8第八章拉丁方设计
- 格式:ppt
- 大小:212.50 KB
- 文档页数:45
拉丁方实验设计涉及的统计学原理以及使用中的几个问题拉丁方实验设计(Latinsquaredesign,LSD)是指利用全排列采样技术对地层因素(如温度、盐度、污染物等)和人工因素(如抽样时期、采样设备等)为每个试验单元构建定量模型的一类实验设计方法,它已经成为多元统计分析(Multivariate statistical analysis)中的重要工具之一。
它使实验者能够迅速而有效地研究出实验变量,也能够发现更多实验变量与实验结果之间的关系及其趋势。
拉丁方实验设计涉及的统计学原理主要有:(1)排列和组合原理。
实验设计的本质是一种排列,因此拉丁方实验设计的基本思想是利用排列的原理来解决实验问题。
拉丁方实验设计需要通过排列和组合手段,让实验变量的不同效应在实验中得到充分展现。
(2)分组原理。
拉丁方实验设计是把所有实验观测数据进行分组处理,使实验结果能够达到最大程度的描述和控制。
每一个分组中,实验设计要求所有变量的单位观测值(平均)达到均衡,这样就可以有效地消除每个实验变量的误差影响。
(3)协方差原理。
拉丁方实验设计涉及的统计学原理还包括协方差原理,它是实验设计时最重要的原理之一。
协方差原理指的是两个变量之间的关系,它可以帮助实验者有效地控制实验当中的干扰因素,以便更好地控制实验结果。
在实际使用拉丁方实验设计过程中,实验者会遇到几个常见的问题:(1)实验变量选择问题。
由于拉丁方实验设计本身具有排列、组合、分组和协方差原理,在实际使用中,实验变量的选择非常重要,否则试验结果会不准确。
(2)试验设计问题。
拉丁方实验设计的本质是实验变量的排列,因此实验者需要合理设计实验,以便能够更好地揭示不同实验变量之间的关系。
(3)实验结果分析问题。
拉丁方实验设计得出的实验结果需要进行相应的分析才能够得出准确的结论,而且拉丁方实验设计是包含多种因素的实验设计,实验结果分析需要对多种变量进行分析,因此,分析的结果会更加准确。
第八章单因素试验结果的统计分析•单因素试验指仅研究一个供试因素若干处理间的效应是否有显著差异的试验.•按试验设计的类型单因素试验可分为:•顺序排列试验•单因素完全随机试验•单因素随机区组试验•拉丁方试验第一节对比和间比试验的统计分析(自学)第二节完全随机试验设计的统计分析完全随机设计:是所有的处理和重复小区在整个试验空间完全随机排列的设计方法。
只满足试验设计三项基本原则中的重复和随机排列两项原则。
•如:k = 5,n = 3的完全随机排列示意图主要优点:对各处理的重复次数没有限制,可以相等也可以不相等不足之处:没有遵循局部控制原则,所以要求试验地较为均匀一致,不存在有明显方向性的肥力差异,一般不用于田间试验。
•根据每一处理的重复次数或重复的设计方法不同, 又分为:①组内观察值数目相等;②组内观察值数目不等的完全随机试验;③组内又可分为亚组的完全随机试验一、组内观察值数目相等的完全随机试验设计的统计分析组内观察值数目相等的完全随机试验是各处理重复次数相等的试验。
设有k个处理,每处理均有n个重复观察值,共设kn个观察值;其资料的数据结构模式类型见第7章表7.1。
其试验结果的方差分析方法列于表8.1。
表7.1 k个处理每处理n个重复观察值的完全随机试验数据符号表表7.1 nk个观察值的单向分组资料模式表8.1 组内观察值数目相等的完全随机试验的方差分析•〔例8.1〕研究6种棉花种子包衣剂对棉花生长的影响,设TW1为对照。
采用盆栽试验,各种子包衣剂处理播种5盆,完全随机设计。
出苗一定时期后测定棉花苗高(cm),其结果如下。
试检验各种子包衣剂与对照的棉花平均苗高差异显著性及各种子包衣剂棉花平均苗高间的差异显著性。
表8.2 6种棉花种子包衣剂的棉花苗高结果(cm)•解:已知:处理数k=6,重复次数n=5,共有kn=6×5=30个观察值。
•1、自由度及平方和的分解•总自由度df T = nk– 1 =6 × 5 – 1 =30 – 1 =29•处理自由度df t = k– 1 =6 – 1 =6 – 1 =5•误差自由度df e = df T–df t =29 – 5 =24或df e = n(k– 1) =6 ×( 5 – 1) =24 – 1 =23•矫正数总平方和SS T =Σx2-C=22.92+22.32+……+23.72-C=45.763处理平方和误差平方和SS e=SS T-SS t=45.763-44.463=1.3002、F 检验和列方差分析表统计假设H O:μ1= μ2=…= μ6;H A:μi不“全相等”(即至少有一个不等号)将上述计算的各项自由度、平方和、均方结果,按变异来源列出方差分析表(表8.5)。
教学内容与组织安排:第四节:拉丁方设计(latin square design)“拉丁方”的名字最初是由R、A、Fisher给出的。
拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位组设计小,试验精确性比随机单位组设计高。
一、拉丁方简介(一)拉丁方以n个拉丁字母A,B,C……,为元素,作一个n阶方阵,若这n个拉丁方字母在这n阶方阵的每一行、每一列都出现、且只出现一次,则称该n阶方阵为n×n 阶拉丁方。
例如:A B B AB A A B为2×2阶拉丁方,2×2阶拉丁方只有这两个。
A B CB C AC A B为3×3阶拉丁方。
第一行与第一列的拉丁字母按自然顺序排列的拉丁方,叫标准型拉丁方。
3×3阶标准型拉丁方只有上面介绍的1种,4×4阶标准型拉丁方有4种,5×5阶标准型拉丁方有56种。
若变换标准型的行或列,可得到更多种的拉丁方。
在进行拉丁方设计时,可从上述多种拉丁方中随机选择一种;或选择一种标准型,随机改变其行列顺序后再使用。
(二)常用拉丁方在动物试验中,最常用的有3×3,4×4,5×5,6×6阶拉丁方。
下面列出部分标准型拉丁方,供进行拉丁方设计时选用。
其余拉丁方可查阅数理统计表及有关参考书。
3×3 4 × 4(1)(2)(3)(4)A B C A B C D A B C D A B C D A B C DB C CAABBCDADCDBACABBCDCDADABABCBCDDACADBCBABCDADCDABCBA5 × 5(1)(2)(3)(4)A B C D EBADECCEABDDCEABEDBCAABCDEBAECDCDBEADEABCECDABABCDEBAECDCEDBADCAEBEDBACABCDEBADECCDEBADEACBECBAD6 × 6ABCDEFBFDACECDEFABDCFEBAEABCFDFEABDC二、拉丁方设计方法在畜牧、水产等动物试验中,如果要控制来自两个方面的系统误差,且试验动物的数量又较少,则常采用拉丁方设计。
精品文档。
1欢迎下载拉丁方试验设计拉丁方试验设计在统计上控制两个不相互作用的外部变量并且操纵自变量。
每个外部变量或分区变量被划分为一个相等数目的区组或级别,自变量也同样被分为相同数目的级别。
它是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。
在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。
拉丁方—— 以n 个拉丁字母A ,B ,C ……,为元素,作一个n 阶方阵,若这n 个拉丁方字母在这n 阶方阵的每一行、每一列都出现、且只出现一次,则称该n 阶方阵为n ×n 阶拉丁方。
第一行与第一列的拉丁字母按自然顺序排列的拉丁方,叫标准型拉丁方。
拉丁方设计一般用于5~8个处理的试验,设计的基本要求:①必须是三个因素的试验,且三个因素的水平数相等;②三因素间是相互独立的,均无交互作用;③各行、列、字母所得实验数据的方差齐(F 检验)。
试验设计的步骤:①根据主要处理因素的水平数,确定基本型拉丁方,并从专业角度使另外两个次要因素的水平数与之相同;②先将基本型拉丁方随机化,然后按随机化后的拉丁方阵安排实验。
可通过对拉丁方的任两列交换位置或任两行交换位置实现随机化;③规定行、列、字母所代表的因素与水平,通常用字母表示主要处理因素。
数据处理的相关理论:拉丁方设计实验结果的分析,是将两个单位组因素与试验因素一起,按三因素试验单独观测值的方差分析法进行。
将横行单位组因素记为A ,直列单位组因素记为B ,处理因素记为C ,横行单位组数、直列单位组数与处理数记为r ,对拉丁方试验结果进行方差分析的数学模型为:),,2,1()()(r k j i x k ij k j i k ij ===++++=εγβαμ式中:μ为总平均数;i α为第i 横行单位组效应;j β为第j 直列单位组效应,)(k γ为第k 处理效应。