机电一体化技讲义术检测系统
- 格式:ppt
- 大小:2.76 MB
- 文档页数:62
基于机电一体化技术的智能监测与控制系统开发智能监测与控制系统是目前在各个行业中被广泛应用的一种技术。
随着机电一体化技术的不断发展和进步,智能监测与控制系统的功能和应用领域也在逐渐扩大。
本文将重点介绍基于机电一体化技术的智能监测与控制系统的开发。
一、智能监测与控制系统的概述智能监测与控制系统是一种能够实时监测和控制设备运行状态的系统。
它通过传感器和执行器等硬件设备获取设备的运行数据,并通过算法和控制逻辑对设备进行控制。
智能监测与控制系统能够自动化地进行数据采集、分析和处理,实现自动监测和智能控制。
二、机电一体化技术在智能监测与控制系统中的应用1. 传感器技术的应用:机电一体化技术中的传感器可以实时采集设备的运行数据,例如温度、湿度、压力等参数,并将这些数据传输到监测与控制系统中。
通过分析这些数据,系统可以判断设备的运行状态,及时发现问题并采取相应的控制措施。
2.执行器技术的应用:机电一体化技术中的执行器可以根据监测与控制系统的指令对设备进行控制。
例如,当系统检测到设备温度过高时,可以通过控制执行器调整设备的运行状态,使温度回归正常范围。
3. 数据分析与处理技术的应用:机电一体化技术中的智能算法能够对采集到的数据进行分析和处理。
通过对设备运行数据的分析,系统可以预测设备的故障可能性,提前进行维护,从而避免设备故障导致的停机时间和损失。
三、智能监测与控制系统开发的关键步骤1. 系统需求分析:在开发智能监测与控制系统之前,首先需要明确系统的需求和目标。
根据具体的应用场景,确定系统需要监测和控制的参数、采样频率、控制策略等。
2. 硬件设计与选型:根据系统的需求,选择适当的传感器和执行器。
对于机电一体化技术,需要考虑传感器的安装方式、通信协议等因素,以及执行器的控制方式和接口。
3. 软件开发与算法设计:开发智能监测与控制系统需要编写相应的软件程序。
这包括数据采集、数据处理、算法设计和控制逻辑等方面的开发。
根据具体的应用场景,选择合适的算法和控制逻辑,实现设备的智能监测和控制。
机电一体化系统检测信号的采集与处理检测系统的组成首先跟传感器输出的信号形式和仪器的功能有关,并由此打算检测系统的类型。
(一)开关信号检测系统传感器的输出信号为开关信号,如光电开关和电触点开关的通断信号等。
这类信号的测量电路实质为功率放大电路。
(二)模拟信号检测系统模拟式传感器是目前应用最多的传感器,如电阻式、电感式、电容式、压电式、磁电式及热电式等传感器均输出模拟信号,其输出是与被测物理量相对应的连续变化的电信号。
(三)数字信号检测系统1.肯定码检测电路2.增量码检测电路图4.45 增量码数字信号检测系统常用的细分与辨向电路:(1)多路信号采集细分与辨向(2)电阻链移相细分与辨向可见,输入的正、余弦信号经电阻链运算电路进行线性叠加后,得到一相位移为φ的输出信号(3)锁相倍频细分与辨向(4)脉冲填充细分与辨向二、模拟量的转换输入1.模拟量的转换输入方式图4.48 模拟量的转换方式 2.模拟多路开关模拟多路开关又称为多路转换开关,简称多路开关,其作用是分别或依次把各路检测信号与A/D转换器接通,以节约A/D转换器件。
下图表示一个8通道的模拟开关的结构图,由模拟开关S0~S7及开关掌握与驱动电路组成。
8个模拟开关的接通与断开,通过用二进制代码寻址来指定,从而选择特定的通道。
例如当开关地址为000时,S0开关接通,S1~S7均断开,当开关地址为111时,S7开关接通,其它7个开关断开。
图4.49 8通道的模拟开关结构图 3. 信号采样与保持所谓采样,就是把时间连续的信号变成一串不连续的脉冲时间序列的过程。
信号采样是通过采样开关来实现的。
采样开关又称采样器,实质上它是一个模拟开关,每隔时间间隔T闭合一次,每次闭合持续时间τ,其中,T称为采样周期,其倒数fs=1/T称为采样频率,τ称为采样时间或采样宽度,采样后的脉冲序列称为采样信号。
采样信号是一个离散的模拟信号,它在时间轴上是离散的,但在函数轴上仍是连续的,因而还需要用A/D转换器将其转换成数字量。
第四章机电一体化检测系统第一节概述检测系统是机电一体化产品的一个重要组成部分,是用于检测相关外界环境及产品自身状态,为控制环节提供判断和处理依据的信息反馈环节。
机电一体化系统中,检测系统所测试的物理量一般包括:温度、流量、功率、位移、速度、加速度、力等。
由于机电一体化系统是以电信号为信息传输和处理的媒体,且控制系统的输入接口往往规定了特定的信号形式(如数字信号、直流信号、开关信号),因此,检测系统通常要用传感器将被测试的物理量变为电量,再经过变换、放大、调制、解调、滤波等电路处理后才能得到控制系统(或显示、记录等仪器)需要的信号。
本章重点介绍各种机电一体化系统中常见物理量检测的方法和测试系统的工作原理以及传感器的信号处理、接口技术等。
一、检测系统的组成机电一体化产品中需要检测的物理量分成电量和非电量两种形式,非电量的检测系统系统有两个重要环节:1、把各种非电量信息转换为电信号。
这就是传感器的功能,传感器又称为一次仪表。
2、对转换后的电信号进行测量,并进行放大、运算、转换、记录、指示、显示等处理,这叫作电信号处理系统,通常被称为二次仪表。
机电一体化系统一般采用计算机控制方式,因此,电信号处理系统通常是以计算机为中心的电信号处理系统。
综上所述,非电量检测系统的结构形式如图4-1所示。
图4-1 非电量检测系统的结构形式对于电量检测系统,只保留了电信号的处理过程,省略了一次仪表的处理过程。
二、传感器的概念及基本特性传感器是一种以一定的精确度将被测量转换为与之有确定对应关系的、易于精确处理和测量的某种物理量(如电量)的测量部件或装置。
通常传感器是将非电量转换成电量来输出。
传感器的特性(静态特性和动态特性)是其内部参数所表现的外部特征,决定了传感器的性能和精度。
1、传感器的构成传感器一般是由敏感元件、传感元件和转换电路三部分组成,如图4-2所示。
(1)敏感元件 是一种能够将被测量转换成易于测量的物理量的预变换装置,而输入、输出间具有确定的数学关系(最好为线性)。