流体力学作业讲解
- 格式:ppt
- 大小:958.00 KB
- 文档页数:36
2.在现实生活中可视为牛顿流体的有水 和空气 等。
3.流体静压力和流体静压强都是压力的一种量度。
它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。
4.均匀流过流断面上压强分布服从于水静力学规律。
5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。
7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。
8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示12.液体静压强分布规律只适用于静止、同种、连续液体。
13.静止非均质流体的水平面是等压面,等密面和等温面。
14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。
16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。
17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。
18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。
20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。
21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速kv ',其中kv '称为上临界速度,k v 称为下临界速度。
23.圆管层流的沿程阻力系数仅与雷诺数有关,且成反比,而和管壁粗糙无关。
25.紊流过渡区的阿里特苏里公式为25.0)Re68(11.0+=d k λ。
26.速度的大小、方向或分布发生变化而引起的能量损失,称为局部损失。
29.湿周是指过流断面上流体和固体壁面接触的周界。
31.串联管路总的综合阻力系数S 等于各管段的阻抗叠加。
32.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为3211111s s s s ++=。
管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口/V 管嘴等于82.097.0,流量比Q 孔口/Q 管嘴等于82.060.0。
《流体力学》习题(二)2-1 质量为1000kg 的油液(S =0.9)在有势质量力k i F 113102598--=(N)的作用下处于平衡状态,试求油液内的压力分布规律。
2-2 容器中空气的绝对压力为p B =93.2kPa ,当地大气压力为p a =98.1kPa 试求玻璃管中水银柱上升高度h v 。
2-3 封闭容器中水面的绝对压力为p 1=105kPa ,当地大气压力为p a =98.1kPa ,A 点在水面下6m ,试求:(1)A 点的相对压力;(2)测压管中水面与容器中水面的高差。
题2-2图 题2-3图 2-4 已知水银压差计中的读数⊿h =20.3cm ,油柱高h =1.22m ,油的重度γ油=9.0kN/m 3,试求:(1)真空计中的读数p v ;(2)管中空气的相对压力p 0。
题2-4图 题2-5图 2-5 设已知测点A 到水银测压计左边水银面的高差为h 1=40cm ,左右水银面高差为h 2=25cm ,试求A 点的相对压力。
2-6 封闭容器的形状如图所示,若测压计中的汞柱读数△h =100mm ,求水面下深度H =2.5m 处的压力表读数。
题2-6图 题2-7图 2-7 封闭水箱的测压管及箱中水面高程分别为▽1=100cm 和▽4=80cm ,水银压差计右端高程为▽2=20cm ,问左端水银面高程▽3为多少?2-8 两高度差z =20cm 的水管,与一倒U 形管压差计相连,压差计内的水面高差h =10cm ,试求下列两种情况A 、B 两点的压力差:(1)γ1为空气;(2)γ1为重度9kN/m 3的油。
题2-8图题2-9图2-9 有一半封闭容器,左边三格为水,右边一格为油(比重为0.9)。
试求A、B、C、D四点的相对压力。
2-10 一小封闭容器放在大封闭容器中,后者充满压缩空气。
测压表A、B的读数分别为8.28kPa和13.80kPa,已知当地大气压为100kPa,试求小容器内的绝对压力。
流 体 力 学习题解答及习题课第2章2-1 解:A B p p gh ρ=+ 则()()4442.710 2.9100.421.36109.807e a a v A B Hg e v p p p p p p h g g p p m g ρρρ+---==+⨯+⨯===⨯⨯2-2 解:111a p gh p gh ρρ++煤水= 则:()11a p p gh ρρ=+-水煤 同理:222a p gh p gh ρρ++煤水= 则:()22a p p gh ρρ=+-水煤而:12p p gH ρ=+煤 则:()()12a a p gh p gh gH ρρρρρ+-=+-+水煤水煤煤可得:第一章 流体及其主要物理性质例1:已知油品的相对密度为0.85,求其重度。
解:3/980085.085.0m N ⨯=⇒=γδ例2:当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。
解:0=+=⇒=dV Vd dM V M ρρρρρd dV V -=Pa dp d dp V dV E p84105.2105%02.01111⨯=⨯⨯==-==ρρβ例3:已知:A =1200cm 2,V =0.5m/sμ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F绘制:平板间流体的流速分布图及应力分布图 解:(前提条件:牛顿流体、层流运动)dy du μτ= ⎪⎪⎩⎪⎪⎨⎧-=-=⇒2221110h u h u V μτμτ 因为 τ1=τ2 所以sm h h Vh u h uh u V /23.02112212211=+=⇒=-μμμμμN h uV A F 6.411=-==μτ第二章 流体静力学例1:如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。
第二章 流体的平衡2.2 给出如下体力场,分别在均质或正压流体斜压流体情况下说明流场能否静止:()()()();1222222k y xy x j x zx z i z yz y f++++++++=()k r r kf,23-=为常数,r 是内径。
[解答] (1)流体平衡的基本方程为P F b ∇=ρ对于正压流体(含均质流体)平衡的必要条件是体力有势,即体力无旋0=⨯∇b F 。
对于斜压流体在有势力作用下不可能处于平衡态。
()()()k y x j x z i z y y xy x x zx z zyz y z y x kji F b -+-+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++++++∂∂∂∂∂∂=⨯∇222222222则当z y x ==时,正压流体平衡;当不满足此条件时,斜压流体才有可能平衡。
(2)0003=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-∂∂∂∂∂∂=⨯∇r k r k ji F b ϑθ,∴正压流体平衡,斜压流体不能平衡。
2.3 图示一种酒精和水银的双液测压计,细管上端为大气压时酒精液面高度为零,当细管上端的表压为p 时,酒精的液面下降h,试用321,,d d d 和h 来表示p 。
酒精和水银密度均为已知。
[解答] 设开始时酒精液面高度(即液面上端距酒精水银的分界面)为H ,则有流体静力学规律知,分界面即等压面,从而有H g P gH P atm atm ∆+=+mercury alcohol ρρ(1)施加表压P 后,同理可得 )()(21mercury 1alcohol h h H g P h h H g P P atm atm ++∆+=+-++ρρ(2)其中1h 为分界面下降高度,2h 为水银面上升高度,由液体排开体积相等得:()2222312221444h d d h d h d -==πππ(3)解之得h d d d h h d d h 222321222211,-==(4)()(),12-并将(4)代入得)()(21mercury 1alcohol h h g h h g P ++-=ρρ)11()1(22232221mercury 2221alcohol d d d ghd d d gh -++-=ρρ 2.4 如图的微测压计用来测量两容器E 和B 中的气体压强差,试用21,,,ρρδd 表示,B E p p -并说明当横截面积,A a 〈〈,而且两种液体1ρ和2ρ相近似,很小的B E p p -就能引起很大的液面高差d ,从而提高了测量精度。
第一章 绪论1-2 水的容重3=9.71/γKN m ,s Pa μ•10×599.0=3,求它的运动黏度ν。
解:===γgμρμν 6.05x10-7s m /2 1-5. 水平方向运动的木板,其速度1 m/s ,平板浮在油面上δ= 10mm ,油的动力黏度μ为0.09807pa.s 。
求作用于平板单位面积上的阻力。
解:dudyτμ= 板间间隙较小,速度分布近似认为直线分布du vdy δ==100 1/s dudyτμ==0.09807x100=9.807N/m 2(Pa)1-7一底面积为40cm x 45crn ,高为1 cm 的木块,质量为5Kg ,沿着涂有润滑油的斜面等速向下运动。
已知s m v /1=,mm δ1=,重力加速度g 取9.82/s m 。
求润滑油的动力黏度。
解:沿斜面受力平衡有:dydu Aμθmg =sin 即,310×11×)5.0×4.0(×=135×8.9×5μ得:s Pa μ•105.0=1-11 体积为53m 的水,在温度不变的情况下,当压强从1at 增加到5at 时,体积减少1L ,求水的压缩系数及弹性模量。
解:N m dp V dV β/10×1.5=10×8.9×)1-5(×5001.0--=/-=210429/10×9.1=1=m N βE第二章 流体静力学2-2. 水的容重为9.807KN/m 3,水银的容重为133.38 KN/m 3,在封闭管端完全真空的情况一下,水银柱差Z 2=50mm ,求盛水容器液面绝对压强p 1和水面高度Z 1。
(10分) 解:10sy 20133.380.05 6.6696669p p Z Kpa paγ=+=+⨯==1266690.686809.8071000sp Z m mmγ====⨯2-5. 在封闭水箱中,水深h=1.5m 的A 点上安装有一压力表,水的容重为9.807KN/m 3,其中表距A 点Z=0.5m 压力表读数为4.9KN/m 2,求水面相对压强及其真空度。
C (c) 盛有不同种类溶液的连通器DC D水油BB (b) 连通器被隔断AA(a) 连通容器1. 等压面是水平面的条件是什么?2. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面?哪个不是等压面?为什么?3 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。
试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。
4. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。
求A 、B 两点的静水压强。
速?答:与流线正交的断面叫过流断面。
过流断面上点流速的平均值为断面平均流速。
引入断面平均流速的概念是为了在工程应用中简化计算。
8.如图所示,水流通过由两段等截面及一段变截面组成的管道,试问:(1)当阀门开度一定,上游水位保持不变,各段管中,是恒定流还是非恒定流?是均匀流还是非均匀流?(2)当阀门开度一定,上游水位随时间下降,这时管中是恒定流还是非恒定流?(3)恒定流情况下,当判别第II 段管中是渐变流还是急变流时,与该段管长有无关系?9 水流从水箱经管径分别为cmd cm d cm d 5.2,5,10321===的管道流出,出口流速sm V /13=,如图所示。
求流量及其它管道的断面平均流速。
解:应用连续性方程(1)流量:==33A v Q 4.91s l /103-⨯(2) 断面平均流速s m v /0625.01= , s m v /25.02= 。
10如图铅直放置的有压管道,已知d 1=200mm ,d 2=100mm ,断面1-1处的流速v 1=1m/s 。
求(1)输水流量Q ;(2)断面2-2处的平均流速v 2;(3)若此管水平放置,输水流量Q 及断面2-2处的速度v 2是否发生变化?(4)图a 中若水自下而上流动,Q 及v 2是否会发生变化?解:应用连续性方程 (1)4.31=Q s l / (2)s m v /42= (3)不变。
流体力学标准化作业(三)——流体动力学本次作业知识点总结1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。
2.流体流动的加速度、质点导数流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即(,,,)u u x y z t =流体质点的加速度等于速度对时间的变化率,即Du u u dx u dy u dza Dt t x dt y dt z dt ∂∂∂∂==+++∂∂∂∂投影式为x x x x x x y z y y y y y x y zz z z z z x y zu u u u a u u u t x y z u u u u a u u u t x y z u u u u a u u u t x y z ∂∂∂∂⎧=+++⎪∂∂∂∂⎪∂∂∂∂⎪=+++⎨∂∂∂∂⎪⎪∂∂∂∂=+++⎪∂∂∂∂⎩或 ()du ua u u dt t ∂==+⋅∇∂在欧拉法中质点的加速度du dt 由两部分组成, ut∂∂为固定空间点,由时间变化引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。
()u u⋅∇为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度,由流场的不均匀性引起。
欧拉法描述流体运动,质点的物理量不论矢量还是标量,对时间的变化率称为该物理量的质点导数或随体导数。
例如不可压缩流体,密度的随体导数D D u t tρρρ∂=+⋅∇∂() 3.流体流动的分类(1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线流线微分方程x y zdx dy dz u u u ==迹线微分方程x y zdx dy dz dt u u u === (2)流管、流束与总流(3)过流断面、流量及断面平均流速体积流量 3(/)A Q udAm s =⎰ 质量流量 (/)mAQ udAkg s ρ=⎰断面平均流速 AudA Qv AA==⎰(4)渐变流与急变流 5. 连续性方程(1)不可压缩流体连续性微分方程0y x zu u u x y z∂∂∂++=∂∂∂ (2)元流的连续性方程121122dQ dQ u dA u dA =⎧⎨=⎩ (3)总流的连续性方程1122u dA u dA =6. 运动微分方程(1)理想流体的运动微分方程(欧拉运动微分方程)111xx x x x y z yy y y x y z zz z z x y z u u u u p X u u u x t x y zu u u u p Y u u u x t x y z u u u u p Z u u u x t x y z ρρρ∂∂∂∂∂⎫-=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-=+++⎪∂∂∂∂∂⎭矢量表示式1()uf p u u tρ∂+∇=+⋅∇∂ (2)粘性流体运动微分方程(N-S 方程)222111x x x x x x y z y y y y y x y z z z z z z x y z u u u u pX u u u u x t x y zu u u u pY u u u u x t x y z u u u u p Z u u u u x t x y z νρνρνρ∂∂∂∂∂⎫-+∇=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-+∇=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-+∇=+++⎪∂∂∂∂∂⎭矢量表示式 21()uf p u u u tνρ∂+∇+∇=+⋅∇∂ 7.理想流体的伯努利方 (1)理想流体元流的伯努利方程22p u z C g gρ++=(2)理想流体总流的伯努利方程221112221222p v p v z z g g g gααρρ++=++8.实际流体的伯努利方程 (1)实际流体元流的伯努利方程2211221222wp u p u z z h g g g g ρρ++=+++(2)实际流体总流的伯努利方程2211122212w 22p v p v z z h g g g gααρρ++=+++10.恒定总流的动量方程()2211F Q vv ρββ=-∑投影分量形式()()()221122112211xx x y y y z z z F Q v v F Q v v F Q v v ρββρββρββ⎫=-⎪⎪=-⎬⎪=-⎪⎭∑∑∑标准化作业(5)——流体运动学选择题1. 用欧拉法表示流体质点的加速度a 等于( )。
第二章2-1.已知某种物质的密度ρ=2.94g/cm3,试求它的相对密度d。
解:d=ρ/ρw=2.94(g/cm3)/1(g/cm3)=2.942-2.已知某厂1号炉水平烟道中烟气组分的百分数为α(co2)=13.5%,a(SO2)=0.3%,a(O2)=5.2%,a(N2)=76%,a(H2O)=5%。
试求烟气的密度。
2-3.上题中烟气的实测温度t=170℃,实测静计压强Pe=1432Pa,当地大气压强Pa=10058Pa。
试求工作状态下烟气的密度和运动粘度。
2-4.当压强增量为50000Pa时,某种液体的密度增长0.02%,试求该液体的体积模量。
2-5.绝对压强为3.923×10^5Pa的空气的等温体积模量和等熵体积模量各等于多少?2-6. 充满石油的油槽的压强为4.9033×10^5Pa,今由槽中排出石油40kg,使槽压强降到9.8067×10^4Pa,设石油的体积模量K=1.32×10^9 Pa。
试求油槽的体积。
2-7. 流量为50m3/h,温度为70℃的水流入热水锅炉,经加热后水温升到90℃,而水的体胀系数αV=0.000641/℃,问从锅炉中每小时流出多少立方米的水?2-8. 压缩机压缩空气,绝对压强从9.8067×104Pa升高到5.8840×105Pa,温度从20℃升高到78℃,问空气体积减少了多少?2-9. 动力粘度为2.9×10^-4Pa·S,密度为678kg/m3的油,其运动粘度等于多少?解:V=u/ρ=2.9×10^-4/678=4.28×10^-7m²/s2-10. 设空气在0℃时的运动粘度ν0=13.2×10-6m2/s,密度ρ0=1.29kg/m3。
试求在150℃时空气的动力粘度。
2-11. 借恩氏粘度计测得石油的粘度为8.5oE,如石油的密度为ρ=850kg/m3,试求石油的动力粘度。
第一章 绪论1-2 水的容重3=9.71/γKN m ,s Pa μ•10×599.0=3,求它的运动黏度ν。
解:===γgμρμν 6.05x10-7s m /2 1-5. 水平方向运动的木板,其速度1 m/s ,平板浮在油面上δ= 10mm ,油的动力黏度μ为0.09807pa.s 。
求作用于平板单位面积上的阻力。
解:dudyτμ= 板间间隙较小,速度分布近似认为直线分布du vdy δ==100 1/s dudyτμ==0.09807x100=9.807N/m 2(Pa)1-7一底面积为40cm x 45crn ,高为1 cm 的木块,质量为5Kg ,沿着涂有润滑油的斜面等速向下运动。
已知s m v /1=,mm δ1=,重力加速度g 取9.82/s m 。
求润滑油的动力黏度。
解:沿斜面受力平衡有:dydu Aμθmg =sin 即,310×11×)5.0×4.0(×=135×8.9×5μ得:s Pa μ•105.0=1-11 体积为53m 的水,在温度不变的情况下,当压强从1at 增加到5at 时,体积减少1L ,求水的压缩系数及弹性模量。
解:N m dp V dV β/10×1.5=10×8.9×)1-5(×5001.0--=/-=210429/10×9.1=1=m N βE第二章 流体静力学2-2. 水的容重为9.807KN/m 3,水银的容重为133.38 KN/m 3,在封闭管端完全真空的情况一下,水银柱差Z 2=50mm ,求盛水容器液面绝对压强p 1和水面高度Z 1。
(10分) 解:10sy 20133.380.05 6.6696669p p Z Kpa paγ=+=+⨯==1266690.686809.8071000sp Z m mmγ====⨯2-5. 在封闭水箱中,水深h=1.5m 的A 点上安装有一压力表,水的容重为9.807KN/m 3,其中表距A 点Z=0.5m 压力表读数为4.9KN/m 2,求水面相对压强及其真空度。