∥CD可知∠EDF=∠DMF=∠MDC,故DF=MF,CD=MF,所以四边形CDFM是平行四边形.根据DF=DC即可得出结论;②根据题意得出∠AEB=60°,故可得出∠AEF=∠FEC=60°,∠FED=∠FEC=30°.过点F作FH⊥ED于点H,由勾股定理可得出FH,DF=DM,DE的长,根据三角形的面积公式即可得出结论.解:(1)∵点E为BC的中点,∴BE=EC.∵BE=EF,∴FE=EC.∵AB∥CD,∴∠ECD=90°.在Rt△DCE与Rt△△DFE中,,∴△DCE≌△DFE(HL),∴DC=DF.(2)方法一:过点D作DN⊥AB于点N,由题意得,NB=CD=x=DF,AB=AF=y,DN=BC=12,∴AN2+DN2=AD2,即(y﹣x)2+122=(y+x)2,化简得,xy=36,∴y=.方法二:由题意可得∠AED=∠EFD=90°,∠ADE=∠AEB,∴△ABE∽△EFD,∴=,即=,∴y=;(3)①四边形CDFM是菱形.理由:∵△DCE≌△DEF,∴∠EDF=∠EDC.∵FM∥CD,∴∠EDF=∠DMF=∠MDC,∴DF=MF,∴CD=MF,∴四边形CDFM是平行四边形.∵DF=DC,∴四边形CDFM是菱形.②∵AB=6,BE=CE=6,tan∠AEB===,∴∠AEB=60°.∴∠AEF=∠FEC=60°,∴∠FED=∠FEC=30°.过点F作FH⊥ED于点H,∵BE=FE=6,∴FH=3,DF=DM=2,DE=4,∴EM=2,∴S△EMF=×2×3=3.【点评】本题考查的是相似形综合题,涉及到全等三角形的判定与性质、直角三角形的性质、菱形的判定等知识,难度较大.。
2019初三中考数学冲刺
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢
初三中考数学冲刺-分式与二次根式
1指数的扩充
2分式和分式的基本性质
设f,g是一元或多元多项式,g的次数高于零次,则称f,g之比f/g为分式
分式的基本性质分数的分子与分母都乘以或除以同一个不等于0的数,分数的值不变
3分式的约分和通分
分式的约分是将分子与分母的公因式约去,使分式化简
如果一个分式的分子与分母没有一次或一次以上的公因式,且各系数没有大于1的公约数,则此分式成为既约分式既约分式也就是最简分式
对于分母不相同的几个分式,将每个分式的分子与分母乘以适当的非零多项式,使各分式的分母相同,而各分式的值保持不变,这种运算叫做通分
4分式的运算
5分式方程
方程的两遍都是有理式,这样的方程成为有理方程如果有理方程中含有分式,则称为分式方程
1根式
在实数范围内,如果n个x相乘等于a,n是大于1的整数,则称x为a的n次方根
含有数字与变元的加,减,乘,除,乘方,开方运算,并一定含有变元开方运算的算式成为无理式
2最简二次根式与同类根式
具备下列条件的二次根式称为最简二次根式:被开方式的每一个因式的指数都小于开方次数根号内不含有分母
如果几个二次根式化成最简根式以后,被开方式相同,那么这几个二次根
式叫做同类根式
3二次根式的运算
4无理方程
根号里含有未知数的方程叫做无理方程。
各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。