光的干涉—牛顿环-大学物理实验-海南大学
- 格式:pdf
- 大小:134.35 KB
- 文档页数:7
实验 用牛顿环干涉测透镜曲率半径(一)目的:1、掌握用牛顿环测定透镜曲率半径的方法。
2、通过实验加深对等厚干涉原理的理解。
(二)仪器和用具:移测显微镜(JCD 3型)、钠灯牛顿环仪是由待测平凸透镜(凸面曲率半径约为200~300c m〕L和磨光的平玻璃板P叠合装在金属框架F中构成。
框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置。
调节H时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。
(三)原理:当一曲率半径很大的平凸透镜的凸面与一磨光平玻璃板相接触时,在透镜的凸面与平玻璃板之间将形成一空气薄膜,离接触点等距离的地方,厚度相同。
如图9-2所示,若以波长为的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将互相干涉,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。
在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑(图a );如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环(图b),这种干涉现象最早为牛顿所发现,故称为牛顿环。
设透镜L的曲率半径为R ,形成的m 级干涉暗条纹的半径为r m,m 级干涉亮条纹的半径为r m’,不难证明r m =λmRr m’=2)12(λ⋅−R m 以上两式表明,当已知时,只要测出D 第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出λ。
但由于两接触镜面之间难免附着尘埃,并且在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆面,所以近圆心处环纹比较模糊和粗阔,以致难以确切判定环纹的干涉级数m ,即干涉环纹的级数和序数不一定一致。
这样,如果只测量一个环纹的半径,计算结果必然有较大的误差。
为了减少误差,提高测最精度,必须测量距中心较远的、比较清晰的两个环纹的半径,例如测量出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1,m 2均为环序数,不一定是干涉级数),因而(9-1)式应修正为r m2 =(m+j )R λ式中m 为环序数,(m +j )为干涉级数(j 为干涉级修正值),于是λλR m m R j m j m r r m m )()]()[(12122212−=+−+=− 上式表明,任意两环的半径平方差和干涉级以及环序数无关,而只与两个环的序数之差(m 2-m 1)有关。
大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
这些反射和透射光会相互干涉,形成明暗相间的条纹,这就是牛顿环。
三、实验步骤1、调整分光仪,使一束光通过玻璃棱镜,分成两束相干光,并在空间叠加。
2、调整分光仪的望远镜,观察到清晰的牛顿环。
3、使用读数显微镜测量牛顿环的直径,并记录下来。
4、改变分光仪的棱镜角度,观察干涉条纹的变化,并记录下来。
5、分析实验数据,得出结论。
四、实验结果与分析1、实验结果在实验中,我们观察到了清晰的牛顿环干涉现象,并且使用读数显微镜测量了牛顿环的直径。
随着分光仪棱镜角度的变化,干涉条纹也会发生变化。
2、结果分析通过实验数据,我们可以得出以下(1)牛顿环是由两束相干光在空间叠加而形成的干涉现象。
(2)干涉条纹的明暗交替是由于两束光的相位差引起的。
(3)通过测量牛顿环的直径,我们可以计算出光波的波长。
(4)随着分光仪棱镜角度的变化,干涉条纹会发生变化,这是因为光的波长和入射角发生了变化。
五、结论通过本次实验,我们深入了解了干涉现象与光波的波动性质,学习了使用分光仪、读数显微镜的方法。
这对于我们今后在光学领域的研究具有重要意义。
大学物理牛顿环实验一、实验目的1、观察牛顿环的干涉现象2、研究干涉现象与光波的波动性质3、学习使用分光仪、读数显微镜的方法二、实验原理牛顿环是一种典型的干涉现象,它是由一束光分成两束相干光,在空间叠加而成。
当一束光照射在玻璃表面时,会产生反射和透射两种现象。
反射光会在玻璃表面形成亮斑,而透射光则会继续传播。
当透射光再次照射到玻璃表面时,会再次产生反射和透射,形成一系列的反射和透射光。
⼤学物理实验⽜顿环⽜顿环和劈尖⼲涉实验【实验⽬的】1、观察光的等厚⼲涉现象,熟悉光的等厚⼲涉的特点;2、⽤⽜顿环⼲涉测定平凸透镜的曲率半径;3、⽤劈尖⼲涉法测定细丝直径或微⼩薄⽚厚度。
【实验仪器及装置】⽜顿环仪、读数显微镜、钠光灯、劈尖、数显游标卡尺。
【实验原理】⼀、⽜顿环⼲涉⽜顿环装置是由⼀块曲率半径较⼤的平凸玻璃透镜,以其凸⾯放在⼀块光学玻璃平板(平晶)上构成的,如图1所⽰。
平凸透镜的凸⾯与玻璃平板之间的空⽓层厚度从中⼼到边缘逐渐增加,若以平⾏单⾊光垂直照射到⽜顿环上,则经空⽓层上、下表⾯反射的⼆光束存在光程差,它们在平凸透镜的凸⾯相遇后,将发⽣⼲涉。
从透镜上看到的⼲涉花样是以玻璃接触点为中⼼的⼀系列明暗相间的圆环(如图2所⽰),称为⽜顿环。
由于同⼀⼲涉环上各处的空⽓层厚度是相同的,因此它属于等厚⼲涉。
图1 实验装置简化图图2 ⼲涉光路及⽜顿环图由图2 (a)可见,如设透镜的曲率半径为R ,与接触点O相距为r 处空⽓层的厚度为d ,其⼏何关系式为:()2222222r d Rd R r d R R ++-=+-=由于R>>d ,可以略去d 2得22r d R= (1)光线应是垂直⼊射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从⽽带来/2λ的附加程差,所以光程差δ为:22λδ+=d (2)产⽣暗环的条件是:(21)2k λδ=+ (3)其中k =0,1,2,3,...为⼲涉暗条纹的级数。
综合(1)、(2)和(3)式可得第k级暗环的半径为:2r kR λ= (4)由(4)式可知,如果单⾊光源的波长λ已知,测出第m 级的暗环半径m r ,即可得出平凸透镜的曲率半径R ;反之,如果R 已知,测出m r 后,就可计算出⼊射单⾊光波的波长λ。
(a)(b )但是⽤此测量关系式往往误差很⼤,原因在于凸⾯和平⾯不可能是理想的点接触;接触压⼒会引起局部形变,使接触处成为⼀个圆形平⾯,⼲涉环中⼼为⼀暗斑。
大学物理实验牛顿环实验报告含数据一、实验目的1、观察等厚干涉现象——牛顿环。
2、学习用干涉法测量透镜的曲率半径。
3、掌握读数显微镜的使用方法。
二、实验原理牛顿环是一种等厚干涉现象。
将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与平面玻璃之间就会形成一个上表面是球面,下表面是平面的空气薄层,其厚度从中心接触点到边缘逐渐增加。
当一束单色平行光垂直照射到牛顿环装置上时,在空气薄层的上、下表面反射的两束光将产生干涉。
在反射光中观察会看到以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,形成的第 m 级暗环的半径为 rm,对应的空气薄层厚度为 em。
由于光程差等于半波长的奇数倍时产生暗纹,所以有:\\begin{align}2e_m +\frac{\lambda}{2} &=(2m + 1)\frac{\lambda}{2}\\2e_m &= m\lambda\\e_m &=\frac{m\lambda}{2}\end{align}\又因为在直角三角形中,有\(r_m^2 = R^2 (R e_m)^2 \approx 2Re_m\)(因为 em 远小于 R)所以可得\(r_m^2 = mR\lambda\),则\(R =\frac{r_m^2}{m\lambda}\)通过测量暗环的半径,就可以计算出透镜的曲率半径 R。
三、实验仪器读数显微镜、钠光灯、牛顿环装置。
四、实验步骤1、调节读数显微镜调节目镜,使十字叉丝清晰。
转动调焦手轮,使镜筒自下而上缓慢移动,直至从目镜中看到清晰的牛顿环图像。
移动牛顿环装置,使十字叉丝交点与牛顿环中心大致重合。
2、测量牛顿环直径转动测微鼓轮,使十字叉丝从牛顿环中心向左移动,依次对准第30 到第 15 暗环,记录读数。
继续转动鼓轮,使叉丝越过中心向右移动,依次对准第 15 到第 30 暗环,记录读数。
3、重复测量重复上述步骤,共测量 5 组数据。
光的等厚干涉牛顿环实验报告实验目的:1.观察光的等厚干涉现象,熟悉其特点。
2.测定平凸透镜的曲率半径。
3.用劈尖干涉法测定细丝直径或微小厚度。
实验仪器:牛顿环仪、移测显微镜、钠灯、劈尖。
实验内容:1.用牛顿环测量平凸透镜表面的曲率半径。
1) 安放实验仪器,按图11-2的步骤进行。
2) 调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。
将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以获得最大的照度。
3) 调节读数显微镜调焦手轮,直至在显微镜内能看到干涉条纹的像。
适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。
4) 转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。
在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。
将数据填入表中,某环左右位置读数之差即为该环的直径。
用逐差法求出R,并计算误差。
2.用劈尖干涉法测定细丝直径(选做内容)。
1) 将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。
2) 调节叉丝方位和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。
3) 用读数显微镜测出20条暗条纹间的垂直距离l,再测出棱边到细丝所在处的总长度L,求出细丝直径d。
4) 重复步骤3,各测三次,将数据填入表格中。
求其平均值。
实验记录表格:环的级数。
环的左位置。
右位置。
直径Dm/mm 30.18.638.26.736.8.09829.18.679.26.666.7.87628.18.750.26.601.7.95127.18.819.26.532.7.71326.18.890.26.460.7.57025.18.962.26.365.7.40324.19.320.26.002.6.68223.19.410.25.920.6.51022.19.554.25.843.6.36421.19.554.25.751.6.19720.19.655.25.678.6.02319.19.735.25.581.5.846改写后的文章:本实验的目的是观察光的等厚干涉现象,熟悉其特点,并用牛顿环仪测定平凸透镜表面的曲率半径,以及用劈尖干涉法测定细丝直径或微小厚度。
大学物理实验牛顿环实验报告(含数据)牛顿环实验报告引言:牛顿环实验是物理实验中经典的干涉实验之一,通过测量光的干涉色条纹来研究光的波动性质。
本实验旨在探究牛顿环的特点及其与透明介质的厚度之间的关系。
通过对实验数据的收集和分析,我们得到了关于牛顿环的一些有趣的结论。
实验装置与方法:1. 实验装置:我们使用了一台平行板构成的牛顿环实验装置。
装置包括一个透明玻璃平板、一束白光源、一台显微镜及光屏等。
2. 实验方法:(1) 首先,我们在实验室中搭建牛顿环实验装置。
(2) 将光源打开,使其照射在透明玻璃平板上。
(3) 调节显微镜位置,使其焦距与透明玻璃平板接近,并将显微镜对准光源的光斑。
(4) 通过调节透明玻璃平板的厚度,观察和记录不同厚度下的牛顿环干涉色条纹。
(5) 使用光屏记录实验数据,包括透明玻璃平板的厚度和对应的干涉色条纹。
实验数据与结果分析:实验中,我们记录了不同透明玻璃平板厚度下的牛顿环干涉色条纹的数据。
根据我们的观察和记录,我们进行了以下主要分析:1. 牛顿环的特点:我们观察到牛顿环是由一系列同心圆环组成的,且颜色从中心向外渐变。
颜色的变化是由于光的干涉效应引起的。
2. 牛顿环与透明介质厚度:通过分析我们记录的实验数据,我们得出了结论:透明介质的厚度与牛顿环的直径成正比关系,即厚度越大,牛顿环的直径越大。
3. 干涉色的原因:牛顿环的干涉色是由于光的干涉效应引起的。
当光线通过透明玻璃平板和空气之间的边界时,光线会发生折射和反射。
不同波长的光在折射和反射过程中会产生不同的相位差,从而导致干涉色的形成。
结论:通过本实验,我们验证了牛顿环实验的重要性,并获得了有关牛顿环的实验数据,并分析了数据的结果。
我们得出的结论是:牛顿环的直径与透明介质的厚度成正比关系。
这一实验结果对于进一步理解光的干涉效应和光的波动性质具有重要意义。
致谢:在此,我们要特别感谢实验中的指导老师及实验室助理们的帮助和支持。
没有他们的指导和帮助,我们无法顺利完成这一实验报告。
实验九光的等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。
当薄膜层的上下表面有一很小的倾角时,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。
其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张的微粒学说而未能对它做出正确的解释。
光的等厚干涉原理在生产实践中具有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微小长度、厚度和角度,检验物体表面的光洁度、平整度等。
【实验目的】1.观察光的等厚干涉现象,了解等厚干涉的特点。
2.学习用干涉方法测量平凸透镜的曲率半径。
3. 掌握读数显微镜的使用方法。
4.学习用逐差法处理数据。
【实验原理】牛顿环是由一块曲率半径较大的平凸玻璃,以其凸面放在一块光学平板玻璃上构成的,这样平凸玻璃的凸面和平板玻璃的上表面之间形成了一个空气薄层,其厚度由中心到边缘逐渐增加,当平行单色光垂直照射到牛顿环上,经空气薄膜层上、下表面反射的光在凸面处相遇将产生干涉。
其干涉图样是以玻璃接触点为中心的一组明暗相间的同心圆环(如图9-2所示)。
这一现象是牛顿发现的,故称这些环纹为牛顿环。
如图9-1所示,设平凸玻璃面的曲率半径为R,与接触点O相距为r处的空气薄层厚度为e,那么由几何关系:R2 = (R-e)2 + r2 = R2– 2Re + e2 + r2因R》e,所以e2项可以被忽略,有Rre22=(9-1) 现在考虑垂直入射到r处的一束光,它经薄膜层上下表面反射后在凸面处相遇时其光程差δ = 2e + λ/2其中λ/2 为光从平板玻璃表面反射时的半波损失,把(9-1)式代入得:图9-1 产生牛顿环的光路示意图图9-2 牛顿环22λδ+=R r (9-2) 由干涉理论,产生暗环的条件为212λδ)K (+= (K =0,1,2,3,⋯) (9-3)从(9-2)式和(9-3)式可以得出,第K 级暗纹的半径:λKR r K =2(K =0,1,2,3,⋯) (9-4)由上式可知,如果已知光波波长λ,只要测出r k ,即可求出曲率半径R ,反之,已知R 也可由(9-4)式求出波长λ。
光的干涉—牛顿环
【实验目的】
1、 了解牛顿环等厚干涉的原理和观察方法
2、 利用干涉方法测量平/凸透镜的曲率半径
3、 掌握读数显微镜的调节和使用
4、 学习用逐差法和图解法处理数据,并比较两种处理结果
【实验原理】
通常将同一光源发出的光分成两束光,在空间经过不同的路程后合在一起产生干涉。
牛顿环是典型的等厚干涉现象
牛顿环实验装置通常是由光学玻璃制成的一个平面和一个曲率半径较大的球面组成, 在两个表面之间形成一劈尖状空气薄层。
以凸面为
例,当单色光垂直入射时,在透镜表面相遇时就会 发生干涉现象,空
气膜厚度相同的地方形成相同的干涉条纹,这种干涉称作等厚干涉。
在干涉条纹是以接触点为中心的一系列明暗相间的同心圆环,称牛顿
环。
牛顿环的形成:
由于透镜表面B点处的反射光1和玻璃板表面C点的反射光2在B点出发生干涉,在该处产生等厚干涉条纹。
按照波动理论,设形成牛顿环处空气薄层厚度为d,两束相干光的光程差为:
△=2d + λ/ 2 = kλ
当适合下列条件时有
△ =2d + λ/ 2 = kλ ---------(1) ( K = 1,2,3,... 明△ =2d + λ/ 2 = (2k+1)λ/2---------(2) ( K = 1,2,3,... 暗式中λ为入射光的波长,λ/2 是附加光程差,他是由于光在光密介质面上反射时产生的半波损失而引起的
)表明,当 K=0 时(零级),d=0,即平面玻璃和平凸透镜接触处的条纹为暗纹。
光程差Δ仅与d 有关,即厚度相同的地方干涉条纹相同。
平凸透镜曲率半径的测量:
由几何关系,在B点可得:r2=R2-(R2-d2)=2Rd-d2
因为 R>>d 所以得
上式表明d 与
成正比,说明离中心越远,光程差增加越快,干涉条纹越来越密。
由公式:
... (暗环)
可知
若测出第K级暗环的半径
,且单色光的波长已知时,就能算出球面的曲率半径R 。
但在实验中由于机械压力引起的形变以及球面上可能存在的微小尘埃,使得凸面和平面接触处不可能是一个理想的点,而是一个不很规则的圆斑,因此很难准确测出比较简单的方法是测量距中心较远处的牛顿环直径。
以暗环为例,当测得较远的第K级和第K+M级的暗环直径
若已知λ,则透镜的曲率半径R可用逐差法求得。
也可由作图法求透镜的曲率半径R ,
上式表明
与K 为线性关系,作
K 图,则图的斜率为4Rλ,若已知λ则可求出凸透镜的曲率半径R 。
【实验仪器】
读数显微镜 钠光灯 平凸透镜和平面玻璃(或牛顿环装置)
读数显微镜 实验简图
【实验步骤】
将牛顿环置于读数显微镜载物台上。
显微镜观察测量区域内的干涉条纹:
准备:把显微镜目镜头螺钉锁紧.牛顿环放置在物镜下,镜靠近身前.
对光:接通钠光灯电路(钠光波长=589.3nm) ,待钠光灯正常发光 后,调整光路,使钠光垂直投射到牛顿环装置上,移动显微镜 左右方位,从目镜中看到视场被黄光均匀照亮
调节目镜头看清仪器: 使图像最清晰
调节目镜头看清仪器: 使图像最清晰均匀照亮
显微镜调焦:调节目镜使十字准丝清晰,旋转物镜调节手轮,使镜筒 由最低位置慢慢上升,边升边观察,直到目镜中看到清晰的干 涉条纹(牛顿环)为止,移动显微镜至测量中间区域,微调物镜 调节手轮,进一步微调
,使目镜中看到的叉丝像和牛顿环条 纹间无视差为止。
(此调节要求在测量范围内进行)
2)测量
由牛顿环测量平/凸透镜的曲率半径,调节牛顿环位置,使牛顿环中心 尽量处于十字准丝中心
转动读数显微镜鼓轮,观察准丝从牛顿环中央缓缓向左(或右)移动 至第20环,然后由第20环反向移动,测量并记录左第14暗环到左第4暗环的位置读数。
以后继续同方向移动,通过牛顿环中心后到另一侧,测量并记录右第4暗环到右第14暗环的位置读数。
重复测量两3)注意事项
读数显微镜在调节过程中要防止物镜与牛顿环装置相碰撞 * 测量牛顿环直径过程中为了避免螺距的回程误差,只能单方向推进。
条纹序数不能数错
【数据记录】
【数据处理】
计算法求R
将所测数据用逐差法处理求出 和 由公式求出R 2) 作图法求R
以K为横轴,
图线,求图线的斜率
算出R值。