浙江省温州市2019年中考数学名校冲刺金卷 八 (PDF版无答案)
- 格式:pdf
- 大小:1.08 MB
- 文档页数:6
2019年浙江省温州中考数学模拟试卷一.选择题(满分40分,每小题4分)1.16的算术平方根是()A.8 B.﹣8 C.4 D.±42.方程去分母后结果是()A.2x﹣4=1﹣3x B.2x﹣2=1﹣3x C.2x﹣4=6﹣3x D.2x﹣2=6﹣3x 3.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.4.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2 C.a6÷a2=a3D.(﹣2a)2=4a2 5.如图,点C、D在以AB为直径的半圆上,点O为圆心,∠DCO=55°,则∠CAD的度数为()A.30°B.35°C.40°D.45°6.若关于x的不等式(a﹣1)x<3(a﹣1)的解都能使不等式x<5﹣a成立,则a的取值范围是()A.a<1或a≥2 B.a≤2 C.1<a≤2 D.a=27.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A.B.C.D.无法确定8.已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为()A.60 B.48 C.60πD.48π9.已知a、b满足x=a2+b2+21,y=4(2b﹣a),则x、y的大小关系是()A.x≤y B.x≥y C.x>y D.x<y10.已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是()A.B.C.D.二.填空题(满分30分,每小题5分)11.函数y=中,自变量x的取值范围是.12.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为.13.抛物线y=3(x+2)2﹣2的顶点坐标是.14.如图,⊙O上三点A,B,C,半径OC=1,∠ABC=30°,⊙O的切线PA交OC延长线于点P,从现图中选取一条以P为端点的线段,此线段的长为.(注明选取的线段)15.如图,在x 轴的正半轴上依次截取OA 1=A 1A 2=A 2A 3=A 3A 4=A 4A 5,过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数y =(x ≠0)的图象相交于点P 1、P 2、P 3、P 4、P 5,得直角三角形OP 1A 1、A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1、S 2、S 3、S 4、S 5,则S 10= .(n ≥1的整数)16.如图,在△ABC 中,∠C =90°,AB =30,D 是AC 上一点,AD :CD =25:7,且DB =DA ,过AB 上一点P ,作PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 长是 .三.解答题(满分80分,每小题10分) 17.(10分)计算或化简: (1)﹣(3﹣π)0﹣4cos45°; (2)+.18.(8分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点,点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD 、AN . (1)求证:四边形AMDN 是平行四边形;(2)在点M 移动过程中:①当四边形AMDN 成矩形时,求此时AM 的长; ②当四边形AMDN 成菱形时,求此时AM 的长.19.(8分)如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠B=35°,求∠CAE度数.20.(8分)小辉和小聪两人在玩转盘游戏时,把一个可以自由转动的转盘A分成3等份的扇形区域,把转盘B分成2等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小辉获胜;若指针所指两个区域的数字之和为3的倍数,则小聪获胜,如果指针落在分割线上,则需要重新转动转盘.在这个游戏中,小辉、小聪两人获胜的概率分别是多少?该游戏规则对双方公平吗?21.(10分)平面直角坐标系中,已知二次函数的图象经过点A(2,0)和点,直线l经过抛物线的顶点且与y轴垂直,垂足为Q.求该二次函数的表达式.22.(10分)在天府新区的建设中,现要把176吨物资从某地运往华阳的甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为12吨/辆和8吨/辆,运往甲、乙两地的运费如下表:运往地 车型 甲地(元/辆) 乙地(元/辆)大货车 640 680 小货车500560(1)求这两种货车各用多少辆?(2)如果安排10辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,运往甲、乙两地的总运费为w 元,求出w 与a 的关系式;(3)在(2)的条件下,若运往甲地的物资为100吨,请求出安排前往甲地的大货车多少辆,并求出总运费.23.(12分)已知一个矩形纸片AOBC ,某中AO =8,OB =10,将矩形纸片沿CF 折叠,点A 落在OB 边上点E 处,写出E 、F 的坐标 .变式:将折痕的一个端点O 固定,另一个端点平移到AC 的中点D 处,并延长OE 交BC 于点P ,求点P 的坐标.24.(14分)如图,在平面直角坐标系中,抛物线y =与x 轴交于点A ,点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的对称轴与x 轴交于点E .(1)点D 是线段AC 上方抛物线上一动点,连接AC 、DC 、DA ,过点B 作AC 的平行线,交DA 延长线于点F ,连接CF ,当△DCF 的面积最大时,在抛物线的对称轴上找一点Q ,使得DQ +QE 的值最小,求出此时Q 点的坐标.(2)将△OBC 绕点O 逆时针旋转至△OB 1C 1,点B 、C 的对应点分别是B 1,C 1,且点B 1落在线段BC 上,再将△OB 1C 1沿y 轴平移得△O 1B 2C 2,其中直线O 1C 2与x 轴交于点K ,点T 为抛物线对称轴上的动点,连接KT 、TO 1,△O 1KT 能否成为以O 1K 为直角边的等腰直角三角形?若能,请求出所有符合条件的T 点的坐标;若不能,请说明理由.。
浙江省2019年初中学业水平考试(温州卷)数 学 试 题 卷卷 I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(3)5-⨯的结果是( ).A 15- .B 15 .C 2- .D 22.太阳距离银河系中心约为250000000000000000公里,其中数据 250000000000000000用科学记 数法表示为( ).A 180.2510⨯ .B 172.510⨯ .C 162510⨯ .D 162.510⨯3.某露天舞台如图所示,它的俯视图...是( )4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6 张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ).A16.B13.C12.D235.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( ).A 20人.B 40人.C 60人.D 80人6.验光师测得一组关于近视眼镜的度数 y (度)与镜片焦距x (米)的对应数据如下表. 根据表中数据,可得.A.B.C.Dy 关于x 的函数表达式为( ).A y x=.B 100y = .C y x=.D 400y =7.若扇形的圆心角为 90,半径为6,则该扇形的弧长为( ).A32π .B 2π .C 3π .D 6π8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( ).A 95sin α.B95cos α.C59sin α.D59cos α9.已知二次函数242y x x =-+,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A 有最大值1-,有最小值2- .B 有最大值0,有最小值1-.C 有最大值7,有最小值1-.D 有最大值7,有最小值2-10.如图,在矩形 ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE上取点M 使 BM BC =,作 MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了22()()a b a b a b +-=-.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结 EP ,记△EPH 的面积为1S ,图中阴影部分的面积为2S .若点 A ,L ,G 在同一直线上,则12S S 的值为( ).A2.B23.C24.D26卷 II二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:244m m ++= .12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80 分及以上)的学生有 人.14.如图,⊙O 分别切BAC ∠ 的两边 AB ,AC 于点E ,F ,点P 在优弧(BDF )上,若66BAC ∠=,则EPF ∠等于 度.15. 三个形状大小相同的菱形按如图所示方式摆放,已知90AOB AOE ∠=∠=, 菱形的较短对角线长为2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm .16. 图1 是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2 所示,两支脚10OC OD ==分米,展开角60COD ∠=,晾衣臂 10OA OB == 分米,晾衣臂支架 6HG FE ==分米,且4H O F O ==分米,当90AOC ∠=时,点A 离地面的距离AM 为 分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,则 B E BE ''-为 分米.三、解答题(本题有8小题,满分80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:069(12)(3)--- (2) 224133x x x x x+-++18.(本题8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F(1) 求证:△BDE ≌△CDF .(2) 当AD ⊥BC ,1AE =,2CF = 时,求AC 的长.19.(本题8分)车间有 20 名工人,某一天他们生产的零件个数统计如下表. 车间 20 名工人某一天生产的零件个数统计表(1)求这一天 20 名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者, 从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20. (本题8分)如图,在 7×5 的方格纸 ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点 A ,B ,C ,D 重合.(1)在图1 中画一个格点△EFG ,使点 E ,F ,G 分别落在边 AB ,BC ,CD ,且90EFG ∠=. (2)在图 2 中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且 .MP NQ = 注:图 1,图2 在答题纸上.21. (本题10分)如图,在平面直角坐标系中,二次函数 21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围.(2)把点B 向上平移m 个单位得点1B .若点1B 向左平移n 个单位,将与该二次函数图象上的点2B 重合;若点1B 向左平移(6)n +个单位,将与该二次函数 图象上的点3B 重合.已知0m >,0n >,求 m ,n 的值.在△ABC 中,90BAC ∠=,点E 在BC 边上,且 CA CE =,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结 CD ,CF .(1)求证:四边形DCFG 是平行四边形. (2)当4BE =,38CD AB =时,求⊙O 的直径长.23. (本题满分12分)某旅行团 32 人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童 10人,成人比少年多 12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领 10 名儿童去另一景区B 游玩,景区B 的门票价格为 100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8 人和少年5 人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(本题14分)如图,在平面直角坐标系中,直线142y x =-+ 分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点1Q 向终点2Q 匀速运动,它们同时到达终点. (1)求点B 的坐标和OE 的长. (2)设点2Q 为(,)m n ,当1tan 7n EOF m =∠ 时,求点2Q 的坐标. (3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点3Q ,当点Q 在线段23Q Q 上时,设3=Q Q s ,AP t =,求s 关于t 的函数表达式亚.②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.第24题。
2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15 B.15 C.﹣2 D.22.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×10163.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()A .y=B.y =C.y=D.y=7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD中,E 为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()。
2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(-3)X5的结果是()A.-15B.15C.-2D.2【解答】解:(-3)X5=-15;故选:A.2.(4分)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为()A.0.25X1018B. 2.5X1017C.25X1016D. 2.5X1016【解答】解:科学记数法表示:250000000000000000=2.5X1017故选:B.3.(4分)某露天舞台如图所示,它的俯视图是()一「一一一主视方向故选:B.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.AB.AC.AD.263 2 3【解答】解:从中任意抽取i张,是“红桃”的概率为•!,故选:A.5. (4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择蛆鱼的有40 A,那么选择黄鱼的有()温州多二区居民最爱吃的鱼类增况统计图A. 20 AB. 40 AC. 60 AD. 80 人【解答】解:调查总人数:40:20%=200 (人),选择黄鱼的人数:200X40%=80 (人),故选:D.6. (4分)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得〉关于x 的函数表达式为( )近视眼镜的度数y (度)2002504005001000镜片焦距X (米)0.500.400.250.200.10A.B. y=^—x 100【解答】解:由表格中数据可得:xy=100,故y 关于x 的函数表达式为: >=奕9.X 故选:A.7. (4分)若扇形的圆心角为90° ,半径为6,A. —JiB. 2jt2【解答】解:该扇形的孤长=虹或=3兀180故选:C.8. (4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆A3的长为()则该扇形的弧长为()C. 3IID. 6n5sina5cos a9sina9cosa【解答】解:作ADLB C于点Q,则80=呈*.3=325・cosot—•.COS(X=BD AB9 -5AB解得,AB=―—米,5cos a故选:B.ABQ3mc9.(4分)已知二次函数y=?-4x+2,关于该函数在-1W x W3的取值范围内,下列说法正确的是()A.有最大值-1,有最小值-2B.有最大值0,有最小值-1C.有最大值7,有最小值-1D.有最大值7,有最小值-2【解答】解:•.•y=x2 -4x+2=(x-2) 2 -2,.•.在-1W x W3的取值范围内,当x=2时,有最小值-2,当x=-1时,有最大值为y=9-2=7.故选:D.10.(4分)如图,在矩形ABCQ中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN//BG交CD于点、L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=cr-b1,现以点F为圆心,FE为半径作圆弧交线段OH于点P,连结EP,记AEPH的面积为Si,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则勺_的值为()S2r N GA.坦B.匝C.匝D.匝2346【解答】解:如图,连接ALGL,PF. h-----a------►a----*15/、:/、、f E MaP--...H L CF―-------由题意:S矩形amld—S h=<72-b1,PH=相2_b2,•..点A,L,G在同一直线上,AM//GN,:.WMLs4GNL,•AH=ML;"gn nl'.•.*k=M±,a~b b整理得a=3b,.Si—§・(a-b)•卒3—2扼b2扼S2a2-b28b24故选:C.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=(m+2)2.【解答】解:原式=(7/7+2)2.故答案为:(m+2)2.'x+2>312.(5分)不等式组]x-1,的解为1OW9.I*|\+2>3①由①得,X>1,由②得,xW9,故此不等式组的解集为:1<x W9.故答案为:1<xW9.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人.他学生“汉字听写”大赛成绩【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.14.(5分)如图,O。
2019年浙江省初中毕业生学业考试(温州卷)数学试题卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1、计算:(-3)×5的结果是()A.-15B.15C.-2D.22、太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为()A.180.2510⨯ B.172.510⨯ C.162510⨯ D.162.510⨯3、某露天舞台如图所示,它的俯视图是()A. B. C. D.4、在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.16B.13C.12D.235、对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6、验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.100yx= B.100xy= C.400yx= D.400xy=7、若扇形的圆心角为90°,半径为6,则该扇形的弧厂为()A.32π B.2π C.3π D.6π8、某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.95sinα米 B.95cosα米 C.59sinα米 D.59cosα米9、已知二次函数242y x x=-+,关于该函数在-1≤x≤3的取值范围内,下列说法正确的是()A.有最大值-1,有最小值-2B.有最大值0,有最小值-1C.有最大值7,有最小值-1D.有最大值7,有最小值-210、如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD 于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N.欧儿里得在《几何原本》中利用该图解释了()()22a b a b a b+-=-.现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则12SS的值为()A.22B.23C.24D.26二、填空题(本题有6小题,每小题5分,共30分)11、分解因式:244m m++=______.12、不等式组23 142xx+>⎧⎪⎨-≤⎪⎩的解为______.13、某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人______.14、如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧EDF上.若∠BAC =66°,则∠EPF等于______度.15、三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为______cm.16、图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM 为______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′-BE为______分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17、计算:(1)069(12)(3)--+---;(2)224133x x x x x +-++. 18、如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长. 19、车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表 生产零件的个数(个) 9 10 11 12 13 15 16 19 20工人人数(人)1 1 6 42 2 2 1 1(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20、如图,在7×5的方格纸ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A ,B ,C ,D 重合.(1)在图中画一个格点△EFG ,使点E ,F ,G 分别落在边AB ,BC ,CD 上,且∠EFG =90°;(2)在图中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且MP =NQ .21、如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.22、如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG 是平行四边形;(2)当BE =4,CD =38AB 时,求⊙O 的直径长.23、某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24、如图,在平面直角坐标系中,直线142y x=-+分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当17nm=tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.答案第1页,共14页 参考答案1、【答案】A【分析】根据有理数乘法法则计算即可.【解答】解:(-3)×5=-15,选A.2、【答案】B【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将250000000000000000用科学记数法表示为172.510 .选B.3、【答案】B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图是:选B.4、【答案】A【分析】直接利用概率公式计算可得.【解答】解:从中任意抽取1张,是“红桃”的概率为16, 选A.5、【答案】D【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),选D.6、【答案】A【分析】直接利用已知数据可得xy =100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:100yx =.选A.7、【答案】C【分析】根据弧长公式计算即可.【解答】解:该扇形的弧长=9063 180ππ⨯=.选C.8、【答案】B【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【解答】解:作AD⊥BC于点D,则BD=32+0.3=95,∵cosα=BD AB,∴cosα=95 AB,解得,AB=95cosα米,选B.9、【答案】D【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2−4x+2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x=2时,有最小值−2,当x=−1时,有最大值为y=9−2=7.选D.10、【答案】C【分析】连接AG,由△ADL∽△GCL列出比例式AD DLCG CL=,整理可得a=3b,然后分别用含b的式子表示出1S,2S即可解决问题.【解答】解:连接AG,点A,L,G在同一直线上,∴PF=a,AD=a-b,DL=a+b,CL=a-b,CG=b,∵AB∥FG,∴△ADL∽△GCL,∴AD DLCG CL=,即a b a bb a b-+=-,整理可得:a=3b,PH=()2222322PF FH b b b-=-=,∴()2 111222222S PH EH b a b b=⨯⨯=⨯⨯-=,22228S a b b=-=,∴212222S bS==,选C.11、【答案】()22m+【分析】直接利用完全平方公式分解因式得出答案.【解答】解:244m m++=()22m+,故答案为:()22m+.12、【答案】1<x≤9【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:23142xx+>⎧⎪⎨-≤⎪⎩①②,由①得,x>1,由②得,x≤9.故不等式组的解集为:19x<.13、【答案】90答案第3页,共14页【分析】根据条形统计图可以得到80分及以上的学生人数.【解答】解:80分及以上的学生有:60+30=90人,故答案为:90.14、【答案】57【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解答】解:连接OE,OF,∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57.15、【答案】1282【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH 是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO 2,IK2x−x,根据勾股定理即可得出x2=22S菱形BCOI=IO×CK=12IC×BO,即可得出BO=2+2,进而得到△ABE的周长.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=2x,IK=2x−x,∵Rt△CIK中,(2x−x)2+x2=22,解得x2=2+2,又∵S菱形BCOI=IO×CK=12IC×BO,∴2x2=12×2×BO,∴BO=22+2,∴BE=2BO=42+4,AB=AE=2BO=4+22,∴△ABE的周长=42+4+2(4+22)=12+82,故答案为:12+82.16、【答案】(1).53(2).4【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=12∠COD=30°,答案第5页,共14页∴QM =OP =OC•cos30°=53(分米), ∵∠AOC =∠QOP =90°, ∴∠AOQ =∠COP =30°, ∴AQ =12OA =5(分米), ∴AM =AQ +MQ =5+53. ∵OB ∥CD ,∴∠BOD =∠ODC =60°在Rt △OFK 中,KO =OF•cos60°=2(分米),FK =OF•sin60°=23(分米), 在Rt △PKE 中,EK =22EF FK -=26(分米), ∴BE =10−2−26=(8−26)(分米),在Rt △OFJ 中,OJ =OF•cos60°=2(分米),FJ =23(分米),在Rt △FJE′中,E′J =2263-(2)=26, ∴B′E′=10−(26−2)=12−26, ∴B′E′−BE =4.故答案为:5+53,4.17、【答案】(1)7;(2)1x【分析】(1)直接利用绝对值的性质、算术平方根的性质、零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案. 【解答】解:(1)原式63137=-++=. (2)原式()2413133x x x x x x x+-+===++.18、【答案】(1)见解答;(2)3AC =答案第7页,共14页【分析】(1)根据平行线的性质得到∠B =∠FCD ,∠BED =∠F ,由AD 是BC 边上的中线,得到BD =CD ,于是得到结论;(2)根据全等三角形的性质得到BE =CF =2,求得AB =AE +BE =1+2=3,于是得到结论.【解答】解:(1)∵CF AB ∥, ∴B FCD BED F ∠=∠∠=∠,. ∵AD 是BC 边上的中线, ∴BD CD =, ∴BDE CDF ≌. (2)∵BDE CDF ≌, ∴2BE CF ==,∴123AB AE BE =+=+=. ∵AD BC BD CD ⊥=,, ∴3AC AB ==.19、【答案】(1)这一天20名工人生产零件的平均个数为13个;(2)定额为11个时,有利于提高大多数工人的积极性【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论. 【解答】解:(1)()191101116124132152162191201=1320x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(个)答:这一天20名工人生产零件的平均个数为13个. (2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人的积极性. 当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性. 当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性. ∴当定额为11个时,有利于提高大多数工人的积极性. 20、【答案】(1)见解答;(2)见解答【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可. (2)如图3中,构造矩形即可解决问题.如图4中,构造MP =NQ =即可. 【解答】解:(1)画法不唯一,如图1或图2等.(2)画法不唯一,如图3或图4等.21、【答案】(1)()()2060A B -,,,,26x -;(2)m n ,的值分别为72,1 【分析】(1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围; (2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【解答】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,,∴()()2060A B -,,,. 由函数图象得,当0y 时,26x -. (2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =,∴()()217121622m =-⨯-+⨯-+=,答案第9页,共14页∴m n ,的值分别为712,. 22、【答案】(1)见解答;(2)O 的直径长为35【分析】(1)连接AE ,由∠BAC =90°,得到CF 是⊙O 的直径,根据圆周角定理得到∠AED =90°,即GD ⊥AE ,推出CF ∥DG ,推出AB ∥CD ,于是得到结论; (2)设CD =3x ,AB =8x ,得到CD =FG =3x ,于是得到AF =CD =3x ,求得BG =8x−3x−3x =2x ,求得BC =6+4=10,根据勾股定理得到AB =8=8x ,求得x =1,在Rt △ACF 中,根据勾股定理即可得到结论. 【解答】解:(1)连结AE ,∵90BAC ︒∠=,∴CF 为O 的直径.∵AC EC =,∴CF AE ⊥. ∵AD 为O 的直径,∴90AED ︒=∠,即GD ⊥AE , ∴CF ∥DG , ∵AD 是⊙O 的直径, ∴∠ACD =90°,∴180ACD BAC ︒∠+∠=, ∴AB CD ∥,∴四边形DCFG 为平行四边形. (2)由38CD AB =,可设38CD x AB x ==,, ∴3CD FG x ==. ∵AOF COD ∠=∠, ∴3AF CD x ==, ∴8332BG x x x x =--=. ∵GE CF ∥,∴23BE BG EC GF ==. 又∵4BE =, ∴6AC CE ==, ∴6410BC =+=,∴88AB x ===, ∴1x =.在Rt ACF 中,36AF AC ==,,∴CF ==O 的直径长为23、【答案】(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可;②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【解答】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人. (2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b , ∴2b =最大值,此时12a b +=,费用为1160元. (ⅰ)当11a =时,10011801200b ⨯+,∴54b , ∴1b =最大值,此时12a b +=,费用为1180元.答案第11页,共14页(ⅰ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去. 当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤, ∴3b =最大值,此时12a b +=,费用为1200元.(ⅰ)当8a =时,100880601200b ⨯++,∴72b ≤, ∴3b =最大值,此时1112a b +=<,不合题意,舍去. (ⅰ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.24、【答案】(1)(8,0),OE =(2)(6,1);(3)①s =AP 的长为165或3019【分析】(1)令y =0,可得B 的坐标,利用勾股定理可得BC 的长,即可得到OE ; (2)如图,作辅助线,证明△CDN ∽△MEN ,得CN =MN =1,计算EN 的长,根据面积法可得OF 的长,利用勾股定理得OF 的长,由1tan 7n EOF m =∠和142n m =-+,可得结论;(3)①先设s 关于t 成一次函数关系,设s =kt +b ,根据当点P 运动到AO 中点时,点Q 恰好与点C 重合,得t =2时,CD =4,DQ 3=2,s=根据Q 3(−4,6),Q 2(6,1),可得t =4时,s=,利用待定系数法可得s 关于t 的函数表达式; ②分三种情况:(i )当PQ ∥OE时,根据3cos AB BH QBH BQ BQ ∠===BH 的长,根据AB =12,列方程可得t 的值;(ii )当PQ ∥OF 时,根据tan ∠HPQ =tan ∠CDN =14,列方程为2t−2=14(7−32t),可得t 的值.(iii )由图形可知PQ 不可能与EF 平行. 【解答】解:(1)令0y =,则1402x -+=, ∴8x =,∴B 为()80,. ∵C 为()04,, 在Rt BOC 中,228445BC =+=. 又∵E 为BC 中点,∴1252OE BC ==. (2)如图,作EM OC ⊥于点M ,则EM CD ∥, ∴CDN MEN ∽, ∴1CN CDMN EM==, ∴1CN MN ==, ∴221417EN =+=. ∵EN OF ON EM ⋅=⋅, ∴12171717OF ==, 由勾股定理得141717EF =, ∴7tan 6EOF ∠=, ∴171766n m =⨯=. ∵142n m =-+,∴61m n ==,,∴2Q 为()61,.(3)①∵动点P Q ,同时作匀速直线运动, ∴s 关于t 成一次函数关系,设s kt b =+,答案第13页,共14页将225t s =⎧⎪⎨=⎪⎩和455t s =⎧⎪⎨=⎪⎩代入得225455k b k b ⎧+=⎪⎨+=⎪⎩,解得3525k b ⎧=⎪⎨⎪=-⎩,∴3552s t =-. ②(ⅰ)当PQ OE ∥时,(如图),QPB EOB OBE ∠=∠=∠, 作OH x ⊥轴于点H ,则12PH BH PB ==. ∵36565552BQ s t =-=-+37552t =-, 又∵2cos 55QBH ∠=, ∴143BH t =-, ∴286PB t =-, ∴28612t t +-=, ∴165t =.(ⅰ)当PQ OF ∥时(如图),过点Q 作3QG AQ ⊥于点G ,过点P 作PH GQ ⊥于点H ,由3Q QG CBO ∽得33::1:5Q G QG Q Q =. ∵33552Q Q s t == ∴331322Q G t QG t =-=-,, ∴33PH AG AQ Q G ==-3361722t t ⎛⎫=--=-⎪⎝⎭,∴3222QH QG AP t t t =-=--=-. ∵HPQ CDN ∠=∠, ∴1tan tan 4HPQ CDN ∠=∠=,∴13 22742t t⎛⎫-=-⎪⎝⎭,∴3019 t=.(ⅰ)由图形可知PQ不可能与EF平行.综上所述,当PQ与OEF的一边平行时,AP的长为165或3019.。
浙江省2019年初中学业水平考试(温州卷)数学试题卷卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(—3)x5的结果是()A.-15B.15C.-2D.22,太阳距离银河系中心约为250 000000000000000公里,其中数据250 000000000000000用科学记数法表示为()A0.25xlO18 B. 2.5xl017 C.25xl016 D. 2.5xl0163.某露天舞台如图所示,它的是()..-A B. C. D.主祝方向(第3题)4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()1fl1八2A.—B.—C.—D.—63235.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择垢鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人统计m6.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于X 的函数表达式为( )近视眼镜的度数y (度)2002504005001000镜片焦距x (米)0.500.400.250.200.1028. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆的长为()100A. y =---X X八400B. y =---C. v =---■ 100 - xD.X y —---4007.若扇形的圆心角为90 ,半径为6,则该扇形的弧长为()3A.—兀B. C. 3〃 D.6冗A. —-—B. —-—C. —-—D.—-—5sina5 cos a 9 sin a 9 cos a9. 已知二次函数> =4x + 2,关于该函数在—l<x<3的取值范围内,下列说法正确的是()A.有最大值-1,有最小值-2B.有最大值0,有最小值-1C.有最大值7,有最小值-1D.有最大值7,有最小值-210. 如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形3EFG,边EF 交CD 于点H ,在边BE 上取点M 使BM = BC,作MN // BG 交CD 于点£,交FG 于点N.欧几里得在《几何原本》中利用该图解释了 (a + b )(a-b )^a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点F ,连结EP ,记△ EFH 的面积为图中阴影部分的面积为$2 .若点A, L, G 在同一直线上,则戋的值为()$2A.巨B.旦C.巨D.巨23 46卷II二、填空题(本题有6小题,每小题5分,共30分)11. 分解因式:m 2 + 4m + 4 =.x + 2〉312. 不等式组L-1 的解为____________.----<4〔213. 某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人.14.如图,。
浙江省2019年初中学业水平考试(温州卷)数 学 试 题 卷卷 I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(3)5-⨯的结果是( ).A 15- .B 15 .C 2- .D 22.太阳距离银河系中心约为250000000000000000公里,其中数据 250000000000000000用科学记 数法表示为( ).A 180.2510⨯ .B 172.510⨯ .C 162510⨯ .D 162.510⨯3.某露天舞台如图所示,它的俯视图...是( )4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6 张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ).A16.B13.C12.D235.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有 40人,那么选择黄鱼的有( ).A 20人.B 40人.C 60人.D 80人.A.B.C.D6.验光师测得一组关于近视眼镜的度数 y (度)与镜片焦距x (米)的对应数据如下表. 根据表中数据,可得y 关于x 的函数表达式为( ).A y x=.B 100y =.C y x= .D 400y =7.若扇形的圆心角为 90,半径为6,则该扇形的弧长为( ).A32π .B 2π .C 3π .D 6π8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( ).A 95sin α.B95cos α.C59sin α.D59cos α9.已知二次函数242y x x =-+,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A 有最大值1-,有最小值2- .B 有最大值0,有最小值1- .C 有最大值7,有最小值1-.D 有最大值7,有最小值2-10.如图,在矩形 ABCD 中,E 为AB 中点,以BE为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使 BM BC =,作 MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了22()()a b a b a b +-=-.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结 EP ,记△EPH 的面积为1S ,图中阴影部分的面积为2S .若点 A ,L ,G 在同一直线上,则12S S 的值为( ).A2.B3.C4.D6卷 II二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:244m m ++= .12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80 分及以上)的学生有 人.14.如图,⊙O 分别切BAC ∠ 的两边 AB ,AC 于点E ,F ,点P 在优弧(BDF )上,若66BAC ∠=,则EPF ∠ 等于 度.15. 三个形状大小相同的菱形按如图所示方式摆放,已知90AOB AOE ∠=∠=, 菱形的较短对角线长为 2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm .16. 图 1 是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图 2 所示,两支脚10OC OD == 分米,展开角60COD ∠=,晾衣臂 10OA OB == 分米,晾衣臂支架 6HG FE ==分米,且4HO FO ==分米,当90AOC ∠=时,点A 离地面的距离AM 为 分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,则 B E BE ''-为 分米.三、解答题(本题有8小题,满分80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:06(1(3)--- (2) 224133x x x x x+-++18.(本题8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F(1) 求证:△BDE ≌△CDF .(2) 当AD ⊥BC ,1AE =,2CF = 时,求AC 的长.19.(本题8分)车间有 20 名工人,某一天他们生产的零件个数统计如下表. 车间 20 名工人某一天生产的零件个数统计表(1)求这一天 20 名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者, 从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20. (本题8分)如图,在 7×5 的方格纸 ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点 A ,B ,C ,D 重合.(1)在图1 中画一个格点△EFG ,使点 E ,F ,G 分别落在边 AB ,BC ,CD ,且90EFG ∠=. (2)在图2 中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且 .MP NQ = 注:图 1,图2 在答题纸上.21. (本题10分)如图,在平面直角坐标系中,二次函数 21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围.(2)把点B 向上平移m 个单位得点1B .若点1B 向左平移n 个单位,将与该二次函数图象上的点2B 重合;若点1B 向左平移(6)n +个单位,将与该二次函数 图象上的点3B 重合.已知0m >,0n >,求 m ,n 的值.22. (本题10分)在△ABC 中,90BAC ∠=,点E 在BC 边上,且 CA CE =,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结 CD ,CF .(1)求证:四边形DCFG 是平行四边形. (2)当4BE =,38CD AB =时,求⊙O 的直径长.23. (本题满分12分)某旅行团 32 人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童 10人,成人比少年多 12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领 10 名儿童去另一景区B 游玩,景区B 的门票价格为 100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8 人和少年5 人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(本题14分)如图,在平面直角坐标系中,直线142y x=-+分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO 上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点1Q向终点2Q匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长. (2)设点2Q 为(,)m n ,当1tan 7n EOF m =∠ 时,求点2Q 的坐标. (3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点3Q ,当点Q 在线段23Q Q 上时,设3=Q Q s ,AP t =,求s 关于t 的函数表达式亚.②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.。
2019年中考数学模拟冲刺试卷及答案本试卷分试题卷和答题卷两部分,试卷共6页,答题卷共6页,满分150分。
考试时间120分钟。
一.选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑...............) 1.16的平方根是( )A.4B.-4C.±4D.±82.下列运算正确的是( )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x += 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个 4.如图,桌面上有一个一次性纸杯,它的俯视图应是( )5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( )A.该调查的方式是普查B.本地区只有40个成年人不吸烟C.样本容量是50D.本城市一定有100万人吸烟6 杭州银泰百货对上周女装的销售情况进行了统计,如下表所示:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( ) A .平均数B . 众数C .中位数D .方差A B C D7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ) A. 内切 B.相交 C.外切 D.外离8.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ) A.2.5B.5C.10D.159.如右图,一次函数y =kx +b 的图象经过A 、B 两点, 则不等式kx +b < 0的解集是( )A.x <0B. 0< x <1C.x <1D. x >110.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A.12120元B.12140元C.12160元D.12200元 11.若2-=+b a ,且a ≥2b ,则( )A.a b 有最小值21B.a b有最大值1 C.b a 有最大值2 D.b a 有最小值98- 12.在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD 上),记它们的面积分别为ABCD S 和BFDE S ,现给出下列命题: ①若232+=BFDE ABCD S S ,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD.则( )A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二.填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位......置.上.) 13.函数2+=x y 中,自变量x 的取值范围是.14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为20.01S ≈甲,20.002S ≈乙,则产量较为稳定的品种是_____________(填“甲”或“乙”).15.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度约为_________m.16.已知圆锥的底面半径为1cm,母线长为1cm,则它的侧面积是 cm 2.17.如图,在平面直角坐标系中,A ⊙与y 轴相切于原点O ,平行于x 轴的直线交A ⊙于M 、N 两点,若点M 的坐标是(42)--,,则弦M N 的长为 .18.如图,已知△OP 1A 1△、A 1P 2A 2、△A 2P 3A 3……均为等腰直角三角形,直角顶点P 1、P 2 、P 3……在函数4y x=(x >0)图象上,点A 1、A 2、A 3……在x 轴的正半轴上,则点P 2011的横坐标为 .三.解答题(本大题共10小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分16分)(1)计算:︒-+---30cos 4)21(|1|123(2)化简2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x xP 1OA 1A 2A 3P 3P 2yx510(第18题)下午5时早上10时第15题第17题20.(本小题满分12分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2;B布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=2--上的概率.x21.(本题满分12分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?22.(本题满分12分)已知:如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE⊥AD 的延长线于点E ,且 CE =CF . (1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积.23.(本题满分12分)已知在图1、2、3中AC 均平分∠MAN .⑴ 在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,我们可得结论:AB +AD =AC ;在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(2)在图3中:(只要填空,不需要证明).①若∠MAN =60°,∠ABC +∠ADC =180°,则AB +AD = AC ;②若∠MAN =α(0°<α<180°),∠ABC +∠ADC =180°,则AB +AD = AC (用含AM N BD CCABNNMMDD AC第23题图1 第23题图2第23题图3α的三角函数表示).24.(本题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)汽车载人时的速度为_______km/min;第一批学生到达博物馆用了_____分钟;原计划从学校出发到达博物馆的时间是______分钟;(2)求汽车在回头接第二批学生途中(即空载时)的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.25.(本题满分14分)如图,Rt △AOB 中,∠A =90°,以O 为坐标原点建立直角坐标系,使点A在x 轴正半轴上,OA =2,AB =8,点C 为AB 边的中点,抛物线的顶点是原点O ,且经过C 点.(1)填空:直线OC 的解析式为 _______ ; 抛物线的解析式为 _______ ;(2)现将该抛物线沿着线段OC 移动,使其顶点M 始终在线段OC 上(包括端点O 、C ),抛物线与y 轴的交点为D ,与AB 边的交点为E ;①是否存在这样的点D ,使四边形BDOC 为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE 的面积为S ,求S 的取值范围.数学参考答案及评分意见一.选择题:1234567891011 12 C B C B C B B A D C CA二.填空题(本大题共6小题,每小题4分,共计24分.)13.x ≥-2 14.甲15.4 16.π 17.3 18.20102 三.解答题:19.(本题满分16分) (1)︒-+---30cos 4)21(|1|123=23-1+8-23………………………………6分=7……………………………………………………8分(2)2)1(111-÷⎪⎭⎫⎝⎛--+x x x x x =)1(122---x x x x ×)1(-x ………………………………5分=xx-1………………………………8分20.(本小题满分12分)(1)………………………………6分或…………………………6分线y =2x --上的点Q 有:(1,-3);(2,-4)(2)落在直∴P=62=31………………………………12分 21.解:如图,∵CD ∥AB,∴∠CAB=30°,∠CBF=60°; ……………………2分∴∠BCA=60-30=30°,即∠BAC=∠BCA; ………………………………4分 ∴BC=AB=3米; ………………………………6分B A -2-3-41(1,-2) (1,-3) (1,-4)2(2,-2) (2,-3) (2,-4)Rt △BCF 中,∠CBF=3米,∠CBF=60°; ………………………………8分 ∴BF=BC=1.5米; ………………………………10分故x=BF-EF=0.7米. ………………………………12分 22.(1)连结OC .∵CF ⊥AB ,CE ⊥AD ,且CE=CF ∴∠CAE =∠CAB ∵ OC =OA ∴ ∠CAB =∠O CA ∴∠CAE =∠O CA∴∠O CA +∠ECA =∠CAE +∠ECA =90°……………………4分 又∵OC 是⊙O 的半径∴CE 是⊙O 的切线………………………………6分 (2)∵AD =CD∴∠DAC =∠DCA =∠CAB ∴DC //AB ∵∠CAE =∠O CA ∴OC//AD∴四边形AOCD 是平行四边形 ∴OC =AD =6,AB =12 ∵∠CAE =∠CAB ∴弧CD =弧CB ∴CD =CB =6∴△OCB 是等边三角形 ∴33=CF………………………………9分∴S 四边形ABCD =327233)126(2)(=⋅+=+CF AB CD …………12分23.解:⑴成立证法一:如图,过点C 分别作AM 、AN 的垂线,垂足分别为E 、F. ∵AC 平分∠MAN,∴CE =CF.∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, EMDC∴∠CDE =∠ABC ………………………………3分, ∵∠CED =∠CFB =90°,∴△CED ≌△CFB,∴ED =FB,∴AB +AD =AF +BF +AE -ED =AF +AE,由⑴知AF +AE =AC, ∴AB +AD =AC ………………………………6分 证法二:如图,在AN 上截取AG =AC,连接CG . ∵∠CAB =60°,AG =AC,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC,∴△CBG ≌△CDA, ∴BG =AD, ………………………………3分∴AB +AD =AB +BG =AG =AC, ………………………………6分 (2)①3;………………………………9分②2cos2α.………………………………12分24.(1)1.2km/min;50;100 ; ………………………………3分(2)1.8km/min; ………………………………6分 (3)能够合理安排.方案:从故障点开始,在第二批学生步行的同时出租车先把第一批学生送到途中放下,让他们步行,再回头接第二批学生,当两批学生同时到达博物馆,时间可提前10分钟. 理由:设从故障点开始第一批学生乘车t 1分钟,汽车回头时间为t 2分钟,由题意得:⎩⎨⎧=++=++12212112.18.1)(2.048)(2.02.1t t t t t t t .解得:⎩⎨⎧==163221t t . ………………10分从出发到达博物馆的总时间为:10+2×32+16=90(分钟).即时间可提前100-90=10(分钟). ………………………………12分 25.(1)y =2x ; ………………………………3分y =x 2; ………………………………6分(2)设解析式为m m x y 2)(2+-=,①则可得422=+m m ………………………………8分解得51±-=m(51--=m 舍去),所以51+-=m ………………………………10分2019年中考数学模拟冲刺试卷及答案②S=422++-m m=5)1(2+--m ………………………………12分而20≤≤m ………………………………13分 所以54≤≤m .………………………………14分。
中考干货大提醒考前提前20分钟到场,稳定一下情绪!考试一定一定一定要放松,大考前深呼吸,做五组深呼吸,真的超级有用!可以让紧张感变淡好多!不用在意别人的想法,你只需要自己学好、把自己变得更优秀!!!不要太过于关注排名,它只能反映你目前的情况,不会决定你下一场考试的结果。
一定要有错题本!!一定!!!!注意知识点总结和归纳,形成网状知识结构!考前一个月每天每科一份卷子保持手感!浙江省2019年初中学业水平考试温州卷数学试题卷 I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:(3)5-⨯的结果是().A15-.B15.C2-.D22.太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为().A180.2510⨯.B172.510⨯.C162510⨯.D162.510⨯3.某露天舞台如图所示,它的俯视图...是()4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6 张牌背面朝上,从中任意抽取1张,是“红桃”的概率为().A 16.B13.C12.D235.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有 40人,那么选择黄鱼的有().A20人.B40人.C60人.D80人.A.B.C.D6.验光师测得一组关于近视眼镜的度数 y (度)与镜片焦距x (米)的对应数据如下表. 根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数 y (度)200 250 400 500 1000 镜片焦距x (米)0.500.400.25 0.200.10.A y x=.B 100y =.C y x=.D 400y =7.若扇形的圆心角为 90o,半径为6,则该扇形的弧长为( ).A32π .B 2π .C 3π .D 6π8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( ).A 95sin α.B95cos α.C59sin α.D59cos α9.已知二次函数242y x x =-+,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A 有最大值1-,有最小值2- .B 有最大值0,有最小值1- .C 有最大值7,有最小值1-.D 有最大值7,有最小值2-10.如图,在矩形 ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使 BM BC =,作 MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了22()()a b a b a b +-=-.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结 EP ,记△EPH 的面积为1S ,图中阴影部分的面积为2S .若点 A ,L ,G 在同一直线上,则12S S 的值为( ).A22.B23.C24.D26卷 II二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:244m m ++= .12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80 分及以上)的学生有 人.14.如图,⊙O 分别切BAC ∠ 的两边 AB ,AC 于点E ,F ,点P 在优弧(¼BDF)上,若66BAC ∠=o,则EPF ∠ 等于 度.15. 三个形状大小相同的菱形按如图所示方式摆放,已知90AOB AOE ∠=∠=o, 菱形的较短对角线长为 2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm .16. 图 1 是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图 2 所示,两支脚10OC OD == 分米,展开角60COD ∠=o ,晾衣臂 10OA OB == 分米,晾衣臂支架 6HG FE ==分米,且4HO FO ==分米,当90AOC ∠=o 时,点A 离地面的距离AM 为 分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,则 B E BE ''-为 分米.三、解答题(本题有8小题,满分80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:069(12)(3)--+---(2) 224133x x x x x +-++18.(本题8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F(1) 求证:△BDE ≌△CDF .(2) 当AD ⊥BC ,1AE =,2CF = 时,求AC 的长.19.(本题8分)车间有 20 名工人,某一天他们生产的零件个数统计如下表. 车间 20 名工人某一天生产的零件个数统计表生产零件的个数(个)9 10 11 12 13 15 16 19 20 工人人数(人)116422211(1)求这一天 20 名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者, 从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20. (本题8分)如图,在 7×5 的方格纸 ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点 A ,B ,C ,D 重合.(1)在图1 中画一个格点△EFG ,使点 E ,F ,G 分别落在边 AB ,BC ,CD ,且90EFG ∠=o. (2)在图2 中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且 .MP NQ = 注:图 1,图2 在答题纸上.第18题21. (本题10分)如图,在平面直角坐标系中,二次函数 21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围.(2)把点B 向上平移m 个单位得点1B .若点1B 向左平移n 个单位,将与该二次函数图象上的点2B 重合;若点1B 向左平移(6)n +个单位,将与该二次函数 图象上的点3B 重合.已知0m >,0n >,求 m ,n 的值.22. (本题10分)在△ABC 中,90BAC ∠=o,点E 在BC 边上,且 CA CE =,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结 CD ,CF .(1)求证:四边形DCFG 是平行四边形. (2)当4BE =,38CD AB =时,求⊙O 的直径长.23. (本题满分12分)某旅行团 32 人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童 10人,成人比少年多 12人.第21题(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领 10 名儿童去另一景区B游玩,景区B的门票价格为 100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8 人和少年5 人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(本题14分)如图,在平面直角坐标系中,直线142y x=-+分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO 上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点1Q向终点2Q匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点2Q为(,)m n,当1tan7nEOFm=∠时,求点2Q的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点3Q,当点Q在线段23Q Q上时,设3=Q Q s,AP t=,求s关于t的函数表达式亚.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.第24题。
2019年浙江省温州市中考数学试题(word版含解析)2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.22.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016 3.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()A.y=B.y=C.y=D.y=7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=.12.(5分)不等式组的解为.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于度.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG =90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B (点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P 在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2【分析】根据正数与负数相乘的法则得(﹣3)×5=﹣15;【解答】解:(﹣3)×5=﹣15;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【分析】利用科学记数法的表示形式进行解答即可【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.【点评】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n为正整数.)3.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图是:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:从中任意抽取1张,是“红桃”的概率为,故选:A.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.【点评】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()A.y=B.y=C.y=D.y=【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π【分析】根据弧长公式计算.【解答】解:该扇形的弧长==3π.故选:C.【点评】本题考查了弧长的计算:弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴sinα=,解得,AB=米,故选:B.【点评】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.【点评】本题源于欧几里得《几何原本》中对(a+b)(a﹣b)=a2﹣b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=(m+2)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:原式=(m+2)2.故答案为:(m+2)2.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.(5分)不等式组的解为1<x≤9.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人.【分析】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于57度.【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解答】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°【点评】本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为12+8cm.【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH 是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO =x,IK=x﹣x,根据勾股定理即可得出x2=2+,再根据S菱形BCOI=IO×CK=IC×BO,即可得出BO=2+2,进而得到△ABE的周长.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI =2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,∵Rt△CIK中,(x﹣x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.【点评】本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为(5+5)分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E 绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为4分米.【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK==2(分米)∴BE=10﹣2﹣2=(8﹣2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE′中,E′J==2,∴B′E′=10﹣(2﹣2)=12﹣2,∴B′E′﹣BE=4.故答案为5+5,4.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.【分析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式===.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点评】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【解答】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【点评】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点评】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B (点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B1,B2的坐标,再由对称轴方程列出n的方程,求得n,进而求得m 的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6﹣n,m),B2(﹣n,m),函数图象的对称轴为直线,∵点B1,B2在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.【点评】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x ﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB==8=8x,求得x=1,在Rt △ACF中,根据勾股定理即可得到结论.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.【点评】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.24.(14分)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P 在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由=tan∠EOF和n=﹣m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q 恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH====,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=,列方程为2t﹣2=,可得t的值.(iii)由图形可知PQ不可能与EF平行.【解答】解:(1)令y=0,则﹣x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC==4;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=OB=4,OE=BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∴EN==,∵S△ONE=EN•OF=ON•EM,∴OF==,由勾股定理得:EF===,∴tan∠EOF===,∴==,∵n=﹣m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C==2,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s==5,将或代入得,解得:,∴s=﹣,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3==6,∵BQ=6﹣s=6﹣t+=7﹣t,∵cos∠QBH====,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t=;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s=t﹣,∴Q3G=t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t﹣2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.【点评】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.2019年湖北省荆州市中考数学试题(Word版含答案)2019年湖北省荆州市中考数学试卷一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列实数中最大的是()A.B.πC.D.|﹣4|2.(3分)下列运算正确的是()A.x﹣x=B.a3•(﹣a2)=﹣a6C.(﹣1)(+1)=4D.﹣(a2)2=a43.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A.10°B.20°C.30°D.40°4.(3分)某几何体的三视图如图所示,则下列说法错误的是()A.该几何体是长方体B.该几何体的高是3C.底面有一边的长是1D.该几何体的表面积为18平方单位5.(3分)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③6.(3分)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)8.(3分)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.659.(3分)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0B.k>﹣2且k≠﹣1C.k>﹣2D.k<2且k≠1 10.(3分)如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3B.1:πC.1:4D.2:9二、填空题(本大题共6小题每小题3分,共18分)11.(3分)二次函数y=﹣2x2﹣4x+5的最大值是.12.(3分)如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.13.(3分)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.14.(3分)如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)。
2019年温州市中考数学试题、答案(解析版)、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.计算:(-3) 5的结果是3.某露天舞台如图所示,它的俯视图是选择黄鱼的有4x 2,关于该函数在-1 < x w 3的取值范围内,下列说法正确的是A. 15B. 15C. 2D. 22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为A. 0.25 1018B. 2.5 1017C. 25 1016D. 2.5 10164.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为A. 16B.-3)C. 12D.-35.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么A.20 人B. 40 人6.验光师测得一组关于近视眼镜的度数y (度)表达式为A.y型xC. 60 人D. 80 人与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y关于x的函数近视眼镜的度数y (度)2002504005001000镜片焦距x (米)0.500.400.250.200.10m x.y 100c.y迴x D. yX4007.若扇形的圆心角为90°,半径为6, 则该扇形的弧厂为A.32 B. 2 C.3 D. 68.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆A.」5sinB.」5cosC.」9sin 9cos9.已知二次函数B±3叹第5题泓邛臬社区鶴民址發昵的鱼类情况址计图( )AB的长为(B第8题图214.如图,O O 分别切 BAC 的两边AB , AC 于点E , F ,点P 在优弧?DF 上.若 BAC=66,贝U EPF 等于16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图 2所示,两支脚OC OD 10分米,展开角COD 60,晾衣臂OAA.有最大值 1,有最小值2 B.有最大值0,有最小值 1 C.有最大值7,有最小值 1D.有最大值7,有最小值 210.如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形 BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM=BC ,作MN // BG 交CD 于点L ,交FG 于点N.欧儿里得在《几何原本》中利用该图解释了 (a b )(a b ) a 2 b 2.现以点F 为 圆心,FE 为半径作圆弧交线段 DH 于点P ,连结丘卩,记厶EPH 的面积为S 1,图中阴影部分的面积为 S 2.若点A , L , G 在 同一直线上,则 s 的值为瓦( )A.二2B 上3C.三D.三46卷H30分•不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)11.分解因式: 12.不等式组4m 4= 3的解为413.某校学生“汉字听写” 大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值) 如图所示,其中成绩为“优良”(80分及以上)的学生有人.第14题图15. 三个形状大小相同的菱形按如图所示方式摆放,已知 AOBAOE 90,菱形的较短对角线长为 2 cm .若点C 落在AH 的延长线上,贝U △ ABE 的周长为cm .CO 延长线上)时,点 E 绕点F 随之旋转至OB 上分米;当OB 从水平状态旋转到OB (在的点E 处,贝U BEBE 为三、解答题(本大题共8小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题10分)计算:(1) 6 .9 (1-2)0 ( 3);、填空题(本大题共6小题,每小题5分,本大题共幕校学生"汉字听写"大艷成域的频甦宜方圏D分米.第15题图OB 10分米,晾衣臂支架HG FE 6分米,且HO FO 4分米.当AOC 90时,点A 离地面的距离AM为18. (本题8分)如图,在△ ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF // AB交ED的延长线于点F.(1)求证:△ BDE ◎△ CDF ;(2 )当AD 丄BC , AE=1 , CF=2 时,求AC 的长.19. (本题8分)车间有20名工人,某天他们生产的零件个数统计如下表车间20生产零件的个数(个) 91011121315161920工人人数(人) 116422211(1 )求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施•如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20. (本题8分)如图,在7X 5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A, B, C, D重合.(1)在图1中画一个格点A EFG,使点E, F, G分别落在边AB, BC, CD上,且EFG 90 ;(2)在图2中画一个格点四边形MNPQ,使点M , N , P, Q分别落在边AB, BC, CD , DA上,且MP NQ.注:图1,图2在答题纸上.图1 图2 x23x 3xX2第20题图1 221. (本题10分)如图,在平面直角坐标系中,二次函数y — x 2x 6的图象交x轴于点A, B (点A在点B的左侧).2(1)求点A, B的坐标,并根据该函数图象写出y'O时x的取值范围;(2)把点B向上平移m个单位得点B .若点B向左平移n个单位,将与该二次函数图象上的点B?重合;若点B向左平移(n+6)个单位,将与该二次函数图象上的点B a重合.已知m>0 , n>0,求m, n的值.23.(本题10分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成•已知儿童10人,成人比少年多12人.(1) 求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年 (至少各1名)带领10名儿童去另一景区 B 游玩.景区B 的门票价格为100元 /张,成人全票,少年8折,第21题图22.(本题10分)如图,在 △ ABC 中, BAC 90,点E 在BC 边上,且CA 点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD , CF. CE ,过A , C , E 三点的O O 交AB 于另(1)求证:四边形 DCFG 是平行四边形;3(2)当BE 4 , CD —AB 时,求O O 的直径长.8第22题儿童6折,一名成人可以免费携带一名儿童•①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少- 124. (本题14分)如图,在平面直角坐标系中,直线y —x 4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第2二象限内,E是BC中点,OF丄DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q i向终点Q2匀速运动,它们同时到达终点•(1)求点B的坐标和OE的长;An(2)设点Q2为(m, n),当一—tan EOF时,求点Q?的坐标;m 7(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q s , AP t,求s关于t的函数表达式.②当PQ与厶OEF的一边平行时,求所有满足条件的AP浙江省温州市2019年中考试卷数学答案解析、选择题1. 【答案】A【解析】直接利用有理数乘法法则: (3) 5 15.【考点】有理数乘法法则2. 【答案】B【解析】科学记数法的表示形式为 a 10n的形式,其中K a <10 , n为整数.确定n的值时,要看把原数变成a时, 小数点移动了多少位,n的绝对值与小数点移动的位数相同。